
 Repositorio Institucional de la Universidad Autónoma de Madrid
https://repositorio.uam.es

 Esta es la versión de autor del artículo publicado en:
 This is an author produced version of a paper published in:

Computer Languages, Systems & Structures 49 (2017): 133-151

DOI: https://doi.org/10.1016/j.cl.2017.04.002

Copyright: © 2017. This manuscript version is made available under the CC-
BY-NC-ND 4.0 licence http://creativecommons.org/licenses/by-nc-nd/4.0/

 El acceso a la versión del editor puede requerir la suscripción del recurso
Access to the published version may require subscription

https://repositorio.uam.es/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

1

An Approach to Build XML-based Domain Specific Languages
Solutions for Client-Side Web Applications

Enrique Chavarriaga, Francisco Jurado, Fernando Díez

Universidad Autónoma de Madrid, 28049 Madrid, Spain
enrique.chavarriaga@inv.uam.es, {francisco.jurado, fernando.diez}@uam.es

Summary. Domain-Specific Languages (DSLs) allow for the building of applications that ease the
labour of both software engineers and domain experts thanks to the level of abstraction they
provide. In cases where the domain is restricted to Client-Side Web Applications (CSWA), XML-
based languages, frameworks and widgets are commonly combined in order to provide fast, robust
and flexible solutions. This article presents an approach designed to create XML-based DSL
solutions for CSWA that includes an evaluation engine, a programming model and a lightweight
development environment. The approach is able to evaluate multiple XML-based DSL programs
simultaneously to provide solutions to those Domain Specific Problems for CSWAs. To better
demonstrate the capabilities and potential of this novel approach, we will employ a couple of case
studies, namely Anisha and FeedPsi.

Keywords: Domain-Specific Languages; XML Interpreter; JavaScript; Web Application; XML
Programing Language.

1 Introduction
Domain-Specific Languages (DSLs) provide a high-level of abstraction in order to model
specifications, structures and functionalities that solve domain-specific problems. The goal of a
DSL is to make the design, definition, and implementation of systems simpler by allowing domain
experts to better perform their tasks while building high quality and reliable systems in order to
provide Domain-Specific solutions [52]. Succinctly, Fowler [16] describes a DSL as «a computer
programming language of limited expressiveness focused on a particular domain».

The development of a DSL implies the use of scanners, parsers and code generation tools to
evaluate domain-specific models to perform the associated functionality. However, when working
with an XML standard, XML-based DSLs (XML-DSL) can take advantage of general-purpose
parsers like the Simple API for XML (SAX) and the Document Object Model (DOM) [53]. These
APIs are incorporated into most programming languages where they allow programmers to access
and to modify both the structure and the content across XML languages. In this way, XML allows
for both the storage and exchange of auto-documented structured information in the language that
best fits what needs to be modelled [13][55], as well as specifying and extending grammars with
associated functionality that can be readily implemented through the use of standard APIs. Thus,
XML-DSLs provide straightforward DSLs specification that are extensible and easy to combine,
and whose associated functionalities can be rapidly implemented using existing available APIs for
the corresponding target programming language.

Technological changes over the past decade have revolutionized the capabilities and the types
of web-based information systems that can be delivered. These changes require a new point of view
when providing solutions for Client-Side Web Applications (CSWA). Currently, the design and
implementation of these kinds of solutions are exploratory topics [46] based on building dynamic

2

web pages and their related technologies [36][54]. In addition, Web 2.0 [1] provides the
technologies, services and tools to build functional, pleasant and usable web pages, with the added
value to be able to deploy them across multiple platforms.

However, in spite of the growing relevance of CSWA and the demonstrated interest in DSL by
the scientific and industrial community, as far as we know, there are few works that allow creating
DSL solutions for CSWA. Thus, in this context we want to address the creation and
implementation of XML-DSLs for CSWA, which are not covered by the few existing solutions.
Accordingly, this article proposes the Programmable Solutions Interpreter (Psi), an approach to
building CSWA solutions that includes an evaluation engine, a programming model and a
lightweight development environment, which we have called PsiEngine, PsiModel and
PsiEnvironment respectively. Our approach allows for the creation and evaluation of XML-DSLs
for CSWA that encapsulates functionality and integrates with other web widgets and frameworks in
order to create fast, robust and flexible solutions.

The central piece of the PsiEngine is the PsiXML Interpreter (PsiXML for short), a JavaScript
XML interpreter able to evaluate XML-DSLs programs. PsiXML is able to register several XML-
DSLs and to evaluate several programs written in the registered XML-DSLs. XML-DSLs programs
are a set of programmable tags that have specific associated functionality. When executing an
XML-DSL program it consists of evaluating the functionality of each XML tag. In addition, an
XML-DSL specified and implemented in the PsiEngine is able to link and interchange
heterogeneous information (in XML and JSON formats) and to apply up-to-date security policies
and good programming practices [26][60], in this way, it will be able to develop flexible XML-
DSLs for CSWA.

The PsiModel establishes a programming model for lead programmers to generate JavaScript
code and accompanying documentation, mainly oriented toward the creation of XML-DSLs and
reusable JavaScript components. Finally, the PsiEnvironment is the lightweight environment that
employs the PsiModel and uses the PsiEngine.

With these three elements (PsiEngine, PsiModel and PsiEnvironmen) the main goal of this
article is to set up the foundations to apply Model Driven Engineering (MDE) while building
CSWA. MDE is a software methodology centred in defining models to simplify the creation of
information systems [49]. It combines concepts like DSL, XML-DSL and DSVL (Domain-Specific
Visual Language [28]) together with transformation engines and code generators. In this context
the PsiEngine and the PsiModel, which we detail in this article, are the cornerstone for the
aforementioned goal.

In order demonstrate the implementation of PsiEngine and its capabilities, while operating the
PsiModel and the associated PsiEnvironment, we will provide two case studies, namely: Anisha
and FeedPsi. The goal of Anisha is to build two XML-DSLs for animating basic frames. It is a
running example that details the interpretation and execution of multiple programs as well as
information binding. Meanwhile, FeedPsi is a News Aggregation CSWA designed to evaluate the
integration with other web components, RSS services and frameworks. In both cases we have
followed the qualitative case study methodology suggested in [59] and adapted it for software
engineering [2]. With these two case studies we will cover the most relevant features for
programming XML-DSL solutions with our approach.

The rest of the article is structured as follows: section 2 will highlight related cutting edge
works; section 3 will provide a general overview and the most relevant features of our approach,
including the Anisha running example; in section 4 we will explain the FeedPsi case study,
summarizing the validation details of PsiEngine; section 5 will detail the results we have obtained;
finally, section 6 will close the article with some concluding remarks and future works.

2 Outline and related works
The term Domain-Specific Language (DSL) is not rigorously defined in the literature. As
mentioned above, Fowler [16] defined it as «a computer programming language of limited
expressiveness focused on a particular domain». In [51], Spinellis says that a «DSL is a
programming language tailored specifically to an application domain: rather than being for a

3

general purpose, it captures precisely the domain's semantics». Meanwhile, Mernik et al. [38] said
that «domain-specific languages (DSLs) are languages tailored to a specific application domain.
They offer substantial gains in expressiveness and ease of use compared with general-purpose
programming languages in their domain of application».

For its part, [12] studies the languages linguistic composition and assists in classifying DSLs
while taking into account: language extension, language restriction, language unification, self-
extension, and extension composition. Accordingly, our work focuses on building self-extension
languages and extension composition for web-clients.

There appears to be a consensus that a DSL is a programming language devoted to solving
specific problems in particular domains. As such, the abstraction of their syntax and semantics are
determined by the problem domain, and are aimed to implement information systems that provide
solutions to specific problems. According to [11][16][17][23][25][31][38], DSLs have become a
unique Software Engineering research area and a keystone Software Engineering methodology.
Thus, DSLs have been proved in Software Factories [18], Generative Programming [9] and the
MDE [10][49]. Particularly, from a MDE point of view, in [10] we can see a study about software
products, platforms and transformations tools to build modelling languages.

In [32] we can find a Systematic Mapping Study (SMS) on DSLs to identify research trends in
the period 2006-2012. Their authors looked for possible open issues and an analysis on what they
called demographics of the literature. In their SMS study, the authors observed that the DSL
community appears to be more interested in the development of new techniques and methods that
support the different phases of the development process (analysis, design and implementation) of
DSLs, rather than researching new tools, and only a small portion of studies focus on validation
and maintenance. In addition, the authors observed that most of the works do not indicate the tools
they utilized for the implementation. This is really meaningful because to build a DSL solution
involves the use of tools for the implementation of interpreters and compilers like Lex and Yacc [4]
or Flex and Bison [34] to create them. Currently, widely used Integrated Development
Environments (IDE), such as Eclipse and Visual Studio .NET, provide tools and languages
specifically designed to implement DSL. Even general purpose programming languages allow for
the exploitation of their features to accomplish the task. Examples of IDE tools abound, we can
highlight several plugins for the Eclipse environment, such as Stratego/XT [5], LISA [39], Spoofax
[27], Antlr [42], Xtext [3] and Eclipse Modelling Project [19], as well as the DSL Modeling [7] and
Boo [45] for the .NET platform (see [38] for up to 20 development tools). In [43] the authors
developed Onto2Gra to build DSLs following an ontological approach. General programming
language tools for building DSLs include those [3] for Java, [30] C#, [17][14] Ruby, [37] Python,
[25] Clojure, [17][11] Groovy, [47] Haskell and [29] aspect-oriented programming.

So far, we can see that currently there are a lot of IDEs and tools that exist to implement
DSLs. However, which is the preferred solution when we focus on building DSLs (and particularly
XML-DSLs) for web-client? The mentioned SMS does not make explicit reference to the creation
of DSL solutions for web-clients. But, among the few examples of tools to build solutions for web-
clients, we can mention Jison [6] a JavaScript parser generator, which has been used to implements
the CoffeeScript language [33]. However, CoffeeScript is not a DSL, but a little programming
language that compiles to JavaScript thanks to Jison.

When seeking DSL solutions for a web-client, there are only a few solutions, and all of them
are oriented to build only the user interface. Thus, we can mention [21], [15] and [50] as examples.
In these works, the authors define ad-hoc XML-DSLs for a web-client, although they do not give
any advice about the tools the authors have used in the building process. In [21] we can see a work
about an XML-DSL for a clinical application, to define and describe user interfaces where different
users must interact. In [15] the authors propose the DUI language (Distributed Language
Interfaces) to describe user interfaces, task composition and web augmenters. Finally, in [50] a
XML-DSL is described to define different 3D animations in web-client.

With these two drawbacks, i.e., the need for researching the building of new DSL tools for
web-clients, and, the need for DSLs support in web-client solutions, our research focuses on
implementing and executing XML-DSLs solutions for CSWA.

4

3 Approach to Build XML-DSL for Client-Side Web Applications
In this section we will present our approach detailing how to manage XML-DSL solutions that can
be directly interpreted and evaluated in CSWAs. Accordingly, this will document the central ideas
related to the PsiEngine (Programmable Solutions Interpreter Engine), and how to implement it,
evaluate it, while interpreting and executing code within the web-client. By using a running
example, we will describe several concepts related to the approach, namely: the PsiGrammar, the
PsiLanguage and the PsiComponent. Finally, we will detail the programming model this approach
outlines, which we have named PsiModel, and the environment we have developed to apply and
test it.

3.1 The PsiEngine
Fig. 1 shows an outline of our approach. The main idea is to fetch PsiCode, written in the most
appropriate XML-DSL, together with the necessary Resources to evaluate and interpret them
within the PsiEngine. Once the PsiCode and Resources are available, the PsiEngine parses and
transforms them to JavaScript by interpreting their DOM and executing the JavaScript code
associated to each DOM element. As a consequence we obtain the PsiObject that solves a specific
problem within a CSWA. In addition, the corresponding error and warning messages are reported
in case they need to be managed.

Fig. 1 shows the central piece of this approach: the PsiEngine. It has been fully developed
using web-client technologies, combining HTML5, CSS3, JavaScript and DOM, with technologies,
services and tools from Web 2.0. This way we have an engine that completely runs in the web-
client, and given the definition of specific XML-DSLs, it is able to build web components, web
widgets and/or dynamic web pages that provide solutions to specific problems provided in a
CSWA.

Fig. 1. PsiEngine (Programmable Solutions Interpreter Engine) to execute PsiCode in

a web-client.

The PsiEngine’s core is the PsiXML Interpreter whose main goal is to evaluate and interpret
the PsiCode, to generate the JavaScript code and finally to execute it. Additionally, it has a
common shared area called PsiData, which allows for the exchange of information, functionalities
and objects among running PsiPrograms.

In Fig. 1 we can also see how the PsiXML manages several PsiLanguages Ψ =
{𝕃𝕃1,𝕃𝕃2, … ,𝕃𝕃𝑚𝑚}, i.e., those XML-DSLs it will be able to evaluate, interpret and execute. To do so,
the PsiXML registers a set PsiLanguages Definitions. For each different PsiCode 𝑆𝑆𝑘𝑘 written in a
PsiLanguage 𝕃𝕃𝑗𝑗, a PsiProgram 𝑃𝑃𝑘𝑘 is created and managed by the Programs Manager. The
PsiProgram 𝑃𝑃𝑘𝑘 is responsible for converting the PsiCode 𝑆𝑆𝑘𝑘 to a PsiObject 𝑂𝑂𝑘𝑘 by performing a
syntactic and semantic analysis based on the grammar of a PsiLanguage 𝕃𝕃𝑗𝑗 (transformation carried

Programmable Solutions Interpreter Engine
PsiEngine

Errors and
Warnings

PsiObjectOk

PsiXML Interpreter

PsiData Utils

PsiCode
Sk *.xml

Resources
.xml;.json;
.css;.html;
.svg;.js;*.xsl;
*.png; ...

Notation Sk XML source file Pk Object JavaScript
PsiProgram

Ok Object JavaScript
PsiObject

PsiLanguage DefinitionsTranslator

Evaluator
Programs Manager

PsiLanguage

…P1 …Pk Pn

Context

Sk

Fragment
Psi𝑃𝑃𝑟𝑅𝑅𝑇𝑇𝑟𝑇𝑇𝑛𝑛

𝑇𝑇𝑑𝑑

𝐶𝐶𝑇𝑇𝑣𝑣𝑎𝑎 𝑇𝑇𝑛𝑛𝑑 𝑟𝑎𝑎𝑢𝐶𝐶𝑎𝑎

5

out by the Translator component of the PsiXML). This transformation consists of processing the
DOM from the PsiCode, validating each DOM element and executing the corresponding
functionality (performed by Evaluator). In addition, the Programs Manager manages all the
PsiPrograms ℙ = {𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑛𝑛} that the PsiXML is able to evaluate.

PsiLanguages have similarities with other XML-based languages. To specify and use the
different XML-DSLs in the web-client, we follow the same approach of other XML-based
languages, such us XSL, SVG, MathML, etc. In summary, all of them are intended to enrich the
content of web pages by defining an XML grammar, where each XML element has its own
semantic implemented by the corresponding associated functionality to achieve its objective once
interpreted by the web-client. However, in spite of native code the interpreter into current web
browsers or by means of plugins, our approach performs all the analysis directly with the
PsiEngine using the language specifications that come from the server and that can dynamically
change. In this way, the PsiEngine easily manages new XML-DSLs, associates the functionality
corresponding to their semantic, and provides a working environment that facilitates their
evaluation.

On the other hand, unlike other XML-based languages, PsiLanguages have the ability to
associate the PsiCode with external resources (both XML and JSON) in order to use and modify
information at runtime. To associate information implies that an XML containing the data exists as
a DOM (XML-data DOM), so that any element of the PsiCode 𝑆𝑆𝑘𝑘 can have a reference to elements
from the XML-data DOM. Similarly it is possible to associate JSON information with elements of
PsiCode 𝑆𝑆𝑘𝑘.

3.1.1 Defining PsiLanguage
To specify a PsiLanguage so that the PsiEngine can manage it, we need to define its corresponding
grammar. A PsiGrammar 𝔾𝔾 for a PsiLanguage will be defined by a tuple:

 𝔾𝔾 = ⟨𝕋𝕋|𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅|𝛥𝛥⟩ (1)
where 𝕋𝕋 = {𝑇𝑇𝑇𝑇𝑇𝑇1,𝑇𝑇𝑇𝑇𝑇𝑇2, … ,𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛} is the set of tags, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (for some 𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗 ∈ 𝕋𝕋, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛) is the
root element of the grammar and 𝛥𝛥 is an object that the language structure defined as:

 𝛥𝛥 = {𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖:𝛥𝛥𝑖𝑖|𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ∈ 𝕋𝕋} (2)
where Δ𝑖𝑖 ∈ Δ is an object specified by:

 𝛥𝛥𝑖𝑖 = {TAG:𝑣𝑣𝑇𝑇, CLASS:𝑣𝑣𝐶𝐶 , CHILDREN:𝑣𝑣𝐻𝐻 , MULTIPLICITY: 𝑣𝑣𝑀𝑀, STRICT:𝑣𝑣𝑆𝑆, VALIDATOR:𝑣𝑣𝑉𝑉} (3)
where 𝑣𝑣𝑇𝑇 is the tag name, 𝑣𝑣𝐶𝐶 is the associated class name, 𝑣𝑣𝐻𝐻 are the child tags nodes (default is
null), 𝑣𝑣𝑀𝑀 is the multiplicity the child tags (possible values: “0..1”, “1..1”, “0..n” ó “1..n”), 𝑣𝑣𝑆𝑆 is the
strict validation of the children tags (default is true), and 𝑣𝑣𝑉𝑉 specifies validation tag attributes
(default is null).

It is commonly accepted that the use of DTD and XML Schema easily describe the structure,
the grammatical constraints and the data types of XML documents. When developing the
PsiEngine we analysed the use of these to validate PsiCode. As previously stated, data and
programs can be separated in our approach. Although the PsiCode is written in XML and therefore
can be validated using DTD or XML Schema, XML and JSON data are loaded and linked at
runtime. Therefore an alternative to validate the code and data under this perspective is required.
The couple composed by the PsiLanguage Structure Diagram (PsiLSD) and the PsiGrammar
Validator Attributes (PsiGVA) solves this problem.

The PsiLSD shown in Fig. 2(a) is a graphical representation of the language structure related
to a PsiGrammar. For its part, Fig. 2(b), shows the PsiGVA and its specific syntax for validating
tag attributes 𝑣𝑣𝑉𝑉. PsiLSD and PsiGVA dramatically simplify the design and development of
grammars for the PsiXML.

6

Fig. 2. (a) PsiLanguage Structure Diagram; (b) PsiGrammar Validator Attributes.

Once the PsiGrammar has been defined, it is necessary to implement its semantic, i.e., to code
the functionality associated to each tag 𝕋𝕋 = {𝑇𝑇𝑇𝑇𝑇𝑇1,𝑇𝑇𝑇𝑇𝑇𝑇2, … ,𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛} from the PsiLanguage. These
functionalities are implemented as a set of classes from a reusable JavaScript component (see
[8][58]), and then matched with their corresponding tags. The evaluation and execution of all
functionalities solves a domain specific problem in a CSWA.

Thus, a PsiLanguage 𝕃𝕃 is defined as a tuple:

 𝕃𝕃 = ⟨𝔾𝔾|𝕂𝕂|𝕋𝕋 ↔ ℂ⟩ (4)
where 𝔾𝔾 is the PsiGrammar definition for the PsiLanguage (as defined by (1)), 𝕂𝕂 is the reusable
JavaScript software component (called PsiComponent), ℂ = {𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶1, … ,𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝑛𝑛} is the subset of
classes implemented in 𝕂𝕂 and finally, 𝕋𝕋 ↔ ℂ is the association between 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 and 𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝑘𝑘, for each
𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 ∈ 𝕋𝕋 and 𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝑘𝑘 ∈ ℂ, respectively.

Fig. 3 shows the association between the tags from the 𝔾𝔾 grammar and their related classes
from ℂ. Because a tag in a PsiLanguage may be defined for more than one part of the grammar
structure, different functionalities can be associated. Similarly, a class can be associated to different
tags. In Fig. 3(a) we can see how PsiLSD associates the corresponding JavaScript class name (i.e.,
𝑣𝑣𝑐𝑐 ∈ 𝛥𝛥𝑖𝑖 in (3)) with its related tag name in the XML grammar.

Fig. 3. Association diagram between tags set and classes set to define a PsiLanguage.

TEMPLATE 1 shows how to develop a PsiComponent 𝕂𝕂, where the classes that manage the
desired functionality and their associated tags from the PsiGrammar are implemented.

TEMPLATE 1. JavaScript template to define a PsiComponent
var MyComponentPsi = (function () {
 // Tag set for the PsiGrammar
 var ID_TAG_T1 = "T1", …, ID_TAG_Tn = "Tn";
 // Language structure
 var ID_TAGS = {};

trueSTRICT:
Notation:

false
MULTIPLICITY (x..y): (0..1 | 1..1 | 0..n | 1..n)

PsiGrammar
Tag VALIDATOR

Tag1 Tag1 validador attributes.
::: :::

Tagn Tagn validador attributes.
PsiGVA Syntax:

::= { [“*”] [“=”] }
::= [{ } [“|”]]
::= { “(“ [] “)” [“;”] }
::= { “,” }
::= digits | integer | identifier | text |

date | url | email | range | select
Where: attribute name (is mandatory “*”);
datatype; validation parameters and
default value. Multiple validation rules are separated by the
character “;”.

(a) (b) <PsiLanguage>
Structure

Root (Tagj)
Class: ClassRoot (Classj)

Tag1
Class: Class1

Tagk
Class: Classk

x..y x..y

Tagm

x..y

Tagn

x..y

…

…Class: Classm Class: Classn

PsiLanguage
PsiGrammar PsiComponent

C
< >

< ></ >

< ></ >

< ></ >
</ >

Structure PsiLanguage
tags set

ClassRoot

7

 ID_TAGS[ID_TAG_T1]={TAG:"Tag1", CLASS:"Class1", CHILDREN:…, MULTIPLICITY:…,
 STRICT:…, VALIDATOR:"…"};
 …
 ID_TAGS[ID_TAG_Tn]={TAG:"Tagn", CLASS:"Classn", CHILDREN:…, MULTIPLICITY:…,
 STRICT:…, VALIDATOR:"…"};
 // PsiGrammar definition
 var GRAMMAR = {
 NAME: "GrammarName",
 TAGS: ID_TAGS,
 ROOT: ID_TAG_Tj // Root element
 };
 // Associated classes for the PsiGrammar
 function Class1(){}; Class1.methods({...}); // Class Class1 implementation
 ...
 function Classj(){}; Classj.methods({...}); // ClassRoot implementation
 ...
 function Classn(){}; Classn.methods({...}); // Class Classn implementation

 // Aditional programming elements for the PsiComponent
 // PsiLanguage Register
 PsiXML.registerLanguagePsi("GrammarAlias", GRAMMAR, ParsePsi);
 return {
 // PsiComponent interface
 };
})();

It should be noted that those classes that relate ℂ to a PsiLanguage inherit from an abstract
class (PsiElement from the PsiLanguages Definitions). This abstract class implements the abstract
behaviour for each element. In particular it binds each DOM element (i.e. each tag) from the XML
source code, manages the grammatical structure, and performs attributes and child elements
validation. Furthermore, it has the ability to execute (by calling the corresponding JavaScript
functions) the functionality related to each specific component through an events set. Also, the
PsiElement abstract class is able to natively manage two languages, namely:

i. PsiLanguage to Link Information (PsiLI) in charge of associating information stored in XML
and JSON formats from the Context or the PsiData to the corresponding class.

ii. PsiLanguage Code Attribute (PsiCA) in charge of evaluating "inline" code in tag attributes.
The finality of this inline code is to allow setting the attribute value with the associated
information.
Because these languages have been implemented in the PsiElement abstract class, the use of

the PsiLI and PsiCA languages can be incorporated into every element of a PsiLanguage. In this
way, the approach provides the capability to associate external XML/JSON information resources
with the implementation of every PsiLanguage natively. By isolating the external resource storage
along with the PsiPrograms, resources can be reused among components, frameworks and web
applications. On the one hand, PsiLI allows PsiLanguages to define their association to external
data resources; on the other hand, PsiCA provides the semantics needed to access, use and modify
those resources. This is an innovative feature in creating XML-DSLs as it provides heterogeneous
XML/JSON information to any XML-DSL, unlike other approaches such as XLink (XML Linking
Language), which adds XML elements and resources by cross-linking documents, images and files
through to the web.

More details about the PsiEngine are explained in http://hilas.ii.uam.es/api. This website
includes interactive class diagrams for the PsiXML, detailed PsiLanguages definition and
additional programming elements.

3.1.2 Running Example: The Anisha Case Study
In order demonstrate how this approach works in a systematically defined development process, we
will first define the grammar, then detail how the related functionality is associated to each
grammatical element, and conclude by showing how the interpreter executes the source code for
each language. Thus, we will utilize a running example we have called Anisha. Anisha combines

8

two PsiLanguages, namely ShapesPsi and AnimaPsi. ShapesPsi allows for the creation of circles
and rectangles based on SVG, while AnimaPsi let move and stop the graphical elements defined in
ShapesPsi.

 The ShapesPsi Language
FRAGMENT 1 shows an example code written in ShapesPsi language. In this code we can see

how to create a red circle with centre at point (100, 100), label “Circle”, radius 30 (all units in
pixels), and a blue rectangle with centre at point (250, 100), label “Rectangle”, weight 20 and high
10. Evaluation can be seen in http://hilas.ii.uam.es/Anisha/basic.

FRAGMENT 1. Example code written in ShapesPsi language (basic.xml)
<?xml version="1.0" encoding="utf-8"?>
<Shapes name="Basic example ShapesPsi">
 <Circle id="F1" center="100,100" radius="30" label="Circle"
 style="fill:red;stroke:gray;stroke-width:2px"/>
 <Rectangle id="r1" center="250,100" width="70" height="50" label="Rectangle"
 style="fill:blue;stroke:gray;stroke-width:2px"/>
</Shapes>

As previously explained, ShapesPsi is a DSL that follows an XML-based grammar for
creating circles and rectangles. Fig. 4(a) shows the PsiLSD of the ShapesPsi Language, in which
the root tag Shapes is the beginning of the program. Then, we can define the necessary grammar
elements: circles (multiple Circle tags) and rectangles (multiple Rectangle tags).

Fig. 4. (a) PsiLSD of the ShapesPsi Language. (b) Class diagram for the Shapes Component.

The UML Class diagram for Shapes component is shown in Fig. 4(b). The Shapes class
defines a set of circles and rectangles. The Base abstract class defines a generic figure, while the
Circle class paints a circle with a text in the middle on a SVG canvas, and the Rectangle class
paints a rectangle with a text in the middle. All the coded circles and rectangles are stored in PSI
Data so that other programs and languages can use them. The reader is encouraged to look up the
detailed implementation of the Shapes component at http://hilas.ii.uam.es/Anisha/api.

Thus, we can specify the ShapesPsi Grammar, as follows:

𝔾𝔾𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 = �𝕋𝕋𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖�𝑆𝑆ℎ𝑇𝑇𝑎𝑎𝑎𝑎𝐶𝐶�𝛥𝛥𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖�

being the tags set
 𝕋𝕋𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 = {Shapes, Circle, Rectangle},

tag root is Shapes, and Δ𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 = �𝑅𝑅𝑖𝑖: 𝛥𝛥𝑖𝑖�𝑅𝑅𝑖𝑖 ∈ 𝕋𝕋𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖�.
Its implementation follows the previously defined template shown in FRAGMENT 2. The

Shapes tag has a compulsory attribute called name and contains Circle and Rectangle tags. The
Circle tag has attributes to specify an id, the circle center and radius (10px by defect), a label and
CSS style. The Rectangle tag has attributes to specify an id, the initial point, the width and height
(both with 10px by default), a label and CSS style. FRAGMENT 2 shows the 𝕋𝕋 ↔ ℂ association (as
defined by (4)), the association between tags from ShapesPsi grammar and classes the
PsiComponent for the ShapesPsi Language, using TEMPLATE 1. The full JavaScript code can be
viewed at http://hilas.ii.uam.es/js/psi/Anisha.js. Additionally, the source code for Anisha case study

Notation:
Inherits
PsiXML.PsiElementtrueSTRICT:

Notation:
false

(a) (b)

http://hilas.ii.uam.es/js/psi/Anisha.js

9

will be available in http://github.com/echavarriaga/Anisha.

FRAGMENT 2. The ShapesPsi language implementation (Shapes component) using the PsiComponent
definition TEMPLATE 1.
var Shapes = (function () {
 // Tag set for the Anisha Grammar
 var ID_TAG_SHAPES = "shapes", ID_TAG_CIRCLE = "circle", ID_TAG_RECTANGLE = "rectangle";
 // Language structure
 var ID_TAGS = {};
 ID_TAGS[ID_TAG_SHAPES] = {
 TAG: "Shapes", CLASS: "Shapes", MULTIPLICITY: "1..1", VALIDATOR: "*name:text",
 CHILDREN: { "Circle": ID_TAG_CIRCLE, "Rectangle": ID_TAG_RECTANGLE }
 };
 ID_TAGS[ID_TAG_CIRCLE] = {
 TAG: "Circle", CLASS: "Circle", MULTIPLICITY: "0..n",
 VALIDATOR: "*name:identifier|*center:text|radius=10:integer|label:text|style:text"
 };
 ID_TAGS[ID_TAG_RECTANGLE] = {
 TAG: "Rectangle", CLASS: "Rectangle", MULTIPLICITY: "0..n",
 VALIDATOR: "*name:identifier|*point:text|width:10:integer|height=10:integer| label:text|style:text"
 };
 // ShapesPsi Grammar definition
 var GRAMMAR = { NAME: "ShapesPsi", TAGS: ID_TAGS, ROOT: ID_TAG_SHAPES };
 //Classes implementation
 function Shapes(){}; MiniProgram.methods({...}); //Shapes Class
 function Base(){}; Base.inherits(PsiXML.PsiElement); Base.methods({...}); //Base Class
 function Circle(){}; Circle.inherits(Base); Circle.methods({...}); //Circle Class
 function Rectangle(){}; Rectangle.inherits(Base); Rectangle.methods({...});//Rectangle Class
 function ParseShapesPsi(){}; //Parser Shapes Class
 // PsiLanguage Register
 PsiXML.registerLanguagePsi("ShapesPsi", GRAMMAR, ParseShapesPsi);
 return {
 // PsiComponent interface
 };
})();

Once we have shown how to implement the JavaScript functionality for the Shapes
Component, we can illustrate how to use the PsiLI and PsiCA languages. To do so, we will detail
how to specify two new programmable tags (Circle and Rectangle) for the ShapesPsi. We will
make use of two information sources: an XML document and a JavaScript object.

What follows is a simple game based on two characters. First, FRAGMENT 3 shows how the
information from characters is extracted from a XML file. Second, FRAGMENT 4 presents how the
Context object is defined by the characters’ features and the XML file (FRAGMENT 3) is loaded and
registered by PsiData.

FRAGMENT 3. File “characters.xml”
<?xml version="1.0" encoding="utf-8"?>
<Characters>
 <Character id="p1" first="Luke" last="Skywalker"/>
 <Character id="p2" first="Obi-Wan" last="Kenobi"/>
</Characters>

FRAGMENT 4. Context for people from file “character.xml”
var context = {
 features: {
 p1: {point: "50,50", color: "black"},
 p2: {point: "250,200", color: "green"}
 }
}
PsiData.document.register("characters", "xml/characters.xml");

FRAGMENT 5 shows a ShapesPsi Program based on PsiLI and PsiCA languages. The Circle
tag defines the data-document attribute, whose value is written in the PsiLI language and is
interpreted by PsiXML. As a result, the PsiData object looks for a character with an id value equal

10

to p1 (jQuery selector Character[id=p1]). It also assigns the result to the variable info that is
added to the instance of the Circle class. Additionally, the data-context attribute recovers the
property features from the Context object, identified as p1, and assigns this value to the variable qt
of the class instance. It is worth mentioning that data-context (Context object information) and
data-document (PsiData information) attributes are recorded, and both are natively available for all
tags in any PsiLanguage.

Moreover, FRAGMENT 5 shows how the label attribute, from the Circle tag, uses the PsiCA
language in order to obtain information from info. In same way, the center and style attributes use
the PsiCA language to obtain information from qt.

FRAGMENT 5. Using PsiLI and PsiCA languages in ShapesPsi programs (characters.xml)
<?xml version="1.0" encoding="utf-8"?>
<Shapes name="the characters ...">
 <Circle data-document="characters:info=Character[id=p1]" data-context="features:qt=p1"
 id="cp1" center="{{qt.point}}" radius="30" label="{{info.first}}"
 style="stroke:black;stroke-width:1px;fill:{{qt.color}}"/>
 <Rectangle data-document="characters:info=Character[id=p2]" data-context="features:qt=p2"
 id="cp2" center="{{qt.point}}" width="60" height="40" label="{{info.first}}"
 style="stroke:black;stroke-width:1px;fill:{{qt.color}}"/>
</Shapes>

At this point, we highlight again the capability to associate heterogeneous information sources
(XML or JSON) with a program element natively including PsiLI and PsiCA. The class bound to
the element receives the information and processes it according to its needs. This enriches
programming, because an attribute of the element can be transformed into an Object or DOM
element.

 The AnimePsi Language
Continuing the Anisha running example, Fig. 5 shows the implementation of AnimePsi

language that allows moving figures defined with ShapesPsi. This language has two tags: Animates
and Move. In Fig. 5(a) we can see the PsiLSD for the AnimePsi language and Fig. 5(b) shows its
PsiGVA.

According to Fig. 5(a), the Animates root tag specifies a set of figures movements, i.e.
multiple Move tags. The Move tag defines a reference to the figure (key attribute), a path for the
movement (path attribute), the number of steps in the path (steps attribute), the number of seconds
for movement (seconds attribute), the initial waiting time (wait attribute, default 0) and if the
movement must be repeated (repeat attribute, default “no”).

Fig. 5. (a) PsiLSD for the AnimePsi Language. (b) PsiGVA for the AnimePsi

Language. (c) Class diagram for the Anime Component.

The Anime component implements the functionality related to the AnimePsi language, as
shown in the class diagram of Fig. 5(c). This component has two classes: Animates and Move,
bound to the Animates and Move tags respectively. The Animates class starts the animation
program, while the Move class implements the movement bound to the Move tag and based on the
definition of the SVG path tag. The reader is encouraged to look up the detailed implementation of
the Shapes Component at http://hilas.ii.uam.es/Anisha/api.

In FRAGMENT 6 we can see the characters motion defined in the previous fragment. In

Notation:
Inherits PsiXML.PsiElement

(a) (c)

trueSTRICT:
Notation:

false

AnimePsi Grammar
Tag VALIDATOR

Animes *name:text

Move
*key:identifier|*path:text|steps:=50:
integer|seconds:=10:integer|
wait:=0:integer|repeat:select(yes,no)

(b)

11

evaluating this AnimePsi program, "Luke" approaches "Obi-Wan" that runs off. Evaluation can be
seen in http://hilas.ii.uam.es/Anisha/runs.

FRAGMENT 6. Game for moving characters written through the AnimePsi language
<?xml version="1.0" encoding="utf-8"?>
<Animates name="runs, Obi-Wan, runs">
 <Move key="cp1" steps="50" seconds="3" path="L100,50L180,200"/>
 <Move key=" key="cp2" steps="50" seconds="5" wait="4"
 path="F250,100 400,100 400,200 S550,300 550,200 F550,50 100,50 100,200 L100,300
L250,300 l250,200" />
</Animates>

The main objective of the Anisha case study has been to illustrate a few features of PsiEngine.
Firstly, this example validates the binding of the heterogeneous source information (XML and
JSON). This feature provides versatility to the XML-DSLs in PsiEngine. Secondly, Anisha tests the
coexistence of multiple PsiLanguages as well as the ability to run multiple PsiPrograms with rapid
information exchange and cross functionality. In general, PsiEngine allows for the creation of
straightforward XML-DSLs with a high level of abstraction, which are extensible and combinable.

3.2 The Psi Programming Model and Its Lightweight Environment
Currently, code generation is a core activity in software engineering with particular focus in
Model-driven Engineering [49]. Code generation leads to timesaving, greater efficiency, higher
quality and more standardization when building information systems [44][49]. In this context,
utilizing the approach as previously described, to simplify the creation of PsiLanguages 𝕃𝕃, we
propose the PsiModel. The PsiModel allows for the definition of PsiGrammars 𝔾𝔾 and the
implementation of the PsiComponents 𝕂𝕂, as well as other JavaScript components.

The PsiModel separates the PsiLanguage specification from the PsiComponent
implementation and their association by means of code-behind techniques. To do so, the PsiModel
involves two PsiLanguages as shown in Fig. 6, namely:

• MPsi Specification Language: a PsiLanguage to specify the programming elements, i.e. the
programmable tags.

• MIPsi Implementation Language: a PsiLanguage to implement the programming elements
specified by means of the MPsi language.

Fig. 6. PsiModel Scheme to generate JavaScript code and documentation.

Using this method, MPsi and MIPsi respectively allow for the specifying and implementation
of the programming elements including: Var, Object, Enum, Script, Class (using the class
definition given in [8][58]), Component (using the component or module definition given in
[8][58]) and ComponentPsi (which defines and implements PsiGrammar and PsiComponent, to
generate a PsiLanguage). For further details on the specification and implementation of MPsi and
MIPsi languages, please consult http://hilas.ii.uam.es/psimodel.

In order to apply the PsiModel including MPsi and MIPsi while building PsiLanguages, we
have implemented the lightweight development environment called PsiEnvironment. In Fig. 7 we
can see a snapshot of the PsiEnvironment accessible with the URL:

 http://hilas.ii.uam.es/PsiXML/viewer.html?psifile=<name> (5)

being <name> the name of the project or component. Additionally, the source code for each project
or component will be available in http://github.com/echavarriaga/PsiSource/.

PsiGeneration

Documentation
PDF and HTML

JavaScript
Code

MPsi Specification
Language

Psi Model Programming

MIPsi Implementation
Language

XML File
(TXml)

Template

http://github.com/echavarriaga/PsiSource/

12

As an example, in Fig. 7 the Anisha case study is shown (psifile=Anisha). The "Specification"
tab contains the MPsi specification, whilst the "Implementation" tab contains the MIPsi
implementation.

Fig. 7. Lightweight development environment to apply the PsiModel.

The PsiEnvironment implements several features including code autocompleting for MPsi,
MIPsi, JavaScript, XML, HTML and CSS languages. It also has a visual component for online
display of PsiLSD diagrams, UML Class diagrams as well as source code. Once the PsiLanguage is
defined and implemented, the PsiEnvironment can automatically generate the JavaScript code.

An additional feature in PsiEnvironment is the process of calculating of a set of software
metrics obtained for the generated JavaScript code and for the PsiModel languages. The software
metrics are: lines of code [40] (SLOC, LLOC and CLOC), cyclomatic complexity [35], Halstead
metrics [20] and maintainability index [41]. To perform these calculations we made use of
Excomplex [48], a package implemented on NodeJS (nodejs.org).

3.3 Final Comments
Throughout this section we have presented a method for creating XML-DSLs, which we have

called PsiLanguages, using the PsiEngine. With the Anisha running example we have illustrated
the creation of PsiLanguages along with the relevant features of the PsiEngine. Additionally we
have presented the PsiModel, a programming model and its corresponding lightweight
programming environment to facilitate the language specification and PsiCompoment
implementation. The design and implementation for the PsiComponents can be summarized
according the following steps:

i. Create the PsiLSD and specify PsiGVA.
ii. Create the UML Class Diagram for the PsiComponent.
iii. Implement the PsiComponent functionality based on the PsiLSD and the PsiGVA using the

PsiEnvironment.
iv. Perform functional tests for the PsiComponent.

The following section is devoted to develop FeedPsi, a web application developed entirely
with the proposed method. The final section is dedicated to validating the PsiEngine using a
qualitative case study methodology.

Autocomplete
code Psi

JavaScript code
generated

Software metrics
calculation

Language
MPsi

Language
MIPsi

13

4 FeedPsi web application case study
In order to test our approach, the aim of this case study is to illustrate the use of PsiEngine for the
specification and implementation of a web application we have called FeedPsi. Briefly, it is a web
application executed with the goal of creating and deploying a dynamic web page, which
aggregates content from several web sources in order to build a News Portal. These sources can be
formatted in the two most commonly used formats, namely: RSS [57][22] and Atom [56][24] both
written in XML.

Throughout this section, we will present the complete cycle from problem analysis to
implementation while utilizing the PsiEngine. This cycle begins with how to build the FeedPsi
Language and encapsulate it in a PsiComponent, followed by, evaluating the PsiProgram and how
the dynamic website is generated as a result.

4.1 Analysis and design
In Fig. 8 we can see the design of the FeedPsi web application. It manages RSS feeds, allowing us
to choose, display, store by category and/or dispose news. In addition, the figure shows the FeedPsi
Language, which is implemented in Feed Component and evaluated on the Interpreter PsiXML
shown. FeedPsi will need to manage the list of RSS feeds (RSS multiple tags), the list of categories
(multiple Category tags) and the list of current news selected by the user (one MainNews tag).
When a RSS feed is read, the headlines are available in a floating submenu (see Fig. 8). Once
labelled, news can be displayed and/or stored in any category for later reading.

The proposed web application does not require server-side programming, making it possible
for the entire application deployment to take place directly on the web-client, with minimal
computational cost on the server.

In order to better exemplify the use of our proposal, the following section will show another
case of study where the approach has been used, namely, FeedPsi, a dynamic web application
completely developed using our approach.

Fig. 8. Design of a web application to aggregate news via RSS feeds, based on

PsiLanguage.

4.2 Feed Component Specification
The implementation of the web application for managing and displaying RSS feeds following our
DSL approach starts with the specification of the corresponding Feed Component as previously
stated. Next, we will detail the steps.

Fig. 9 shows the PsiLSD and Fig. 9(b) shows the PsiGVA for the FeedPsi Language. The
SetOfNews tag is the element root in the FeedPsi Program evaluation. It contains the list of RSS
sources (RSS tag), the list of Categories (Category tag) and the news currently displayed

Source RSS

L’Equipe La Gazzeta

MirrorBild

Web Application “FeedPsi”

x

Headers

Bild

Mirror

L’Equipe

La
Gazzeta

Sports X

News 1

NewsN

…<RSS id="…" name="…" url="…">
<News name="News 1"/>

<News name="News N"/>
</RSS>

Tecnología

News 1 x

News N x

Section

News 1 x

News N x

News X

Content

<Category name="…">
<News name="News 1"/>

<News name="News N"/>
</Category>

…
…

RSS

<News name=« Current">
<!– Content -->

</News>

<?xml version="1.0?>
<SetOfNews name=“page">

<Configuration …/>
<!– RSS List -->
<!– Category List -->

</SetOfNews>

14

(MainNews tag).
The RSS tag has an identifier, a name and the URL for the RSS source. It has the capability to

connect via AJAX to fetch the data from the RSS news service. The Category tag has lists of news
stored by category. It has an identifier and the category title. The MainNews tag contains list of
news currently displayed to the user. Finally, the News tag contains the news obtained from the
RSS feed, which has a unique identifier and it is displayed if it falls under the MainNews tag.

Fig. 9. (a) PsiLSD of the FeedPsi Language. (b) PsiGVA of the FeedPsi Language.

(c) Class diagram for the Feed Component.

Fig. 9(c) shows the class diagram for the Feed Component. The detailed implementation of the
Feed Component is shown at the URL: http://hilas.ii.uam.es/FeedPsi/api, by class diagrams and
documentation tabs. The full JavaScript code for the Feed Component can be accessed at
http://hilas.ii.uam.es/js/psi/FeedPsi.js. Additionally, the source code will be available in
http://github.com/echavarriaga/FeedPsi.

In the class diagram (Fig. 9(c)) we can see the functionality associated with the set of news
(SetOfNews class) where we can add and remove both RSS feeds and categories. Each RSS source
(RSS class) has the ability to update its content making an AJAX call by using the associated URL,
creating a news entry, and creating a sub-cathegory of headlines with the help of the SetOfNews
class.

In addition, categories (Category class) and current displayed news (MainNews class) can be
managed (add, delete or verify) by using the PanelNews class. The MainNews class has been
implemented to visualize the news chosen from the RSS sources or from the different categories.
Meanwhile, the News class defines news with a unique id and it is in charge of displaying the news.
The UserInterface is charged with processing and displaying the interface for the FeedPsi
application.

4.3 Running the FeedPsi web application
In order to show how the Feed Component runs together with the FeedPsi Language to implement
the FeedPsi web application (http://hilas.ii.uam.es/FeedPsi), we will show how it works with the
RSS source for the following periodicals: Bild, Mirror, AS, La Gazzeta, L’Equipe y El Tiempo (see
Fig. 10).

Thus, FRAGMENT 7 shows the FeedPsi source code that implements the FeedPsi web
application (the news aggregator).

FRAGMENT 7. FeedPsi source code for sports (sports.xml)1.
<?xml version="1.0" encoding="utf-8"?>

1 http://hilas.ii.uam.es/FeedPsi/source/sports.xml

FeedPsi Grammar
Tag VALIDATOR

SetOfNews *name:text

RSS
*id:text|*title:text|*url:url|
*image:text|
limit=10:number(5,10,20,50)

MainNews *title:text
Category *id:identifier|*title:text
News *id:identifier|*title:text

trueSTRICT:
Notation:

false

Notation: Inherits PsiXML.PsiElement

(a)

(b)

(c)

15

<SetOfNews name="RSS Sports Psi Style">
 <RSS id="as" title="Germany: Bild Sport" image="images/rss/bild.png"
 url="http://rss.bild.de/bild-sport.xml"/>
 <RSS id="theguardian" title="England: The Guardian"
 image="images/rss/mirrorsport.png"
 url="http://feeds.theguardian.com/theguardian/uk/sport/rss"/>
 <RSS id="as" title="Spain: AS" image="images/rss/as.png"
 url="http://as.com/rss/tags/ultimas_noticias.xml"/>
 <RSS id="lagazzetta" title="Italy: La Gazzetta" image="images/rss/lagazzetta.png"
 url="http://www.gazzetta.it/rss/home.xml"/>
 <RSS id="lequipe" title="France: L'Equipe" image="images/rss/lequipe.png"
 url="http://www.lequipe.fr/rss/actu_rss.xml"/>
 <RSS id="eltiempo" title="Colombia: El Tiempo" image="images/rss/eltiempo.png"
 url="http://www.eltiempo.com/deportes/rss.xml"/>
 <MainNews title="Latest Sports News"></MainNews>
 <Category id="football" title="Football"/>
 <Category id="cycling" title="Cycling"/>
 <Category id="tennis" title="Tennis"/>
 <Category id="motor" title="Motor"/>
</SetOfNews>

Fig. 10 shows the resulting web application after the PsiXML processes the source code. At
http://hilas.ii.uam.es/FeedPsi/index.html?list=〈name〉 we can evaluate other FeedPsi programs,
where 〈𝑛𝑛𝑇𝑇𝑛𝑛𝑎𝑎〉 can be science, spain, sport-es, technology and journal.

Finally it should be noticed that the objective of the presented case study is not to deploy a
fully debugged web application, but to better show how to use the concept of PsiComponent,
PsiLanguage and the PsiXML for building web applications.

Fig. 10. FeedPsi Web Application.

5 Results and validation
To perform the validation of the PsiEngine we followed the qualitative case study methodology
suggested in [59] and adapted for software engineering [2]. According to this methodology, a case
study in a web-client is translated into one or more PsiLanguages developed to create a set of
programs written in these languages that have the necessary resources to implement solutions to
specific problems. Some results may include, for example, new components, widgets or web
applications.

The multicase methodology described in [59] validates the relevant aspects of a research

16

objective. These objectives are formulated as a set of criterions to validate. This is done by means
of case studies that covers different parts of the whole set. The total cases should cover the full
criterions. A criterion can be validated with more than one case study. Overall, the evidence created
from the multicase methodology is considered robust and reliable, but can also be extremely costly
in time and execution requirements [2]. In this case our objective is to validate the PsiEngine and
PsiModel, and so the criterions list to validate this are the following:

F1. Implement the PsiEngine and its PsiXML.
F2. Allow PsiPrograms execution: (S) simple-simple (one program of a PsiLanguage); (P)

multiple-simple (multiple programs of a PsiLanguage); (M) multiple-multiple (multiple
programs written with multiple PsiLanguages).

F3. Associate PsiPrograms with heterogeneous data-sources: (X) XML; (J) JSON.
F4. Provide objects and information sharing: (S) among different programs written in the same

PsiLanguage; (M) among different programs written with different PsiLanguages.
F5. Implement a dynamic CSWA using PsiProgram(s).
F6. Implement the MPsi and MIPsi languages of the PsiModel.
F7. Define and implement the PsiModel within the PsiEnviroment: (C) JavaScript Component; (P)

PsiComponent (development of XML-DSLs).
Criterions F1-F5 allow us to validate the PsiEngine while criterions F6 and F7 allow us to

validate the PsiModel.
The next section will summarize and analyse several software metrics obtained for PsiEngine

and it interpreter. The PsiXML together with the Anisha case study and the PsiModel will serve to
validate the set of criterions listed above. Because the PsiEnvironment is based on the use of
PsiLanguages, it is further treated as an additional case of study.

5.1 PsiEngine: validation of the implementation
PsiEngine itself and its main component, the PsiXML, have also been defined and implemented by
using the PsiEnvironment (use (5) being “psifile=PsiEngine” for project details). Table 1
summarizes the PsiEngine project files. There are 7 files written in PsiModel Languages, with up
to 1,498 lines of code in PsiLanguage that generate a total of 2,027 lines in JavaScript in the
PsiEngine.js file. This means a conciseness ratio of 1.4.

Table 1. PsiEngine project components summary.
 PsiModel JavaScript Generated code Conciseness
Components MPsi MIPsi Diagram PSILOC File SLOC PSILOC/SLOC
PsiXML, PsiData,
PsiLanguage 185(1) 1,313(6) 1,498 PsiEngine.js 2,027 1.4

Note: X(Y) MPsi/MIPsi; X: Number of Psi lines, Y: Number of Psi files; Diagram: Class diagram; PSILOC: total Psi lines of code; SLOC: JavaScript
generated lines.

Fig. 11 shows a snapshot of the PsiEngine metrics automatically generated by the
PsiEnvironment. We would like to add that the average cyclomatic complexity CNN for the
functions/methods of the project gives a value of “simple functionalities” (CNN<10 according to
[35]), the Maintainability Index MI is appropriated (MI>85 according to [41]) and the commented
lines of code CLOC are moderate (16.1%). Moreover, the time needed to implement or to
understand a program rounds to 40 days (319.5 hours according to Halstead Time [20]).

17

Fig. 11. PsiEngine metrics summary provided by the PsiEnvironment.

Fig. 12 shows a snapshot of the software metrics listed for some of the programming elements
of the PsiEngine generated with PsiEnvironment. Delving into the results, the abstract class
PsiElement of PsiXML is the most complex of the PsiEngine programming elements. This fact is
predictable because it is the cornerstone of PsiLanguages, having the ability to process both PsiLI
and PsiCA languages. CNN has an averaged functionality. Although with a good MI it is the one
with the lowest value. PsiElement is the class that requires greater effort to be implemented. The
error estimate exceeds the limit advised implying that a revision of the class is needed. By and
large, the PsiEngine presents averaged numbers regarding cyclomatic complexity and error
estimates, both metrics are within acceptable limits, which validates the implementation facts of
F1.

Fig. 12. Software metrics snapshot for the programming elements of the PsiEngine

generated by PsiEnvironment.

5.2 Results for case studies
Table 2 details the data computed by the PsiEnvironment for the Anisha, FeedPsi and PsiModel
case studies. In the table two discernible parts can be distinguished: the PsiModel and the
corresponding generated JavaScript code. By using the URL (5) replacing <name> with the name
of the case study we can see the PsiModel code, the UML Class diagram and the PsiLSD diagram,

Simple
Functionality

Moderate
Documentation

(16.1%)

Good
Maintenance

High error
estimate

Good maintenance,
but it is lowestNormal Functionality Complex class,

more volume More effort

Fragment List of
Metrics

18

and can even generate the JavaScript code to analyse the corresponding software metrics. It is
worth highlighted that the PsiModel serves as a case study and it is autogenerated in order to be
used within the PsiEnvironment.

Table 2. PsiEngine case studies list.

Case Study PsiModel JavaScript generated code Conciseness
SLOC/PSILOC MPsi MIPsi PSILOC Fichero CLOC SLOC

Anisha 60 (1) 157 (1) 217 Anisha.js 20.6% 510 2.4
FeedPsi 54 (1) 160 (1) 214 FeedPsi.js 18.8% 505 2.4
PsiModel 341 (1) 825 (6) 1,166 MPsi.js 17.0% 2,339 2.0
Total 455 (3) 1,142 (8) 1,597 19.1% 3,354 2.1
Note: X(Y) MPsi/MIPsi; X: Number of Psi lines, Y: Number of Psi files; PSILOC: Total Psi lines of code; SLOC: JavaScript generated lines. CLOC:
Comments percentage.

Summarizing the three projects of PsiComponents analysed, we developed 11 PsiModel files.
Of these 11, 27% (3 files) are Psi specification files and the remaining 73% (8 files) are Psi
implementation files. We wrote a total of 1,597 lines of PsiModel source code that generated a
grand total of 3,354 lines of JavaScript code. This means a conciseness ratio of 2.1, whilst Anisha
and FeedPsi have a conciseness ratio of 2.4. Lines of comments represent 19.1% (average for the
three case studies), which is a moderate rate.

In Fig. 13 we summarize some results of the metrics computed for the Anisha and FeedPsi
case studies along with the PsiModel component. The averaged cyclomatic complexity CNN is low
for the three cases (CNN<10), which means a “simple functionality”. The Halstead Time HT
needed to implement or to understand the PsiModel is greater than the corresponding time for the
rest, due to its complexity and functionality. Its program duration (11,703 HN) and vocabulary size
(594 Hn) is six times greater than the average length and vocabulary of Anisha and FeedPsi case
studies. The average estimated errors HB is under the recommended limits (<2). The class
StructureElement of the PsiModel is the only that overtake this limit (2.1 HB).

Fig. 13. Summary of metrics for the Anisha and FeedPsi case studies and the

PsiModel component.

Finally, Fig. 14 displays the Maintainability Index MI for the Anisha, FeedPsi and PsiModel
case studies in addition to those of the components and frameworks used for these cases. As can be
seen, all components and frameworks have good Maintainability (>85). The components developed

0,2
0,5 0,50,6

1,5

2,1

0

1

2

3

Anisha FeedPsi PsiModel

Estimated Errors HB

Average HB Maximum HB

7,9

29

22,4

1,5
3,6

3,8

6,1
8,9 12,5

0

5

10

15

20

25

30

Anisha FeedPsi PsiModel

Ciclomatic Complexity

CND CNN MLOC

1.823

4.647

9.395

0

2000

4000

6000

8000

10000

Anisha FeedPsi PsiModel

Average Effort EM

10,7 21,7

331,4

0

100

200

300

400

Anisha FeedPsi PsiModel

Halstead Time HT (hours)

Ad
vi

sa
bl

e

Simple
Functionality

19

from PsiModel, such as PsiEngine and FeedPsi, are at the same level as renowned frameworks like
CKEditor, Codemirror and Highcharts. The computing of the MI metric for different frameworks
(CKEditor, Codemirror, Highcharts and jQuery) has been made with the JSComplexity tool
(http://jscomplexity.org).

Fig. 14. MI for Anisha, FeedPsi and PsiModel case studies and components and

frameworks used.

In summary, the case studies and the PsiModel accomplish the recommended values for the
software metrics as specified in the literature. In addition, with these case studies and the PsiModel
we have validated functionalities F6 and F7.

5.3 Analysis of results
The Anisha case study validates the PsiPrograms execution (F2) twofold: (P) multiple-simple
(multiple programs of a PsiLanguage); (M) multiple-multiple (multiple programs written with
multiple PsiLanguages). For the (P) case we wrote four programs ShapesPsi, each of which draws
a circle or a square (http://hilas.ii.uam.es/Anisha/ms). For the (M) case we used the aforementioned
four programs along with four additional programs AnimePsi. The result is a figures race in the
web-client (http://hilas.ii.uam.es/Anisha/mm). In addition, Anisha also validates the Heterogeneous
information association XML and JSON (F3) by means of the PsiLI language, as shown in section
3.3. (F4) is also verified because ShapesPsi and AnimePsi programs share objects and information
between them.

Otherwise, the case study FeedPsi validates the simple-simple (one program of a
PsiLanguage) PsiProgram execution (F2, type S) and the web application dynamic generation
based on PsiProgram(s) (F5), by means of the Feeds website. Moreover, it allows for the
association of dynamic information with RSS (F3, type X) existing as a fully server independent
application. Table 3 summarizes the number of lines needed for the FeedPsi application. A total of
1,151 lines of code comprising static code (66%) HTML, CSS, XSL, XML and JS source code
(excluding the lines of PsiEngine and jQuery), and 44% generated code from the PsiModel. At this
point it should be emphasized that the conciseness ratio of a FeedPsi program is about 52. This
means that a FeedPsi program it seems to be more of a configuration file than a common program.
FeedPsi is a novel case study that represents a high level XML-DSL to produce a website web
application.

Table 3. FeedPsi source code lines summary.
 Application FeedPsi FeedPsi

Program
#LP

Conciseness Static Code Generate Code Total
#LP HTML CSS XML XSL FeedPsi.js #LC/#LP

Files 1 1 1 4 1 8 1
Lines 52 78 246 270 505 1.151 22 ~ 52

Note: #LC: Source code lines (HTML+CSS+XSL+XML+JS); #LP: FeedPsi source code lines.

 Finally, the PsiModel component constantly validates both the PsiEngine and interpreter

114,3
106,5

98,5
105,5

115
113

103
108

105

0 10 20 30 40 50 60 70 80 90 100 110 120

Anisha
FeedPsi

PsiModel
PsiEngine
jQuery 2.1

jQuery UI 1.10
Highcharts JS v4.2

CKEditor 4.5
Codemirror 5.3

Maintainability Index MI
Good

20

criterions set (F1, F2, F3, F4 and F5).

5.4 Validation summary
Table 4 summarizes the PsiEngine set of criterions set validations. F1 criterion has been

validated threefold: by means of the software metrics, the through Anisha, and the FeedPsi case
studies and PsiModel component that validate it behaviour.

F6 and F7 validation requires using PsiModel and its associated PsiEnvironment. To do so we
developed JavaScript components (C=3) and PsiComponents (P=5).

The three case studies validate the three possible ways to execute PsiPrograms including on
the PsiEngine (F2), heterogeneous information association (F3) and information sharing (F4).
Moreover, we create the FeedPsi case study to validate the dynamic generation of web applications
deployed completely through a PsiProgram.

In conclusion, helped by the qualitative methodology multicase suggested in [59] and adapted
by [2], and the criterions validation summary shown in Table 4, we validated the goals PsiEngine
and PsiModel.

Table 4. The PsiEngine and PsiModel criterions list and the validations summary.

Criterions Ps
iE

ng
in

e

A
ni

sh
a

F
ee

dP
si

Ps
iE

nv
ir

om
en

t

F1 Implement the PsiEngine and its PsiXML
F2 Allow PsiPrograms execution: (S) simple-simple (one program of a

PsiLanguage); (P) multiple-simple (multiple programs of a PsiLanguage); (M)
multiple-multiple (multiple programs written with multiple PsiLanguages).

 PM S M

F3 Associate PsiPrograms with heterogeneous data-sources: (X) XML; (J) JSON XJ X
F4 Provide objects and information sharing: (S) among different programs written in

the same PsiLanguage; (M) among different programs written with different
PsiLanguages.

 SM N/A SM

F5 Implement a dynamic a dynamic CSWA using PsiProgram(s).
F6 Implement the MPsi and MIPsi languages of the PsiModel.
F7 Define and implement the PsiModel within the PsiEnviroment: (C) JavaScript

component; (P) PsiComponent (development of XML-DSLs). C=3 P=2 P=1 P=2

6 Conclusions
Domain-Specific Languages allow for the building of software applications with greater speed by
increasing the productivity of both software engineers and domain experts thanks to the level of
abstraction they provide. Building a DSL solution involves the use of tools for the implementation
of interpreters and compilers. However, as we have shown, there are few existing approaches able
to build client-side web DSL alternatives.

To address this, alongside this article, we have formalized and validated the Programmable
Solutions Interpreter (Psi), our approach to work with XML-based DSL solutions for CSWA,
which includes an evaluation engine, a programming model and a lightweight development
environment. Thus, we have detailed the PsiEngine and described its main component: the
PsiXML. PsiEngine combines HTML5, CSS3, JavaScript and DOM languages, with Web 2.0
technologies, services and tools, and the definition of a kind of XML-DSLs, which we called
PsiLanguages. This combination permits PsiEngine to build web components, web widgets and/or
dynamic web pages that provide solutions to specific problems in web applications. Whilst,
PsiXML is an interpreter able to evaluate programs coded in XML-DSLs to provide solutions to
specific domain problems within a CSWA.

To facilitate the implementation of PsiLanguages following our approach and using the
PsiEngine, we have created the PsiModel based on two PsiLanguages: MPsi (specification

21

language) and MIPsi (implementation language). Additionally, to more accurately apply the
PsiModel we implemented the PsiEnvironment, a lightweight development environment that
includes useful features such as code autocompleting, software metrics computation, diagrams
displaying, etc.

To better demonstrate the capabilities and potential of our approach, we have presented two
case studies to detail the whole process (analysis, design and implementation) of developing web
applications, including reusable components creation, language specification and combination, the
use of frameworks, etc. following a DSL perspective. The first case study Anisha implements two
languages and has been used as a running example throughout the explanation while exploring the
different concepts related to our approach. The second case study, FeedPsi, a web application for
RSS aggregation, has demonstrated that it is possible to develop client-side web applications
dynamically by using our approach. Moreover, as a conclusive proof we have implemented the
PsiEngine itself by using the PsiModel in order to validate it.

Therefore, we have probed how our approach allows for the building XML-based DSL
solutions for CSWA by using PsiLanguages specification. In addition, once the PsiEngine is
running the PsiLI and PsiCA languages make possible to define and deploy new DSL solutions as
required.

With the PsiEngine and the PsiModel, we want to establish the foundations to apply the MDE
paradigm to build CSWA, so that every engineer can take advantage from this paradigm.

As future works, we are building a set of PsiLanguages to build graphical models from
serialized DSVL for CSWA. They have the capability to generate diagrams automatically with
heterogeneous XML/JSON data sources and synchronizing information among diagrams and data
sources.

Acknowledgments
This work has been partially supported by the DSVL-B2T research and development department
from the B2T-Concept Company (http://www.b2tconcept.com/).

References
[1] Anderson, P. Web 2.0 and Beyond: Principles and Technologies. London: Chapman and

Hall/CRC, 2012.
[2] Baxter P, Jack S. Qualitative Case Study Methodology: Study Design and Implementation

for Novice Researchers. The Qualitative Report;2008:13-4.
[3] Betinni L. Implementing Domain-Specific Languages with Xtext and Xtend. Birmingham:

Packt Publishing Ltd; 2013, p. 1-11.
[4] Brown D, Levine J, Mason T. Lex & Yacc. 2nd ed. New York: O'Reilly Media, Inc; 1992.
[5] Bravenboer M, Trygve K, Vermaas R, Visser E. Stratego/XT: A language and toolset for

program transformation. Science of Computer Programming. 2008; 72(1–2), p.52-70.
http://dx.doi.org/10.1016/j.scico.2007.11.003.

[6] Carter Z. JS sequence diagrams. http://jison.org; 2009 [accessed 30.10.16].
[7] Cook S, Jones G, Kent S, James D. Domain-Specific Development with Visual Studio DSL

Tools. Denver: Addison-Wesley Professional; 2007, p. 1-23.
[8] Crockford D. JavaScript: The Good Parts. Sebastopol: O'Reilly Media, Inc; 2008, ch. 5.
[9] Czarnecki K, Eisenecker U. Generative Programming: Methods, Tools and Applications.

Denver: Addison-Wesley; 2000.
[10] Da Silva AR. Model-driven engineering: a survey supported by a unified conceptual model.

Computer Languages, Systems & Structures. 2015; 43, p.139-155.
[11] Dearle F. Groovy for Domain-Specific Languages. Birmingham: Packt Publishing Ltd; 2010,

ch. 1.

http://jison.org/

22

[12] Erdweg S, Giarrusso PG, Rendel T. Language composition untangled. Proceedings of the
12th Workshop on Language Descriptions, Tools, and Applications, LDTA 2012.

[13] Fawcett J, Quin L, Ayers D. Beginning XML. 5th ed. Wrox Press; 2012.
[14] Fanagan D, Matsumoto Y. The Ruby Programming Language. Sebastopol: O’reilly Media,

Inc.; 2005, ch. 8.
[15] Firmenich S, Rossi G, Winckler M, Palanque P. An approach for supporting distributed user

interface orchestration. International Journal of Human-Computer Studies, 2014;72:1: p. 53-
76.

[16] Fowler, M. Domain Specific Languages. Denver: Addison-Wesley Professional; 2010, p.
21-27.

[17] Ghosh, D. DSLs in Action. Greenwich: Manning Publications, 2010, p. 9-15.
[18] Greenfield J, Short K. Software Factories: Assembling Applications with Patterns, Models,

Frameworks, and Tools. New Jersey: Wiley Publishing; 2004.
[19] Gronback RC. Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.

Denver: Addison-Wesley Professional; 2009.
[20] Halstead M. Elements of Software Science. New York: The Computer Science Library;

1977.
[21] Herzberg D et al. Specifying computer-based counseling systems in health care: A new

approach to user-interface and interaction design. Journal of Biomedical Informatics. 2009;
42:2: p. 347-355.

[22] Holzner S. Secrets of RSS. Berkeley: Peachpit Press.; 2006, ch. 3.
[23] Hudak P. Building domain-specific embedded languages. ACM Comput. 1996;196:4.
[24] Johnson D. RSS and Atom in Action: Web 2.0 Building Blocks. Greenwich: Manning

Publications Co.; 2006, p. 70-77.
[25] Kelker R. Clojure for Domain-specific Languages. Birmingham: Packt Publishing Ltd.;

2013, ch. 1.
[26] Kern C. Securing the tangled web. Communication ACM 2014;57:9: p. 38-47.
[27] Kats L, Kalleberg K, Visser E. Domain-Specific Languages for Composable Editor Plugins.

Elsevier: Proceedings of the Ninth Workshop on Language Descriptions, Tools, and
Applications (LDTA'09), Electronic Notes in Theoretical Computer Science 2009;253:7, p.
149-163.

[28] Kelly S, Tolvanen J. Domain-Specific Modeling: Enabling Full Code Generation. Wiley-
IEEE Computer Society Press 2008.

[29] Kniesel G, Winter V, Siy H, Zand M. Making aspect-orientation accessible through syntax-
based language composition. IEEE: IET Software 2009;3:1, p. 1-13.

[30] Kourie, D.G., Fick, D. & Watson, B.W. (2008). Virtual machine framework for constructing
domain-specific languages. IET Software. IEEE, 3, 3, 219-237.

[31] Kosar T, et al. Comparing general-purpose and domain-specific languages: An empirical
study. Computer Science and Information Systems 2010;7:2, p. 247–264.

[32] Kosar T, Bohra S, Mernik M. Domain-Specific Languages: A Systematic Mapping Study.
Information and Software Technology 2016;71, p. 77-91.

[33] Lee P. CoffeeScript in Action. Greenwich: Manning Publications Co.; 2014, ch. 1.
[34] Levine J. Flex & Bison. Sebastopol: O'Reilly Media, Inc.; 2009.
[35] McCabe T. A Complexity Measure. IEEE Transactions on Software Engineering 1976;SE-

2:4, p.308-320.
[36] McDaniel A. HTML5: Your visual blueprint™ for designing rich web pages and

applications. Indianapolis: Jhon Wiley & Sons, Inc.; 2011, ch. 3-8.
[37] McGuire P. Getting Started with Pyparsing. Sebastopol: O'Reilly Media, Inc.; 2007.
[38] Mernik M, Heering J, Sloane AM. When and how to develop domain-specific languages.

23

ACM Comput. Surv. 2005;37:4, p. 316–344.
[39] Mernik M, Lenic M, Avdičaušević E, Zumer V. LISA: An Interactive Environment for

Programming Language Development. Springer Berlin Heidelberg, Lecture Notes in
Computer Science 2002;2304, p. 1-4.

[40] Nguyen V, Deeds-Rubin S, Tan T, Boehm B. A SLOC Counting Standard. University of
Southern California, Center for Systems and Software Engineering,
http://sunset.usc.edu/csse/TECHRPTS/2007/usc-csse-2007-737/usc-csse-2007-737.pdf; 2007
[accessed 13.06.16].

[41] Oman PW, Hagemeister J, Ash D. A Definition and Taxonomy for Software Maintainability.
Moscow: Technical Report, University of Idaho, Software Engineering Test Laboratory;
1991.

[42] Parr T. The Definitive ANTLR 4 Reference. 2nd ed. Raleigh: Pragmatic Bookshelf; 2013,
part 1.

[43] Pereira MJ, Fonseca J, Henriques PR. Ontological approach for DSL development.
Computer Languages, Systems & Structures. 2016; 45:1, p.35-52.

[44] Prout A, Atlee JM, Day NA, Shaker P. Code generation for a family of executable modelling
notations. Software and Systems Modeling; 2012;11:2, p. 251-272.

[45] Rahien A. DSLs in Boo: Domain-Specific Languages in .NET. Greenwich: Manning
Publications Co.; 2010, ch. 3-4.

[46] Sajja PS, Akerkar R. Intelligent Technologies for Web Applications. Minneapolis: CRC
Press; 2012, ch. 1.

[47] Serrano, A. Beginning Haskell A Project-Based Approach. New York: Apress; 2014, part 4.
[48] Stilwell J. npm: Escomplex, v 1.3. https://www.npmjs.com/package/escomplex; 2014

[accessed 15.07.16].
[49] Schmidt DC. Model-driven engineering. Computer-IEEE Computer Society 2006;39:2:25.
[50] Shim H, Kang B, Kwag K. Web2Animation - Automatic Generation of 3D Animation from

the Web Text. IEEE/WIC/ACM: Proceedings of the 2009 International Joint Conference on
Web Intelligence and Intelligent Agent Technology (WI-IAT '09).

[51] Spinellis D. Notable design patterns for domain-specific languages. Journal of Systems and
Software 2001;56:1, p. 91-99.

[52] Voelter M, et al. DSL Engineering: Designing, Implementing and Using Domain-Specific
Languages. Dslbook.org; 2013, p. 23-38.

[53] Document Object Model (DOM) Level 3 Core Specification, http://www.w3.org/TR
/2004/REC-DOM-Level-3-Core-20040407/; 2004 [accessed 30.06.16].

[54] Web Design and Applications, http://www.w3.org/standards/webdesign/; 2014 [accessed
28.06.16].

[55] XML Technology, http://www.w3.org/standards/xml/; 2014 [accessed 27.06.16].
[56] Wittenbrink H. RSS and Atom. Birmingham: Packt Publishing; 2005, ch. 4.
[57] Woodman M. How to Build an RSS 2.0 Feed. Sebastopol: O'Reilly Media, Inc.; 2006.
[58] White A. JavaScript Programmer’s Reference. Indianapolis: Wiley Publishing, Inc.; 2009,

ch. 10.
[59] Yin RK. Case Study Research: Design and Methods. 5st ed. London: Sage Publications, Inc.;

2014.
[60] Yue C, Wang H. A measurement study of insecure javascript practices on the web. ACM

Transaction Web 2013;7:2, p. 1-39.

	plantilla_actualizada_ELSEVIER1.pdf
	appoach_chavarriaga_computer_languages_systems_structures_2017_ps
	1 Introduction
	2 Outline and related works
	3 Approach to Build XML-DSL for Client-Side Web Applications
	3.1 The PsiEngine
	3.1.1 Defining PsiLanguage
	3.1.2 Running Example: The Anisha Case Study

	3.2 The Psi Programming Model and Its Lightweight Environment
	3.3 Final Comments

	4 FeedPsi web application case study
	4.1 Analysis and design
	4.2 Feed Component Specification
	4.3 Running the FeedPsi web application

	5 Results and validation
	5.1 PsiEngine: validation of the implementation
	5.2 Results for case studies
	5.3 Analysis of results
	5.4 Validation summary

	6 Conclusions

