
         

 

         
         

            

       

Repositorio Institucional de la Universidad Autónoma de Madrid 

https://repositorio.uam.es 

Esta es la versión de autor del artículo publicado en: 
This is an author produced version of a paper published in: 

Journal of Chemical Theory and Computation 16.2 (2020): 1215-1231 

DOI: https://doi.org/10.1021/acs.jctc.9b01009 

Copyright: © 2019 American Chemical Society 

El acceso a la versión del editor puede requerir la suscripción del recurso 

Access to the published version may require subscription 

https://repositorio.uam.es/
https://doi.org/10.1021/acs.jctc.9b01009


The Adiabatic-Molecular Dynamics|generalized 

Vertical Hessian approach: a mixed quantum 

classical method to compute electronic spectra 

of fexible molecules in condensed phase 

Javier Cerezo,∗,†,‡ Daniel Aranda,¶,§ Francisco José Avila Ferrer,§ Giacomo 
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Abstract 

We present a general mixed quantum classical method that couples clas-

sical Molecular Dynamics (MD) and vibronic models to compute the shape 

of electronic spectra of fexible molecules in condensed phase without, in 

principle, any phenomenological broadening. It is based on a partition of 

the nuclear motions of the solute+solvent system in ”soft” and ”stif” vi-

brational modes, and an adiabatic hypothesis that assumes that stif modes 

are much faster than soft ones. In this framework the spectrum is rigor-

ously expressed as a conformational integral of quantum vibronic spectra 

along the stif coordinates only. Soft modes enter at classical level through 

the conformational distribution that is sampled with classical MD runs. 

At each confguration, reduced-dimensionality quadratic Hamiltonians are 

built in the space of the stif coordinates only, thanks to a generalization 

of the Vertical Hessian harmonic model and an iterative application of pro-

jectors in internal coordinates to remove soft modes. Quantum vibronic 

spectra, specifc for each sampled confguration of the soft coordinates, are 

then computed at the desired temperature with efcient time-dependent 

techniques, and the global spectrum simply arises from their average. For 

consistency of the whole procedure, classical MD runs are performed with 

quantum-mechanically derived force felds, parameterized at the same level 

of theory selected for generating the quadratic Hamiltonians along the stif 

coordinates. Application to N-methyl-6-oxyquinolinium betaine in water, 

dithiophene in ethanol, and a fexible cyanidine in water are presented to 

show the performance of the method. 
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1 Introduction 

Electronic spectroscopy is a ubiquitous tool in modern chemical research. Theoret-

ical models and computational methods can greatly help to unveil all the informa-

tion carried by the spectroscopic signal, allowing to establish a direct connection 

with the microscopic properties of the system under investigation.1–3 

The quantum nature of molecular vibrations has a remarkable impact on the 

shape of electronic spectra. Although the most spectacular feature is the appear-

ance of vibronic bands, an analysis in terms of moments4 reveals that nuclear quan-

tum efects (NQEs) are also important for structureless bands, modifying e.g their 

centre of gravity,5 width4,6,7 and asymmetry.4 While for small systems in gas phase 

full anharmonic and nonadiabatic approaches are conceivable (see e.g. ref. 8), the 

treatment of large systems, including dozens or hundreds of vibrations, requires 

approximations. In the following we generically indicate as ”stif” systems, those 

for which quadratic expansions provide a reasonable description of the Potential 

Energy Surfaces (PESs) of the initial and fnal electronic states of the transition of 

interest. For harmonic PESs, and if couplings among the electronic states are neg-

ligible, the calculation of vibronic spectra is nowadays standard thanks to recent 

progresses in time-independent (TI)9–13 and time-dependent (TD) approaches.14–17 

Both TI12 and TD12,18–23 schemes have been extended to account for intensity bor-

rowing Herzberg-Teller (HT) mechanisms. These methods are efcient enough to 

be applicable to systems with dozens or hundreds of normal modes, as revealed in 

combination with cost-efective electronic methods like Density Functional Theory 

(DFT), and its TD extension (TD-DFT) for excited states.24 Linear (LVC) and 

Quadratic vibronic Hamiltonians (QVC),25 including quadratic diagonal potentials 

plus linear and quadratic of-diagonal couplings, provide a natural extension of the 

above models when interstate electronic couplings are important. With LVC and 
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QVC models, the vibronic spectra can be efciently computed even for systems 

with dozens of normal modes,26,27 by numerically propagating nuclear wavepackets 

on the coupled surfaces with powerful methods like MCTDH28 and its multilayer 

extension (ML-MCTDH).29,30 Anharmonic corrections31,32 can be included in the 

vibrational frequencies, adopting second-order vibrational perturbation theory,33,34 

and taking beneft, for example, from the availability of analytic Hessians within 

DFT and TD-DFT, which allow the numeric generation of cubic and quartic force 

felds.35 An interesting approach that uses harmonic approximation to scrutinize 

the most important modes and reduced dimensionality anharmonic models, has 

just been presented in literature.36 

Current challenge for methods aiming at simulating electronic spectra shapes 

retaining a quantum mechanical (QM) description of vibrational motion is rep-

resented by fexible molecules37(i.e. those characterized by one or more large 

amplitude, anharmonic motions) in condensed phase, in particular when signif-

cant and specifc interactions with the environment (like a homogeneous medium, 

as a simple solvent, or a heterogeneous one, as a protein or a surface) can be estab-

lished. For systems in aprotic solutions some solvent efects can be introduced in 

standard vibronic calculations,38,39 computing the PES, and even the inhomogene-

geous broadening,22 with implicit models like the polarizable continuum model40 

(PCM). Conversely, when strong specifc interactions between the solute and its 

embedding medium take place, an explicit description of the environment should 

be taken into account. 

Molecular Dynamics (MD) simulations are very well suited to explore con-

formational space in these situations, and their usage to simulate the electronic 

spectra through classical ensemble averages of vertical energies (CEA-VE) is well 

established.2,41–48 In practice, in these hybrid QM/MD methods, sometimes re-
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ferred as sequential classical-QM approaches,42,49 the spectral shape arises from 

the distribution of transition frequencies and intensities at a representative set of 

conformations (or snapshots) chosen along the MD trajectory. This is an appli-

cation of the so called Franck-Condon (FC) classical principle.4 A key ingredient 

for the success of such approaches stands in the accuracy of the force-feld (FF) 

underlying the MD simulations, i.e. on the FF’s capability to reliably represent 

the molecule’s equilibrium geometry and the corresponding harmonic frequencies, 

its internal fexibility and its interactions with the surrounding environment.7,50–53 

The usage of standard FFs that do not meet these requirements may, in fact, lead to 

wrong positions and widths of the simulated spectra.7,53 Yet, since vibrational mo-

tions are described classically, two main limitations arise for this methodology: (i) 

it cannot reproduce vibronic peaks and (ii) the contribution to the spectral width 

is underestimated, because the classical Boltzmann distribution is narrower than 

what expected at quantum level. The extreme case occurs at 0 Kelvin when the 

classical distribution is a single structure while the quantum distribution has still a 

fnite width, but even at room temperature the underestimation can be remarkable 

for high-frequency modes.6,7,54,55 This second limitation is usually partially over-

come applying to each computed transition frequency an empirical broadening. 

The latter is sensibly smaller than the one usually employed in a static approach 

(i.e. based on the minimum energy conformation only), but still of phenomeno-

logical nature. 

Non-phenomenological treatments have been recently proposed, by explicitly 

accounting for NQEs in the MD,55 using path integral formalisms like the ring 

polymer MD.56 These very interesting approaches only introduce NQE in the initial 

state distribution, and therefore cannot reproduce vibronic peaks. 

Moreover, they are expected to show limitations also for structureless bands 
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since the adoption of the true quantum initial-state distribution only guarantees 

the exactness of the frst and second moments of the spectrum, while higher-order 

moments (ruling the asymmetry), as well as vibronic resolution, inevitably depend 

on a proper description of the quantum time-evolution on the fnal state PES.4 

In some cases the latter can be computed with ”on-the-fy” semi-classical approx-

imations of the propagator,57 but these methodologies are, at the state of the art, 

only feasible for small systems. For larger ones, like fexible molecules in condensed 

phase, a number of approximated protocols to mix classical MD sampling and vi-

bronic computations have been proposed.7,37,48,58–62 In the simplest approaches, the 

vibronic spectrum of the solute has been considered independent of the specifc MD 

snapshot.58–61 A way to go beyond this approximation, explicitly accounting for 

the coupling of intra-molecular and inter-molecular vibrations, is to use in vibronic 

calculations spectral densities extracted from classical MD trajectories.37,51,53,63 

The potentiality of such approach has been recently illustrated by Loco et al.;64 

its partial limitation is that the spectrum is computed with reference to vibronic 

harmonic models that only account explicitly for linear couplings. The efects of 

quadratic diferences in the initial and fnal states PES, which are responsible for 

shift of the maxima5 and contribute to the spectral width,4 are only implicitly 

refected in the parameters of the spectral density. Moreover the inclusion of non-

More recently,37,48,65,66Condon efects does not appear straightforward. Zuehls-

dorf and co-workers proposed an interesting methodology to combine the ensemble 

approach (i.e. the sampling from a MD trajectory) with vibronic calculations, and 

named it E-ZTFC (Ensemble-Zero Temperature FC). In practice, a quantum vi-

bronic spectrum of the solute is computed at 0 K and thermal fuctuations of 

the vertical energy and the transition dipole strength, due to intra-molecular and 

solvent motions, are introduced at classical level with a conformational sampling 
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from MD trajectories. Some efects of specifc solute-solvent interaction on the 

vibronic spectrum are introduced by recomputing the 0K vibronic spectrum for a 

small (typically 5) number of diferent snapshots and taking the average. In ref. 66 

the same authors further extended E-ZTFC methodology introducing NQE also 

in the conformational sampling, by performing ab initio path-integral MD. Both 

methods are very interesting and showed that anharmonic corrections may play a 

remarkable role in the spectra and be enhanced when NQEs are taken into account 

in the MD simulation. Nonetheless, as explained by the authors, this approach 

sufers of a partial double-counting of the efect of intra-molecular vibrations. The 

latter depends on the temperature and the frequency of the mode, and therefore 

its impact is system-dependent and not easily quantifable a priori. 

In this framework, a mixed quantum-classical (mqc) approach for the computa-

tion of electronic spectra in molecules with a set of stif (harmonic) modes and one 

7,62 Itor few internal large-amplitude motions was recently proposed by our group. 

is based on an adiabatic approximation, which assumes that the large amplitude 

motion is slow compared to the stif modes and can be therefore treated classi-

cally. In this work, we start again from this adiabatic approximation to present 

a general method for computing electronic spectra of fexible dyes in explicit en-

vironments without introducing, in principle, any phenomenological broadening, 

which describes soft modes of both solute and solvent at classical level, and the 

stif modes of the dye at vibronic quantum level. Concretely, a frst MD simu-

lation with an accurate, quantum-mechanically derived FF (QMD-FF)67–69 pro-

vides a representative set of confgurations of the solute+solvent system. Reduced-

dimensionality vibronic models for the stif coordinates are then computed from 

energies, gradients, and Hessians of the initial and fnal states evaluated in the 

specifc confguration with a QM/MM embedded scheme. For vibronic models, we 
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introduce a generalized Vertical Hessian (VH) model70 (gV H), so to include also 

the efect of frequency changes and Duschinsky71 mixings, and we iteratively apply 

proper projectors in curvilinear internal coordinates (ICs) to rigorously separate 

the modes to be treated at classical and quantum level, thus avoiding double-

counting efects. The global spectrum eventually arises from the average, over the 

conformational space of the classical fexible coordinates, of confguration-specifc 

thermally-averaged vibronic spectra. Since the here-proposed protocol combines 

a quantum gVH method with classical MD simulations, through an adiabatic ap-

proximation, in the following we refer to it as the Ad − MD|gV H approach. 

The paper is organized as follows. In Section 2 the diferent parts of the the-

oretical method and the computational protocol are explained and in Section 3 

computational details are given. In Section 4 we present the results obtained 

on three diferent systems (sketched in Figure 1), where both the solute fexibil-

ity and the strength of its interaction with the solvent increase along the series: 

N-methyl-6-oxyquinolinium betaine (MQ) in water, an almost rigid system estab-

lishing H-bonds with a aqueous solvent, the fexible dithiophene (T2) in ethanol, 

and a fexible cyanidine (Cyan) dye which additionally has fve oxydrilic groups, 

establishing several H-bonds in water. Finally Section 5 is devoted to discussions 

and conclusions. 

2 Methods 

2.1 Mixed Quantum-Classical spectral shape 

In a TD formalism the general quantum (q) expression of the absorption lineshape 

Lq(ω) from the electronic state i to statef is 

8 



Figure 1: Molecular structure of the 3 dyes investigated in this work. (MQ): N-methyl-6-
oxyquinolinium betaine, (T2): dithiophene and (Cyan): Cyanidin. 

Z 
1 � � −itHf /ℏ −(β−it/ℏ)Hi iωtdtLq(ω) = Tr µif e µfie e (1)

2πZvi 

where Zvi is the partition function of the initial vibrational states |vi⟩, Tr refers to 

the trace operation, β = (KB T )−1 , KB is the Boltzmann constant, T the absolute 

temperature, Hi and Hf are the Hamiltonians for the i and f states and µif is 

their transition electric dipole moment (µif is real and therefore equal to µfi). The 

absorption spectrum is ϵ(ω) = CωL(ω) where C is a constant depending on the 

selected units. For harmonic systems, the integrand of Eq. (1) is analytical even 

when frequency-changes and Duschinsky rotations exist, and also when a linear 

expansion of the transition dipole is considered to account for both FC and HT 

efects.14–23 

According to Lax,4 a semi-classical (sc) approximation of the spectrum line-

shape, Lsc(ω) can be obtained expressing the trace in Eq. (1) in the coordinate 

representation (Q), and neglecting the commutators between Hi and Hf and be-

tween the operator of the nuclear kinetic energy and the transition electric dipole 
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moment.4,17 We thus get 

Z Z 
Lsc(ω) = 

1 
dteiωt−i(Hf (Q)−Hi(Q))t/ℏdQρqi (Q, T )|µif (Q)|2 (2)

2π 

where ρqi (Q, T ) is the quantum coordinate distribution of the initial state at tem-

perature T . The integral in time then collapses into a δ function and the spectral 

lineshape becomes 

Z 
Lsc(ω) = dQρqi (Q, T )|µif (Q)|2δ (ω − ∆Ω(Q)) (3) 

where ∆Ω(Q) = ℏ−1 [Vf (Q) − Vi(Q)], and Vi and Vf are the initial and fnal 

state PESs. It is interesting to notice that Eq. (3) provides a spectral shape 

without vibronic resolution which, in FC approximation, exactly reproduces the 

frst and second moment of the quantum lineshape in Eq. (1), but not higher-order 

momenta.4 The integral in Eq. (3) can be evaluated from the value of the integrand 

at a number of structures (since now on ”confgurations”) Qα with α = 1, . . . , Ncon, 

that provide a proper sampling of the distribution ρqi (Q, T ) 

X1 
Lsc(ω) = |µif (Q

α,q)|2 g (ω − ∆Ω(Qα,q)) (4)
Ncon α 

where we have substituted the delta function with a convenient lineshape function 

g (usually a Gaussian or a Lorentzian),41 and the superscript q on the coordinate 

values Qα,q reminds that the sampling is done on the quantum distribution, like, 

for instance, when path integral MD trajectories55,66 are employed. 

In the most popular approach, however, for sizeable systems in a solvent or in 

a complex environment, ρqi (Q, T ) is substituted with the classical (c) distribution 

ρci (Q, T ) which can be sampled with a classical MD trajectory. With this new 
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distribution, the classical lineshape Lc(ω) is obtained according to an equation 

equivalent to Eq. (4): 

Lc(ω) = 
1 

Ncon 

X 
|µif (Q

α,c)|2 g (ω − ∆Ω(Qα,c)) 
α 

(5) 

We now introduce a mqc approximation of the spectrum, which combines Eqs. 

(1) and (5) or (4). To this end, we consider the super system comprising the dye 

and its embedding. Rather than performing the standard partition into solute’s 

and environmental coordinates, we divide all nuclear degrees of freedom (DoFs) of 

the whole system in two categories: the stif modes r, pertaining to the dye and, if 

needed, to some environment molecule, and the soft modes R, represented by the 

fexible DoFs of the dye together with all the remaining environmental modes. The 

former r set will be handled at quantum level, while the R set will be treated at 

classical level (but semiclassical approaches are also possible). Concretely, we run 

a MD trajectory to sample the confgurational space obtaining a representative set 

of snapshots (Rα ,rα) with α = 1, . . . , Ncon. At this point we have all the data to 

obtain the classical Lc(ω) or semiclassical Lsc(ω) spectrum, depending on whether 

the MD has taken into account NQEs. In order to (re-)introduce a quantum vi-

bronic treatment of the stif-coordinates we invoke an adiabatic approximation, 

i.e. we assume that R coordinates are much slower than r ones. Therefore we can 

think that stif-coordinates rearrange very quickly to any change in the position 

of the soft coordinates, considered frozen at each confguration α. Quadratic ex-

pansions around α of Vi(r; Rα), and Vf (r; Rα) allow to establish harmonic PES 

for both states along the stif coordinates, and therefore compute a vibronic quan-

tum spectrum Lα,q
r (ω) involving these coordinates only, that is specifc for R

α . To 

that end it is possible to use the TD expression in Eq. (1). The global spectrum 
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Lmqc(ω) can be therefore recovered as an average of all the spectra Lα,q
r (ω). 

X 
Lmqc(ω) = 

1 
Lα,q 

r (ω) (6)
Ncon α 

It is interesting to notice that the expression for Lmqc(ω) is formally very 

similar to the ones for the semiclassical (Eq. 4) and classical (Eq. 5) spec-

tra. However a fundamental diference is that the phenomenological lineshape 

|µif (Q
α)|2g (ω − ∆Ω(Qα)), where g has the same shape for each snapshot, is now 

substituted by Lα,q
r (ω), confguration-specifc (α) quantum vibronic spectral shapes 

along the stif coordinates. It is also worthy to notice that at each confguration 

α, a linear expansion of µif along the stif coordinates can be computed, and this 

allows for including HT quantum efects, depending on the slow coordinates also, 

which are lost or treated in an inaccurate way in the semi-classical and classical 

expressions in Eqs. (4) and (5). 

2.2 Workfow of the Ad − MD|gV H method 

The partition in stif and soft coordinates, pivotal for the Ad−MD|gV H method, 

is practically achieved in two steps. First, the classical distribution of stif and 

fexible coordinates is retrieved through a MD simulation performed on the target 

condensed phase at constant temperature and pressure. In order to ensure a 

consistent description of the nuclear potentials in the classical MD simulation and 

the quantum mechanical calculations, very accurate FFs are required, therefore 

specifcally taylored QMD-FFs are adopted for the MD runs (Section 2.3). Next, 

at each representative snapshot along the MD, R fexible coordinates are separated 

from the stif ones r and the contribution to the spectrum of the latter is computed 

quantum mechanically within a vertical harmonic model (Section 2.4). 
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The Ad − MD|gV Hmethod is summarized in Figure 2 and can be outlined as 

follows: 

1. Compute at QM (DFT) level for the chosen electronic state the data re-

quired for parametrization of the QMD-FFs, i.e. the optimized geometry, 

the Hessian matrix in the minimum conformation and the relaxed torsional 

scans of the fexible dihedrals. 

2. Generate a complete FF, by combining a QMD-FF intra-molecular part with 

selected parameters to represent the solvent-solvent and solute-solvent inter-

action. The former QMD-FF for the solute is derived from the previously 

computed QM data using the Joyce protocol67–69 obtaining at once all 

force constants and equilibrium values for all selected stif and fexible ICs. 

3. Run a classical MD simulation at temperature T for the solute+solvent 

system, to get a proper sampling of the confgurational distribution of all 

coordinates, ρc(R, r). 

4. Compute the Hessian matrices of the initial and fnal states of the solute 

(plus, if necessary, the most signifcant solvent molecules) at each confg-

uration, including the efect of the surrounding medium with an adequate 

embedding scheme. At this step, if HT efects are important, also derivatives 

of the transition dipoles are computed. 

5. Move to a set of non-redundant set of curvilinear coordinates defned in 

terms of all valence internal coordinates, i.e. bonds, angles and dihedrals. 

Soft modes are expressed in terms of such internal coordinates. Project out 

the soft coordinates R from the initial and fnal state Hessians at each snap-

shot, and use the resulting reduced dimensionality Hessians and gradients to 
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build up a gVH vibronic model along the stif coordinates, specifc for the 

considered confguration. 

6. Compute the vibronic spectrum at temperature T with the TD implemen-

tation, by the FCclasses code.72 

7. Compute the fnal spectrum as the average of the vibronic spectra at each 

snapshot. 

QM level
CM level

“0 K” QM data 
(equilibrium geometry, energy curves, 

gradients and Hessian, atomic 
charges)

QMD-FF 
parameterization

Solvent and solute-
solvent FF parameters

MD
(at T K)

Trajectory 
snapshots

QM Hessian calculation 
(each performed on MD snapshots in 

initial and final electronic states)

FCclasses
(vibronic spectrum computed at 
T K on each reduced Hessians)

Removing soft IC
(by projecting them out from the QM 

Hessians)

Thermally 
averaged 
vibronic

spectrum
(by averaging the 
vibronic spectra 

obtained for each 
snapshot extracted from 

the T K simulation)

+

Figure 2: Workfow of the proposed Ad − MD|gV Hmethod. The red line evidences the sepa-
ration between the classical (CM) and quantum mechanical (QM) level of theory. 

The generation of the QMD-FF and the gVH model with removal of soft ICs 

are crucial steps, and they are described in some detail the following sections. 

2.3 QMD-FF parameterization 

The parametrization of the solute’s intra-molecular FF is carried out through 

the Joyce protocol,67–69 based on QM data purposely computed for the target 
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molecule. The following functional form is employed, 

Eintra + Eb + Est + Eft + Eintra = Es (7)QMD−FF Nb 

where Es, Eb and Est are the potential terms related to stretching, bending and 

stif torsions, and are described by harmonic potentials. Eft refers to the fexible 

torsions, which are described by a series of periodic (sine) functions. The last 

term, Eintra , contains the non-bonded intra-molecular interactions, implemented Nb 

as a sum of electrostatic charge-charge and Lennard-Jones (LJ) terms. 

The parameterization is carried out by minimizing the objective function I intra: 

Ngeom � � ��23XN−6X � �2 ∂2EFFintra 

I intra − Eintra ′ = Wg ∆Ug g + WKL HKL − (8)
∂QK ∂QL g=0g K≤L 

where g is a chosen molecular conformation, ∆Ug its QM internal energy, QK is 

the Kth normal coordinate and HKL is a QM Hessian matrix evaluated in the 

′ minimum energy geometry (g = 0). Wg and WKL are selected weights, which are 

default values.7,50,52,53,69set according to the Joyce Further details about the 

parameterization are included in Section S2 of the Supporting Information (SI). 

2.4 gV H vibronic model in reduced dimensionality spaces 

The Ad − MD|gV H method displayed in Figure 2 requires identifying and pro-

jecting out the molecular soft DoFs. In general, such DoFs correspond to the 

fexible dihedrals, as defned in the QMD-FF, but some molecules may present, 

in one or both states, additional fexible DoFs, like e.g. the pyramidalizations 

of some centers. Finally additional fexibilities may occur if some intermolecular 

solute-solvent modes (e.g. H-bonds) must be retained in the vibronic calculations. 
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Therefore, to be as general as possible, we name x the set of all Cartesian coor-

dinates of any molecule for which at least one vibrational mode must be included 

in the vibronic model, and X the Cartesian coordinates of all the other solvent 

molecules. We work in a VH approach,70,73 i.e. we build up harmonic potentials, 

for both i and f states, along the stif coordinates, with a second-order Taylor ex-

pansion around the same starting geometry, α (xα ,Xα), contained in the α-th MD 

snapshot. However, while standard VH approaches are built from the initial-state 

equilibrium geometry, in general the MD confguration α will not be a minimum 

along the stif-coordinates either in the initial or in the fnal state, and therefore 

the VH model needs to be generalized, to obtain what we name a gV H model. 

To apply this gV H approach, we frst compute, at QM level for each MD 

snapshot α, the energies (V i,α and V f,α), gradients (gi,α and gf,α) and Hessians0 0 x x 

(Hi,α and Hf,α 
x x ) along the coordinates x. This is done describing the remain-

ing molecules, with coordinates X, with some adequate embedding scheme and 

considering the values of these coordinates frozen. From now on, for the sake of 

brevity, we will neglect the superscript α, but it will be reintroduced at the end 

of this section, before giving the fnal equations of the gV H model. The second 

step is to shift to internal curvilinear coordinates as (i) they provide the most 

natural set to defne reduced-dimensionality models, since soft modes are much 

better described in internal coordinates than in Cartesian ones, (ii) at variance 

with Cartesian coordinates, they allow to rigorously remove rotational coordinates 

and thus properly defne normal coordinates when the Hessian is not computed at 

a stationary point.7 

Nonetheless, when using curvilinear internal coordinates, one needs to take 

into account that, except at stationary points,74 the Hessian elements are not 

invariant with respect to the coordinate frame, because the metric tensor is not 
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constant along the conformational space. This eventually means that the com-

puted frequencies depend on the selected set of non-redundant curvilinear internal 

coordinates. The non-redundant set selected in this work corresponds to linear 

combinations of all possible bonds, angles and dihedrals, following the recipe de-

scribed by Reimers,.75 Indeed, in a recent work,70 we showed that such non-redun-

dant set generally provides Hessian elements at non-stationary points consistent 

with those computed at nearby stationary points, in contrast to other sets such as 

the Z-matrix coordinates. In order to construct the non-redundant set from the 

redundant one, the G matrix corresponding to all bonds, angles and dihedrals is 

diagonalized, and the linear combinations correspond to the Nvib eigenvectors as-

sociated to non-zero eigenvalues. Yet, it might be worth noticing that other valid 

strategies to defne non-redundant sets of internal coordinates have been proposed 

in literature.76,77 

The new protocol that we introduce to remove an arbitrary number of internal 

coordinates generalizes what proposed by Jackels et al.78 for a single coordinate. 

We frst defne the projector that removes a given coordinate, s, from an arbitrary 

vector of the space, v, as the following linear application, 

s(s, v)
P (v) = v − (9)|s|2 

where (, ) indicates scalar product and |s|2 = (s, s) is the square modulus of the 

vector s. In the case of non-orthogonal basis, such as our valence internal non-

redundant set, the metric tensor, i.e., the list of scalar products between basis 

vectors, is required to compute the scalar product. A given non-orthogonal basis 

has an associated dual basis, each having its own metric tensor, named covariant 

(involving scalar products of the basis vectors) and contravariant (involving the 

dual basis vectors) metric tensors. The elements of the contravariant tensor, hij , 
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correspond to the entries of the G matrix,78 while those of the covariant ones, hij , 

correspond to its inverse, i.e., G−1 . It is also convenient here to highlight that 

some entities in the vector space are more straightforwardly represented by either 

the basis or its dual. For instance, in our case, an arbitrary internal coordinate 

is naturally represented by the non-redundant set, while gradient of the potential 

energy is naturally represented in the dual basis.79 

The elements of the matrix representation of the above linear application reads, 

P P 
i i skh

iks sj s skhjk sj
P i = δi − = δi − k = δi − k (10)j j j j|s|2 |s|2 |s|2 

where P i represents a 1-covariant, 1-contravariant tensor (in practice, a matrixj 

element with i running over rows and j over columns), δj
i is the 1-covariant, 1-

contravariant version of the Kronecker delta and we have explicitely given the 

expression in terms of either contravariant vectors (e.g., an arbitrary internal co-

ordinate) or covariant ones (e.g., the gradient). The projector defned in terms of 

contravariant vectors can be written in matrix form as, 

tss 
P = 1 − h (11) 

sths 

where s are column vectors containing the contravariant components (si) and h 

is a matrix containing the elements of the covariant metric tensor (hij ). A sim-

ilar expression is obtained in terms of covariant vectors.78 The Hessian elements 

transform as a 2-covariant tensor,79 and thus the application of the projector over 

the Hessian, H, can be expressed as, 

eH = PtHP (12) 

In order to run the process iteratively one must also update the metric tensor 
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and the remaining vectors to be projected out. The former tranforms as eh = PthP, 

while the latter are updated by directly applying the projector over them, esj = Psj . 

At this point, we are ready to project the next coordinate. This iterative protocol 

is summarized in the scheme of Figure 3. We notice that we already proposed an 

approximate version of this protocol in ref.80 which worked satisfactorily only to 

remove torsions, because they are rather orthogonal to the rest of coordinates. 

Initialization

Set initial metric tensor: h(0) = G−1

Define set of coordinates to remove: {s(0)n }n=1,Nr

Generate projector of k-th coordinate

P(k) = 1−
s
(k−1)
k

(
s
(k−1)
k

)t

(
s
(k−1)
k

)t

h(k−1)s
(k−1)
k

h(k−1)

Apply k-th projection

Hessian: H(k) =
(
P(k)

)t
H(k−1)P(k)

Metric tensor: h(k) =
(
P(k)

)t
h(k−1)P(k)

Coordinates to remove: s
(k)
n = P(k)s

(k−1)
n

(n = k + 1, Nr)

k = 1

k = k + 1

Figure 3: Summary of the iterative method to remove a set of Nr coordinates. The superscripts 
in parenthesis indicate the iteration to which the element corresponds. The loop is repeated while 
k ≤ Nr 

After all the soft coordinates have been eliminated, the gradient, gr, and Hes-

sian, Hr are contained in the reduced space of the r stif coordinates only. We 

can therefore straightforwardly write down quadratic expansions along the r stif 

coordinates for the PES of state k 

V k,α(r) = V k,α k,α α)T Hk,α + (g )T (r − r α) + (r − r (r − r α) (13)0 r r 

where we reintroduced the superscript α to make explicit the dependence of this 
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0 

expansion on the specifc confguration α, characterized by the fexible set Rα . 

V k,α is the energy of PES V k,α(r) at the snapshot geometry α, while its minimum 

k,α α − (Hk,α)−1 k,α is at r0 = r r gr , with energy V k,α 
min, simply obtained by substitution 

in Eq. 13. 

Finally, application of the Wilson’s GF method81,82 leads to the defnition of 

efective normal coordinates Qk,α for both states 

k,α = Lk,αQk,α r − r0 (14) 

with normal frequencies Ωk,α. We can therefore establish a Duschinsky relation 

between Qi,α and Qf,α 

Qi,α JαQf,α = + Kα (15) 

Jα (Li,α)−1Lf,α = (16) 

Kα (Li,α)−1(rf,α i,α= 0 − r0 ) (17) 

where Kα is the displacement vector between the equilibrium positions along the 

stif-coordinates in the two states, and the Duschinsky matrix Jα is orthogonal be-

cause the Gr matrix has been defned at the same geometry (rα) for both states. 

The Duschinsky relation in Eq. (15), together with the normal frequencies Ωi,α and 

Ωf,α V i,α − V f,α , and with the extrapolated adiabatic energy diference ∆Eα = min min 

are the fnal result of the gV H model and allow to compute the vibronic spectrum 

Lα,q 
r (ω), which is specifc for the snapshot α. This is done at the required temper-

ature by applying the expression in Eq. (1), i.e. with standard TD techniques for 

harmonic systems. 
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It is worth stressing that although the soft coordinates are not directly in-

cluded in the quantum vibronic treatment, their dynamics is still accounted for 

by the Ad − MD|gV H method, but at a classical level. In fact, the efect of the 

fuctuations of the soft coordinates is refected in the values of: (i) the adiabatic 

energy diference ∆Eα , which introduces a shift of Lα,q
r (ω) on the energy axis that 

is specifc for each confguration, (ii) the matrices of the normal frequencies Ωi,α 

and Ωf,α, which introduce a further confguration-specifc fuctuation of the 0-0 

transition frequency and, fnally, (iii) the Kα vector and Jα matrices that, together 

with normal frequencies, rule the spectral shape of Lα,q
r (ω). 

2.5 Final remarks on the method 

The mqc expression for the Ad−MD|gV H spectrum was obtained on the grounds 

of an adiabatic hypothesis. In refs. 7,62 we adopted an analogous hypothesis 

to formulate the expression for a mqc spectrum for a molecule with one or few 

soft internal coordinates. In those cases however, the conformational integral was 

performed on a grid of equally spaced points along the soft coordinates with weights 

that, we showed, depend on the free energy. This grid approach is not suitable 

for large systems in an environment, where the soft (large amplitude and slow) 

modes are numerous since they include both solute and solvent modes. Therefore 

it was necessary to devise a new approach able to accommodate the possibility to 

perform the conformational integral on the grounds of an efective MD simulation. 

In practice in our method we move to the ”classical set” R all fexible modes. 

The accuracy of this approximation is expected to be better the slower these 

motions are. This assumption is tested with simple models in section S1 of the 

SI, and the conclusions are briefy summarized at the beginning of the Results 

section herein. Since each snapshot taken from the MD represents, by defnition, a 
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confguration out of equilibrium, nothing guarantees in principle that the harmonic 

expansion in Eq. 13 give rises to all positive frequencies, i.e. represents efective 

fast modes r with stable oscillations around an equilibrium position on both the 

initial and fnal states of the electronic transition. However, this is of course a 

requirement for the computation of the vibronic spectrum Lα,q
r (ω). Therefore, as 

shown in the Results section, a pre-screening of the expected robustness of our 

Ad − MD|gV H prediction for the spectra is performed analysing the occurrence 

of imaginary frequencies and if they are reduced by moving one or more soft 

coordinates to the ”classical set”. While sporadic problematic snapshots are clearly 

statistically irrelevant, a large fraction of snapshots with imaginary frequencies 

along stif modes would indicate either the non applicability of the method or that 

additional DoFs should be considered ”soft” and moved to the R set. 

Starting from the same adiabatic hypothesis we made in refs. 7,62, Zuehls-

dorf et al. reported very recently, in the SI of ref. 66, an expression for the 

calculation of the spectrum of a solute in a solvent very similar to the one we 

gave in Eq. (6). Some signifcant formal diferences however exist, that make our 

Ad − MD|gV H method of more general applicability. The expression of Zuehls-

dorf and co-workers is suitable for the standard partition that identifes the stif 

coordinates with the solute and the soft coordinates with the solvent ones, whereas, 

thanks to the adoption of suitable projectors, in our approach soft and stif modes 

can be chosen among all the degrees of freedom of the solute+solvent system 

(although clearly, most of the solvent coordinates will always be in the classical 

set). A second more technical diference, but pivotal to the generalization we just 

mentioned concerns with the PES expansion around the selected conformation. 

Zuehlsdorf and co-workers compute the harmonic PES according to an Adiabatic 

Hessian (AH) model, i.e. in a given confguration they locate the equilibrium ge-
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ometry of both the initial and fnal states PESs and expand them quadratically 

around their own minima.73 Although our approach may recast also in an AH 

framework, we chose a VH model because it straightforwardly allow us to include 

in both soft and stif subsets either solute or solvent coordinates. It is much more 

complicated to allow such a possibility within a AH approach, because it would 

be necessary to perform constrained optimizations freezing simultaneously a num-

ber of internal coordinates (or their combination) of the solute, and the solvent 

(Cartesian) coordinates. To the best of our knowledge this is not doable in most 

of the popular quantum chemistry codes. 

Apart from these formal diferences, in practice Zuehlsdorf et al. did not 

compute spectra according to the proposed expression mainly because of the com-

putational cost. We overcame this technical problem by exploiting in vibronic 

calculations, the very fast and efective TD methodology implemented in our code 

FCclasses. As a matter of fact a calculation of Lα,q
r (ω) typically requires seconds 

on a single-core of a standard machine. 

3 Computational details 

The whole Ad − MD|gV H computational protocol is based on a combination of 

four different codes, namely the Gaussian16 package for electronic calculations,83 

the Gromacs engine84,85 for MD simulations, and two programs written by some 

of the authors of this contribution:, the Joyce program,86 for the generation of 

the FFs, and version 3.0 of the FCclasses code,72,87 for the computation of the 

vibronic spectra. Details are given in the following subsections. 
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3.1 QM calculations 

All QM calculations have been performed at DFT level for the ground electronic 

state and TDDFT for the excited states using the Gaussian16 package.83 The 

level of theory was chosen based on previous works, namely PBE0/6-31+G(d,p) 

for MQ, 6 PBE0/6-31G(d) for T2, 88 and CAM-B3LYP/6-311+G(d,p) for Cyan. 52 

The DFT database necessary for QMD-FF parametrization includes a full geom-

etry optimization in the desired electronic state, the Hessian computed at the 

equilibrium geometry and a number of relaxed energy scans along the fexible tor-

sions. In all cases, the data are computed with the same level of theory employed 

to build the model harmonic PESs for vibronic calculations. 

3.2 Force-felds 

Specifc FFs were here parametrized for two of the three investigated systems (MQ 

and T2), while the FF Cyan was taken from previous work of some of us.52 

All three FFs were built as detailed in the following. The intra-molecular pa-

67–69rameters of the dyes (solutes) were carried out with the Joyce program, 

according to the procedure briefy discussed in the previous section and detailed 

in the SI. The solute’s atomic charges, entering the expression of the solute-sol-

vent inter-molecular term (see equations (22) and (23) in the SI), were obtained 

from QM calculations through either the CM5 (for MQ and T2)89 or the RESP 

(for Cyan)90 procedure, applied on the optimized geometry of the target solute, 

while accounting for the solvent through the PCM model.40 It might be worth 

noticing that, as discussed in some detail in section S3.5 of the SI, the adoption 

of a different scheme (i.e. RESP rather than CM5) for retrieving specifc point 

charges for Cyan was dictated by the fact that this species is charged, hence the 

reliability of the Hirsfeld scheme, from which CM5 charges are derived,89 is not 

24 

https://model.40
https://package.83


ensured.91 All other parameters specifying the solvent intra-molecular term (see 

equations (15)-(21) in the SI) and the solute-solvent and solvent-solvent inter-

molecular contributions (i.e. solute and solvent inter-molecular LJ parameters 

and solvent point charges (see equation (23) in the SI) were transferred from the 

OPLS FF.92–94 A complete list of the FF parameters for all systems and further 

details on the parameterization procedure can be found in Section S2 of the SI. 

3.3 MD simulations 

All MD simulations, as well as molecular mechanics (MM) optimizations, were 

performed with the Gromacs engine,84,85 in the NPT ensemble, on systems 

composed of one solute molecule (MQ, T2 or Cyan) and a large number (∼ 1000) 

of solvent molecules (either water or ethanol). In the case of Cyan, a Cl− counter 

ion was also added,52 to ensure electroneutrality. For each dye, two diferent 

schemes were applied, to investigate on the efect of including or not including the 

fast stretching vibrations in the MD runs. To this end, each run was separately 

carried out without or with the LINCS algorithm,95 to constrain all bond lengths 

to their equilibrium value. In the former case the employed time step was 0.2 fs, 

whereas, without accounting for the fast stretching motions, the time step was 

increased to 1 fs. In all runs, temperature T (300 K) and pressure P (1 atm) 

were kept constant through the v-rescale96 and Parrinello-Rahaman97 schemes, 

using coupling constants of 0.1 ps and 1 ps, respectively. A cutof radius of 11 ̊A 

was employed for both short-range charge-charge and LJ terms, whereas long-

range electrostatics was accounted for through the particle mesh Ewald (PME) 

procedure. All systems were frst minimized, and afterwards atomic velocities 

were assigned according to a Maxwell–Boltzmann distribution at 300 K. Each 

system was frst equilibrated for 2 ns; thereafter, production runs were performed 
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for further 6 (MQ, T2) or 3 ns (Cyan). 

3.4 QM:MM gradient and frequency calculations 

Along the MD trajectories, snapshots were extracted every 30 ps, which ensured 

uncorrelated conformations. An ONIOM QM:MM model was built to evaluate the 

energy, gradient and Hessian over the solute atoms. The solute was included in 

the model system (high layer) while the real system was extended to include the 

frst solvent layer. The extension of such frst neighbour shell, quantifed through 

the shell radius Rcut, was assessed, as detailed in the SI (see Figures (S11)-(S15)), 

based on the solvation structure retrieved from the MD runs: for all dyes, Rcut 

was fxed at 4 Å. 

Within the QM:MM ONIOM scheme, the model system is treated at DFT and 

TDDFT level, adopting the same functional and basis already adopted to generate 

the QM data to parametrize the QMD-FF, and the real system is handled at the 

same MM potential used in the MD simulations. Finally, the ONIOM calculation 

was carried out by taking into account also all the remaining solvent molecules, 

within a radius of 40 ̊A from the center of gravity of the solute, according to an 

electronic embedding (EE) scheme, where all solvent atoms are treated as point 

charges. It is worth mentioning that using the simple EE scheme also to treat 

the frst solvation shell (i.e. neglecting Lennard-Jones interactions) may lead to 

the occurrence of a large number of spurious imaginary frequencies, as reported in 

Section S4.2 of the SI. Although here we focus on FC transitions, we recall that 

computation of TD-DFT analytical excited-state Hessians with Gaussian16 pack-

age also provides, at no additional cost, the derivatives of the transition dipoles, so 

that Ad − MD|gV H calculations including quire cipleHT effects do not re in prin

additional cost. Some further testing is however necessary to set the most proper 
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embedding scheme to obtain such derivatives. 

3.5 Vibronic calculations 

The vibronic computations have been performed with the version 3.0 of the FCclasses. 

For each snapshot it reads energies, gradients and Hessians of the initial and fnal 

electronic states computed by Gaussian16, projects out the soft modes, builds 

up the reduced dimensionality gV H model and computes the vibronic spectrum 

with the TD approach22 at 300 K. For the electric transition dipole we adopted the 

FC approximation. We note that Eq. 6 accounts for the whole lineshape, without 

requiring the adoption of any phenomenological broadening. However, since the 

sum over conformations, α, is necessarily fnite, the average arising from Eq. 6 

may display signifcant noise. Therefore, in order to smooth the fnal plots, com-

pensating the limited conformational sampling, all individual lineshapes, Lα,q
r (ω), 

are convoluted with a narrow a Gaussian with HWHM=0.01 eV. In section S5 of 

the SI, we show that such procedure does not change the overall spectral width. 

4 Results 

4.1 Simple harmonic models 

In Section S1 of the SI, the proposed mqc method is compared with classical 

(c) approximation for a model harmonic system for which the exact quantum 

vibronic calculation is possible. In this case the MD run is not necessary since 

the classical (Boltzmann) distribution is known and analytical. It is shown that 

Ad − MD|gV H approach largely outperforms the c one, both in terms of shape 

and position of the spectra. When soft modes have a frequency ≤ than the thermal 

quantum ∼ 208 cm−1 , the Ad − MD|gV H spectrum is practically exact, if soft 
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and stif modes are not coupled or moderately coupled. At lower resolutions, even 

higher-frequency modes could be included in the set of the classical modes without 

a deterioration of the results. Finally, the robustness of the method is tested by 

including in the model an artifcial very strong coupling between quantum modes 

and the ones with frequencies lower than 200 cm−1 , included in the classical set: 

even in this case, low- and intermediate-resolution Ad−MD|gV H spectra are still 

fairly good, while high-resolution vibronic progressions can manifest inaccuracies. 

4.2 Flexible dyes in solution 

In this section the Ad − MD|gV H approach is applied to simulate the electronic 

spectra of the 3 dyes sketched in Figure 1. MQ is a rather rigid fused cycle 

Table 1: Number of snapshots extracted along the dynamics of the diferent dyes exhibiting 
imaginary frequencies. The normal mode analysis is performed in the full dimensionality space 
(Full) or in two diferent reduced dimensionality spaces, either projecting out only the fexible 
torsions (rmTors) or also removing selected pyramidalizations (rm[Tors+Pyr]). The label in 
parenthesis defning the MD run in the second column refers to MD runs where the solute either 
has unconstrained (U) or constrained (C) bonds or is treated as a rigid rotor (R). 

Calculations Settings Full rmTors rm[Tors+Pyr] 
System MD Nsnap S0 S1 S0 S1 S0 S1 

MQ@H2O S0(U) 200 31 50 2 6 0 0 
MQ@H2O S0(C) 200 20 40 0 1 0 0 
MQ@H2O S0(R) 200 1 4 0 1 0 0 
T2@EtOH S0(C) 200 0 11 0 7 0 5 
T2@EtOH S1cis(C) 200 14 23 0 22 0 0 
T2@EtOH S1trans(C) 200 1 1 0 1 0 0 
Cyan@H2O S0(U) 100 11 22 0 6 0 3 

which establishes specifc H-bonds with the water solvent. It also features a easily-

rotating methyl group, which, however, is not expected to have a relevant role in 

the spectra. T2 is conversely characterized by an inter-ring torsion whose fexibility 

is markedly diferent in the ground (S0) and in the excited (S1) state. It has been 

suggested that this feature has a large and diferent impact on absorption and 
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emission spectra.88 Hence, due to the possibility that the intramolecular fexibility 

breaks the T2 absorption/emission mirror symmetry, we also simulate the emission 

spectrum, exploiting the Joyce’s capability to deliver QMD-FF also for electronic 

excited states.50,98 Finally, Cyan is a more complex dye, characterized by a fexible 

torsion that tunes the coplanarity between the phenyl and naphtyl rings and several 

rotatable hydroxyl groups, capable of strong interactions with the surrounding 

solvent molecules. For all of these systems, we simulate the absorption spectra. In 

all cases, the spectra are computed in diferent solvents, for which experimental 

data are available: water for MQ and Cyan, ethanol for T2. 

4.2.1 N-methyl-6-oxyquinolinium betaine 

We start focusing on MQ in water, including all solvent’s DoFs in the classi-

cal set. Given its overall stifness, MQ constitutes a relatively simple system to 

benchmark our methodology. In fact, the QMD-FF parameterization is carried 

out by assigning a harmonic potential to each internal coordinate except the fexi-

ble dihedral involved in the rotation of the methyl group around the N–CH3 bond 

(Figure 1). The Joyce parameterization was carried out with a fnal standard 

deviation of 7 · 10−3 kJ/mol, obtaining the best-ft parameters reported in detail 

in the SI (Section 2.3). In Figure 4 the overall quality of the QMD-FF is shown 

through the comparison of the FF frequencies and torsional relaxed energy scans 

obtained for the methyl rotation with their QM counterparts. Vibrational frequen-

cies are perfectly reproduced, and the overlap of MM and QM modes is generally 

signifcant. Moreover, the torsional profle provided by the QMD-FF remarkably 

improves over the standard GAFF one. Methyl rotation is also the slow DoF pro-

jected out of the vibrational space adopted to defne the efective normal modes, 

and is defned as the linear combination of the six dihedrals with N–CH3 bond in 
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the center (see defnition (24) in the SI). Preliminary analysis revealed that the 

pyramidalization of the nitrogen atom contributes to the fexibility in the system, 

at least on the S1 state. The projection of complex DoFs, such as pyramidaliza-

tions, is not straightforward. In this case, we found that the most appropriate 

way to defne this coordinate ζ in the projector was the combination of 2 dihedral 

angles (equation (25) in the SI). 

The MD simulations that provide the conformational sampling of the system 

were carried out with diferent approaches as far as the fastest vibrations in the sys-

tem are concerned. The bond lengths and angles of all water molecules were always 

constrained to their equilibrium values with the SETTLE99 algorithm, in compli-
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ance with the standard TIP3P model adopted. As far as the solute is concerned, 

we tested three diferent approaches: (a) all its DoFs were left unconstrained, (b) 

all bonds were constrained with the LINCS algorithm95 or (c) it was treated as 

a moving rigid rotor. In model (c), in analogy with the approach we presented 

in ref. 27, we applied a stif harmonic potential to all DoFs, further replacing the 

structure by the equilibrium one at each extracted snapshot. 

According to the discussion reported in Section 2.5, we start reporting in Table 

1 a summary of the number of conformations where the normal mode analysis, 

either in S0 or S1 states, lead to any imaginary frequencies, before (Full) or after 

projecting out only the torsion (rmTors) or the torsion and the pyramidalization 

coordinate (rm[Tors+Pyr]). As expected, normal mode analysis within the Full 

space leads to a signifcant number of imaginary frequencies indicating that, despite 

its apparent stifness, the molecule is characterized by some soft modes. Most of the 

imaginary frequencies are actually connected with the methyl torsion, and in fact, 

they disappear projecting this torsion out. The remaining imaginary frequencies 

disappear when the pyramidalization is also removed from the space, indicating 

that, in those (very few) snapshots, this coordinate displays a marked anharmonic 

behavior. Comparing the results obtained with constrained and unconstrained 

simulations, a larger number of imaginary frequencies are observed for the latter 

case (in both Full and rmTors schemes), indicating that the molecule visited more 

critical conformations, due to the fact that also the bond lengths are now varying 

along the MD samplings. Conversely, for the rigid body simulation, where the 

solute’s structure is kept at the QM minimum, a very small number of imaginary 

frequencies was found, already for the vibrational analysis in the Full space. Yet, 

the appearance of these few imaginary frequencies indicates that the interaction 

with the explicit solvent particles, whose distributions changes at each snapshot, 
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can remarkably perturb the most fexible DoFs of the system. Indeed, when both 

the torsion and the pyramidalization are projected out the imaginary frequencies 

vanish. Such results implies a coupling between solvent and solute DoFs that is 

taken in account in our Ad − MD|gV H method, within the limits of the accuracy 

of the adiabatic hypothesis. 

Based on the above results, to compute the absorption spectrum, we adopt the 

reduced spaces (either rmTors or rm[Tors+Pyr]) to apply the Ad−MD|gV H pro-

tocol in combination with either unconstrained or constrained simulations. In the 

case of the rigid body trajectory, the vibronic spectra are computed with the Full 

space since none of the internal DoFs are sampled. In all the cases, the snapshots 

with imaginary frequencies are discarded from the averages. Figure 5 displays the 

absorption lineshape simulated with all these diferent settings, and the character-

istic parameters that describe the lineshape are summarized in Table 2. 

Figure 5: Absorption lineshape computed for MQ with the Ad−MD|gV H approach presented 
in this work, using the diferent projection schemes described in the text (i.e. Full, rmTors or 
rm[Tors+Pyr]) over the snapshot sets extracted from the three MD runs (from left to right, 
unconstrained MD, constrained bonds and rigid rotor. Top panels include the vibronic spectra 
computed for each individual snapshot while the averages are presented in the bottom panels. 
The numbers in parenthesis indicate the position of the maximum, evidenced by a dotted line. 

As observed in the fgure, the unconstrained and constrained samplings lead 

to very similar lineshapes, with the latter giving rise to slightly narrower and red-

shifted bands. The narrowing and red-shifting are even more pronounced when 
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Table 2: First moment (M1), standard deviation (σ) and full width at half maximum (FWHM) 
of the lineshapes included in Figure 5. All quantities in eV. 

Sampling VibSpace M1 σ FWHM 
Unconstrained rmTors 2.66 0.220 0.498 
Unconstrained rm[Tors+Pyr] 2.66 0.219 0.497 

Constrained rmTors 2.63 0.215 0.481 
Constrained rm[Tors+Pyr] 2.63 0.214 0.480 

Rigid Full 2.62 0.210 0.465 
Rigid rmTors 2.62 0.210 0.464 
Rigid rm[Tors+Pyr] 2.62 0.209 0.460 

treating the molecule as a rigid rotor (Table 2). This efect can be connected to the 

diferent sampling of modes with large displacement, namely the C–C stretching. 

The efect of the usage of diferent vibrational spaces is minor. The similarity of 

the results obtained with these three strategies is not unexpected, because in this 

case the solute’s DoFs most relevant for the spectral shape are the stif ones, which 

are well described within the harmonic approximation, whereas the soft solute’s 

modes have only a minor efect. 

In Figure 6, the lineshapes obtained from the three simulations within the 

rm[Tors+Pyr] space (and with the full space for the rigid sampling) are compared 

with experiment. All the three computational strategies provide a similar spectral 

shape which is in very nice agreement with experiment. The moderate changes ob-

tained with the Ad−MD|gV H method with respect to the rigid sampling improve 

the agreement with experiment and the unconstrained simulation performs slightly 

better than the constrained one. Finally, the Ad − MD|gV H method drastically 

improves over the CEA-VE standard approach, which is also displayed in Figure 

6. In fact the spectrum obtained from the ensemble of the vertical excitations 

of the same snapshots used in the Ad − MD|gV H method, simply broadened 

with a phenomenological Gaussian shape with HWHM=0.05 eV, is blue-shifted 
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Figure 6: Absorption lineshape computed for MQ with the Ad − MD|gV H approach pre-
sented in this work, using the diferent sets of internal coordinates described in the text. The 
standard CEA-VE spectrum is also shown, broadened with a phenomenological Gaussian curve 
with HWHM=0.05 eV. 

and fails in reproducing the asymmetry of the high energy wing and consequently 

also predict a remarkably narrower spectrum. 

4.3 Di-thiophene 

At variance with MQ, where most of the fexibility involves the methyl rotation 

that is not afected by the electronic transition, in T2 two rather stif aromatic 

rings are connected by a rotatable bond (C1–C1, see Figure S9 in the SI) and the 

energy profle associated to such torsion changes drastically from S0 to S1. In fact, 

as displayed in Figure 7, the molecule is not planar in its ground-state and it is 

characterized by 4 minima at ∼ ±30◦ and ∼ ±150◦ , connected by relatively low 

barriers. On the contrary, since in S1 inter-ring conjugation increases, only two 

planar cis and trans minima exist and are separated by a very large barrier. 

The QMD-FFs parametrized for S0 and S1 states describe the aforementioned 
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Figure 7: Left panel: QM vs FF computed vibrational frequencies; all vibrational frequencies 
for S0 (left) and S1 (right) are displayed (bottom) for QM (solid circles) and FF (empty squares), 
while the overlap between the QM and the FF normal modes (top) is displayed as a histogram. 
Right panel:QM vs FF computed energy torsional profles for the δ dihedral for both states 

torsion with periodic potential terms. Both ground and excited state parameter-

izations were performed with the same choice of redundant internal coordinates. 

Beside the fexible torsion δ, it includes all possible bond lengths and angles, the 

“stif” dihedrals, which rule the planarity of each aromatic ring, and the ”star-like” 

(see Figure S9 in the SI) dihedrals governing the out-of-plane H vibrations. The 

fnal standard deviation was 8·10−3 and 2·10−1 kJ/mol, for S0 and S1 respectively. 

The analysis of the vibrational frequencies computed though the MM Hessian and 

at QM level is shown in the left panel of Figure 7, while in the right panel the 

QM vs MM torsional profles are displayed. It appears that the fexible torsion 

δ tunes the coplanarity of the two rings with remarkably diferent energy profles 

in the ground and excited electronic states. As a consequence, this rotation has a 

notable impact on both the absorption and emission spectra, as indicated by the 

dependence of vertical energy and oscillator strength on δ (Figure S10 of the SI). 

Therefore in the following we simulate both the spectra in ethanol, exploiting 

the fact that our Ad − MD|gV H protocol is general and can be applied on equal 

foot to absorption and emission processes. The only diference is the state (i.e. 

the QMD-FF) on which the initial classical MD is performed. Since for T2 and 
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ethanol no strong specifc solute-solvent interaction is expected, for computational 

convenience we run the MD constraining the T2 stretching modes with LINCS.95 

MD simulations in S0 easily overcome the barrier along δ, which ensured a proper 

sampling of this coordinate. By integrating along the MD trajectory the distribu-

tion obtained for the inter-ring torsion, we found that in S0 the ratio between the 

populations of trans and cis is 4:1. In S1, however, the interconversion between the 

trans and cis isomers is not viable at room temperature, and we thus conducted 

one simulation per conformer, labelled as S1cis and S1trans, respectively. In this 

context it is worthy to notice that actually the S1 PES in the region of the cis 

side of the high barrier is made rather complicated by accessible photochemical 

pathways that can lead to the opening of the ring.100 

In order to generate the reduced space to compute the vibronic contributions, 

we project out the inter-ring torsion δ (see expression (26) in the SI for defni-

tion). Also in this case, the pyramidalization of the carbon atoms involved in the 

C–C bond linking the two thiophene groups can be fexible enough to challenge 

the model harmonic PESs used in the vibronic calculation, and it can be more 

convenient to remove them from the corresponding coordinate space. Concretely, 

we remove the aforementioned pyramidalizations, by projecting out the improper 

dihedrals ζ1 and ζ2, as defned in equation (27) of the SI. The normal mode analysis 

for T2 for snapshots along S0 and S1 trajectories, included in Table 1, shows the 

existence of a non-negligible number of imaginary frequencies occurring even when 

the δ torsion is removed, mostly for structures obtained with the S1cis sampling. 

Interestingly, when the ζ1 and ζ2 pyramidalization coordinates are also projected 

out, most of those imaginary frequencies vanish. On these grounds, the emission 

lineshapes are computed adopting the rm[Tors+Pyr] reduced dimensionality space 

along the S1trans and S1cis samplings. For consistency, the same vibrational space 
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rm[Tors+Pyr] is used to simulate the absorption lineshape from the S0 sampling. 

Figure 8: Vibronic spectra computed for each individual snapshot along T2 MD trajectories 
of the solvated dye in its ground (right panel) or excited in cis and trans conformation, left and 
middle panel, respectively. The averaged spectrum is also plotted with a black dashed line. 

In Figure 8 we report the vibronic spectra computed for all snapshots and their 

average. It can be noticed that the resulting spectra are diferent for position and 

shape. Diferences are less marked in the emission from S1 trans. S1 cis show 

some very broad spectra, too few to have substantial statistical efect and likely 

connected with confgurations where the PES is very anharmonic due to the nearby 

existence of the ring-opening pathways.100 For absorption we do not notice such 

large diferences in the shape of the spectra. However, due to the fat shape of 

the PES (see Figure 7) inter-ring torsion may acquire remarkable deviations from 

the minima toward 90 degrees and, due to the steepness of the S1 PES, these 

confgurations correspond to spectra signifcantly blueshifted. This phenomenon 

makes absorption spectrum broader than emission (see below). 

In Figure 9, we compare the results provided by our protocol with the experi-

mental ones at room temperature. Emission spectra in ethanol were taken from ref. 

101, where however absorption was only reported in dioxane. In order to perform 

a more direct comparison, the absorption spectrum in ethanol has been recorded 

again at University of Málaga. For emission the trans and cis contributions have 
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Figure 9: Absorption and emission spectra simulated with the Ad − MD|gV H and the CEA-
VE approaches. In the latter method, the individual VEs arising form the snapshots have been 
broadened with a phenomenological Gaussian curve with HWHM=0.05 eV. For emission, the 
spectra arising from the trans and cis trajectories have been weighted with their relative weights 
(see text). Notice that the second band observed in the experiment is not reproduced by our 
calculations since we only considered transitions to the lowest excited state. 

been weighted with the S0 populations (4:1), assuming that the radiative process 

is faster than photoisomerization. The agreement with experiment is perfect for 

absorption and still excellent for emission although some fne details of the exper-

imental shape are not fully captured. In particular we nicely reproduce (with a 

slight overestimation) the larger width of the absorption with respect to emission. 

The full width at half maximum for absorption and emission is 0.61 and 0.52 eV, 

respectively, to be compared with the experimental data 0.59 and 0.54 eV. Com-

parison with the predictions of the standard CEA-VE procedure shows that the 

latter strongly underestimates the spectral widths and is remarkably outperformed 

by the new Ad − MD|gV H method. 
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4.4 Cyanidin 

Cyan molecule in water is the most challenging test for the applicability of our 

Ad − MD|gV H protocol, because it is a charged species characterized by several 

fexible torsions, including the one around the C–C bond that connects the two 

rings and the fve hydroxyl groups, H-bonded to solvent molecules. The numerous 

hydroxyl groups can be also easily deprotonated, creating a mixture of diferent 

species that clearly has an efect on the spectrum. For this reason we decided to 

focus on the comparison with the experimental spectrum in water at pH 1, where 

the Cyan dye is expected to be fully protonated. Diferent studies point out that 

in very acidic solutions the favylium cation of Cyan is the only chemical species 

present,102 whereas at larger pH some new structures appears by deprotonation or 

hydrolysis.103 All the intra-molecular QMD-FF parameters for Cyan were taken 

from ref. 52, where a detailed comment of the quality of the results can be found. 

As already mentioned and discussed in tionSec S3.5 of the SI, Cyan is not a 

neutral species, hence RESP charges were used instead of the original CM5 ones. 

Moreover, since the simulations in Ref. [ 52] were carried out in ethanol, MD 

runs in water were purposely performed in this work. In order to better describe 

the dynamics of the several expected solute-solvent H-bonds, we run a full un-

constrained MD trajectory, adopting for the water solvent the fexible SPC-Fw 

model.104 Finally, it should be mentioned that, to reach electro-neutrality of the 

whole solvated systems, a Cl− counterion was included in the simulations: in all 

selected snapshots, such counterion was always found in the large sphere treated 

with EE scheme but never in the frst-neighbor shell, therefore the Cl contribution 

to the different spectra was always treated within the EE scheme. 

Table 1 shows that for more than 20% of the snapshots, a harmonic expansion 

of the PES is characterized by at least an imaginary frequency if the vibrational 
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analysis is performed in Full space. Due to the fexibility of the molecule this 

result was expected. As a frst step to apply our Ad − MD|gV H method, we 

moved the soft torsions δ1 to δ6 (see expressions (28)-(33) in the SI for defnition) 

in the classical set. In the rmTors space the number of imaginary frequencies is 

strongly reduced, but still for 6% of the snapshots the local PES expansions on S0 

features an imaginary frequency. As it was already shown for T2, also for Cyan 

the fexibility associated to the inter-ring torsion is actually more complex than the 

simple rotation described by the fexible dihedral δ6. In fact, further vibrational 

analysis on the of-equilibrium structures along MD sampling shows modes with 

imaginary frequencies with strong contributions from the pyramidalization of the 

Carbon atoms defning the rotatable bond. The ζ1 and ζ2 DoFs have been removed 

adopting the defnitions given in equation (34) if the SI. Within this reduced space 

(rm[Tors+pyr]), the number of problematic snapshots is very limited (1 for S0 and 

2 for S1) and can be safely discarded in the calculation. This example shows that 

the Ad−MD|gV H approach can be successfully applied even in these challenging 

Figure 10: Vibronic spectra for the S0→S1 transition, computed for each individual snapshot 
along Cyan MD trajectory. The average spectrum is also plotted (black dashed line). Similar 
results were obtained for the S0→S2 transition (data not shown). 

cases. 

The spectra computed for all snapshots are plotted in Figure 10, showing that 

as for MQ and T2, they all exhibit pronounced vibronic progressions and both 

their shape and position depend on the specifc snapshots. The smearing out of 

the vibronic peaks (which are not observed in the experiment), naturally arises 
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considering their average, without the need for any phenomenological broadening. 

Figure 11 compares the Ad − MD|gV H spectrum with the experimental one 

measured in water at pH 1.105 In line with the results achieved for MQ and T2, a 

good agreement with experiment appears also for Cyan, with a slight underesti-

mation of the tail at higher energies. Yet, the improvement of the Ad − MD|gV H 

approach with respect to the standard CEA-VE cedure evident pro is still and both 

the width and the asymmetry of the experimental band are better reproduced. 

Figure 11: The absorption spectrum simulated for Cyan with the Ad − MD|gV H approach 
presented in this work is compared to the experimental spectrum measured in water at pH 1.105 

A simpler simulation of the spectrum obtained with the standard CEA-VE approach, broadened 
with a phenomenological Gaussian curve with HWHM=0.05 eV, in analogy with what done by 
some of us in Ref52 is also shown. 

A second band is visible in the blue wing of the experimental spectrum. There-

fore we applied our Ad − MD|gV H approach also to the S0→S2 transition. A 
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is the result of a 

larger percentage of snapshots (∼ 30 %) exhibited imaginary frequencies and were 

discarded, signaling that the more the states are excited the more they can sufer 

from anhmaronic efects, or inter-state couplings that challenge the straightforward 

application of our method. This notwithstanding, Figure 11 shows that inclusion 

of S0→S2 contribution signifcantly improves the agreement with experiment. Yet, 

minor differences remain and they mainly concern the underestimation of: (i) the 

relative intensity of the blue-side shoulder, and (ii) the intensity between the two 

bands. The statistical analysis of the diferent snapshots reported in section S6 

of the SI shows that when the oscillator strength of S1 decreases, the one of S2 

increases, this occurring more frequently when the two states are closer in energy. 

This fnding clearly suggests that the two states are coupled. The distance be-

tween the maximum and the blue-side shoulder is also slightly overestimated in 

our computations. It is therefore plausible that an electronic method able to better 

reproduce this gap would also predict a stronger coupling between the two states 

and, therefore, a larger relative intensity of the blue-side shoulder, which would 

improve both points (i) and (ii). Moreover, a signifcant coupling between the 

two states should be accounted explicitly with a nonadiabatic Hamiltonian, like a 

LVC or a QVC model.25 We have recently shown that one of the main efects of 

inter-state couplings is to increase the relative intensity between the two coupled 

bands.27 

5 Discussion and Conclusions 

In this contribution we presented a general mqc method, that we named Ad − 

MD|gV H, to compute the shape of electronic spectra of a fexible molecule in 

condensed phase. Ad − MD|gV H long-lasting project and 
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builds up on previous steps we reported in recent papers, like the demonstration 

of the necessity of QMD-FF for spectroscopic accuracy,7 and the description of 

the VH model in curvilinear internal coordinates.70 It shares the basic idea of 

the classical/quantum partition within an adiabatic approximation with the few-

classical-coordinates models we presented in refs.62,106 Its main innovation is the 

introduction of a coherent scheme to combine MD sampling and vibronic calcu-

lations which allows to treat all the fexible coordinates of the solute and all the 

environment explicitly, and a generalization of the projectors to separate soft and 

fast coordinates. In this way, while in its current applications we considered dyes 

solvated in simple solvents, the method is ready to be extended to deal also with 

heterogeneous media, like proteins and surfaces. 

The soft/stif classical/quantum partition is a key of the Ad − MD|gV H method. 

It is made on the grounds of chemical knowledge to predict fexible coordinates 

and is supported by the computational analysis to parameterize the QMD-FF and 

by the analysis of the MD. Moreover, it is fnally revised with the goal to not in-

clude modes with imaginary frequencies in the quantum set. On this respect, it is 

noteworthy that the model computations erence harmonic elsin the SI on a ref mod

suggest that the shift of few coordinates with suffciently low frequency between 

the two sets do not alter the quality of the results since, actually, both quantum 

and classical modes contribute to the shape and width of the computed spectra. 

Clearly, the Ad − MD|gV H method cannot reproduce individual vibronic peaks 

of the soft modes, therefore it is tailored for spectra whose frequency resolution is 

less that the typical vibrational spacing of these modes. For these spectra how-

ever, it allows to approximately account for the efects of the coupling between the 

classical and quantum modes introducing, in a non-phenomenological way, both 

the broadening and the modulation of the quantum spectral shapes due to the soft 
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modes. 

Considering the computational cost of the whole Ad − MD|gV H protocol, 

some steps are in common with a standard CEA-VE calculation, namely the pa-

rameterization of the QMD-FFs with Joyce program, which is rather automa-

tized and for non-diffcult cases can be planned and concluded in 1-2 days and the 

typical times to run a few nanoseconds MD. The additional cost of Ad − MD|gV H 

method comes from the QM:MM computations of the ground and excited states 

gradients and Hessians, mostly the latter, which depending on the system and the 

level of theory selected has ranged from some minutes (MQ) to few hours (Cyan) 

on 16-cores Xeon CPUs. This operation must be repeated for the number of snap-

shots necessary to obtain a converged average. On this respect, in Section S7 of 

the SI we show that for MQ and T2 the spectra are fully converged even consid-

ering half of the 200 initial snapshots, and that for Cyan adopting only 50 of the 

computed 100 snapshots leads to only small discrepancies. It is noteworthy that 

alternative protocols to drastically reduce the computational cost are conceivable 

and their performance will be investigated in future work. 

In these frst applications of Ad−MD|gV H, we computed absorption and emis-

sion spectra, but in principle the method is suited for any other electronic spec-

troscopy like electronic circular dichroism, magnetic circular dichroism, circularly 

polarized luminescence, Resonance Raman, non-resonant two-photon absorption 

and others, for those systems for which couplings among the electronic states are 

negligible or can be accounted for perturbatively, within HT theory. When elec-

tronic couplings are strong it is conceivable to extend the Ad − MD|gV H method 

substituting the gV H engine with LVC or QVC models in reduced dimensionality. 

In the implementation adopted here, we made a number of computational 

choices regarding the MD, the adopted FFs, the electronic method and the em-
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bedding scheme in QM/MM calculations that are not fundamental for the Ad − 

MD|gV H method. The latter in fact is in principle versatile enough and ready 

to be combined with alternative settings. In the MD, for the solute we used a 

QMD-FF, ftted against data obtained at the same level of theory adopted to gen-

erate harmonic PESs for vibronic calculations. This ensures that the procedure 

is consistent and that, along the MD, the system does not visit unrealistic con-

fgurations where also the data needed for vibronic models might be biased and 

unreliable. Similar problems have been encountered several times with standard 

empirical FFs, which do not guarantee spectroscopic precision. They have been 

cured with diferent strategies, like a re-optimization of the solute at each snap-

shot,107 which however reduces the conformational sampling and might introduce 

unreliable solute-solvent confgurations. The problems arising from structures ex-

tracted with inaccurate FFs, already seen on vertical transitions,7 would be even 

more important in Ad − MD|gV H, where higher-order properties of the PESs, 

like energy gradients and Hessians, are needed. 

Alternative strategies might be implemented in the same Ad−MD|gV H scheme, 

like QM/MM trajectories, taking care that the propagation time is long enough for 

an accurate spanning of the confgurational space, or refnements of the samplings 

with short QM/MM trajectories, run at selected confgurations obtained with a 

classical FF, to ensure that faster modes do oscillate around reasonable geome-

tries.108 A further possible development in the classical MD is to use QMD-FFs 

also for the solute-environment parameters, along the lines recently proposed by 

109some of us. 

It is noteworthy that some steps of Ad − MD|gV H method, namely the MD 

simulation followed by the computation of harmonic PES of the stif coordinates, 

specifc for each confguration, shares analogies with what proposed by Lee et al.63 

45 



for computing spectral densities of chromophores in complex environments. In fact 

they obtain such density by the excited state gradient at the optimized geometries 

of the chromophore in a number of environmental confgurations (our soft modes). 

Advantages of our method are the explicit inclusion of quadratic diferences of 

initial and fnal state PESs, and the larger fexibility in defning soft and stif 

modes. Always concerning the sampling, in the future it will be interesting to 

try to combine our approach to more elaborated samplings, like those adopted by 

Rosa et al.110 

As far as the embedding scheme is considered, we adopted an ONIOM QM:MM 

model. It is possible in principle to couple our method with more sophisticated 

polarizable embedding schemes.107,111–113 or with the cost-effective Perturbation 

Matrix Method (PMM).114 On this respect, we mention that a very recent contri-

bution introduced an hybrid approach based on a clustering technique that adopts 

ONIOM/EE for a representative structure of each cluster and the faster PMM ap-

proach for local fuctuations in each cluster.115 It will be interesting to investigate 

in future works effective ways to combine this approach with vibronic calculations 

and the effect of clustering techniques on the reproduction of the solute-solvent 

broadening effects of the electronic spectra. Finally, while we adopted a classical 

MD, the combination of Ad−MD|gV H with a path-integral MD, able to account 

for NQEs along the lines proposed refs. 55 and 66, is doable and would be surely 

of large interest. 

Acknowledgements 

This work has received funding from the European Union’s Horizon 2020 re-

search and innovation programme MSCA-ITN under grant agreement No. 765266 

46 



(LightDyNAmics).. Computational resources provided by the Centro de Cálculo 

Cient́ıfco at Universidad Autónoma de Madrid (CCC-UAM) and by SCBI (Su-

percomputing and Bioinformatics) center of Universidad de Málaga are also ac-

knowledged. DA and FA thank fnancial support from Spanish ”Ministerio de 

Economı́a y Competitividad” (Project CTQ2015-65816-R). DA acknowledges Fun-

dación Ramón Areces (Spain) for funding his postdoctoral stay at ICCOM-CNR 

Pisa. JC and DA acknowledge the Pisa Unit of ICCOM-CNR Pisa for hospitality. 

Supporting Information 

Comparison of Ad − MD|gV H and fully quantum spectra for harmonic models. 

Details on the parametrization and the snapshot sampling. Defnition of curvi-

linear coordinates removed for the diferent molecules and further analysis on the 

occurrence of imaginary frequencies. Analysis of the effects of the point charges 

and S1/S2 coupling in Cyan. This information is available free of charge via the 

Internet at http://pubs.acs.org 

47 

http://pubs.acs.org


References 

(1) Jensen, P.; Bunker, P. R. Computational Molecular Spectroscopy ; Wiley, 

Chichester, England, 2000. 

(2) Barone, V. Computational Strategies for Spectroscopy: From Small 

Molecules to Nano Systems ; Wiley, Hoboken, NJ, 2011. 

(3) Barone, V. The virtual multifrequency spectrometer: a new paradigm for 

spectroscopy. WIREs Comput. Mol. Sci. 2016, 6, 86–110. 

(4) Lax, M. The Franck-Condon Principle and Its Application to Crystals. J. 

Chem. Phys. 1952, 20, 1752–1760. 

(5) Avila Ferrer, F. J.; Cerezo, J.; Stendardo, E.; Improta, R.; Santoro, F. In-

sights for an Accurate Comparison of Computational Data to Experimental 

Absorption and Emission Spectra: Beyond the Vertical Transition Approx-

imation. J. Chem. Theory Comput. 2013, 9, 2072–2082. 

(6) Petrone, A.; Cerezo, J.; Ferrer, F. J. A.; Donati, G.; Improta, R.; Rega, N.; 

Santoro, F. Absorption and Emission Spectral Shapes of a Prototype Dye 

in Water by Combining Classical/Dynamical and Quantum/Static Ap-

proaches. J. Phys. Chem. A 2015, 119, 5426–5438, PMID: 25699575. 

(7) Cerezo, J.; Santoro, F.; Prampolini, G. Comparing classical approaches 

with empirical or quantum-mechanically derived force felds for the sim-

ulation electronic lineshapes: application to coumarin dyes. Theor. Chem. 

Acc. 2016, 135, 135–143. 

(8) Eroms, M.; Jungen, M.; Meyer, H.-D. Vibronic Coupling Efects in Resonant 

Auger Spectra of H2O. J. Phys. Chem. A 2012, 116, 11140–11150. 

48 



(9) Dierksen, M.; Grimme, S. An efcient approach for the calculation of 

Franck–Condon integrals of large molecules. J. Chem. Phys. 2005, 122, 

244101. 

(10) Hazra, A.; Nooijen, M. Derivation and Efcient Implementation of a Recur-

sion Formula to Calculate Harmonic Franck-Condon Factors for Polyatomic 

Molecules. Int. J. Quantum Chem. 2003, 95, 643–657. 

(11) Santoro, F.; Improta, R.; Lami, A.; Bloino, J.; Barone, V. Efective method 

to compute Franck-Condon integrals for optical spectra of large molecules 

in solution. J. Chem. Phys. 2007, 126, 084509. 

(12) Santoro, F.; Lami, A.; Improta, R.; Bloino, J.; Barone, V. Efective method 

for the computation of optical spectra of large molecules at fnite tempera-

ture including the Duschinsky and Herzberg–Teller efect: The Qx band of 

porphyrin as a case study. J. Chem. Phys. 2008, 128, 224311. 

(13) Jankowiak, H.-C.; Stuber, J. L.; Berger, R. Vibronic transitions in large 

molecular systems: Rigorous prescreening conditions for Franck-Condon fac-

tors. J. Chem. Phys. 2007, 127, 234101. 

(14) Tang, J.; Lee, M. T.; Lin, S. H. Efects of the Duschinsky mode-mixing 

mechanism on temperature dependence of electron transfer processes. J. 

Chem. Phys. 2003, 119, 7188–7196. 

(15) Ianconescu, R.; Pollak, E. Photoinduced Cooling of Polyatomic Molecules 

in an Electronically Excited State in the Presence of Dushinskii Rotations. 

J. Phys. Chem. A 2004, 108, 7778–7784. 

(16) Tatchen, J.; Pollak, E. Ab initio spectroscopy and photoinduced cooling of 

the trans-stilbene molecule. J. Chem. Phys. 2008, 128, 164303. 

49 



(17) Lami, A.; Santoro, F. In Computational Strategies for Spectroscopy ; 

Barone, V., Ed.; John Wiley & Sons, Inc., 2011; Chapter 10, pp 475–516. 

(18) Peng, Q.; Niu, Y.; Deng, C.; Shuai, Z. Vibration correlation function for-

malism of radiative and non-radiative rates for complex molecules. Chem. 

Phys. 2010, 370, 215–222. 

(19) Borrelli, R.; Capobianco, A.; Peluso, A. Generating Function Approach to 

the Calculation of Spectral Band Shapes of Free-Base Chlorin Including 

Duschinsky and Herzberg-Teller Efects. J. Phys. Chem. A 2012, 116, 9934– 

9940. 

(20) Huh, J.; Berger, R. Coherent state-based generating function approach for 

Franck-Condon transitions and beyond. J. Phys.: Conf. Ser. 2012, 380, 

012019. 

(21) Baiardi, A.; Bloino, J.; Barone, V. General Time Dependent Approach 

to Vibronic Spectroscopy Including Franck-Condon, Herzberg-Teller, and 

Duschinsky Efects. J. Chem. Theory Comput. 2013, 9, 4097–4115. 

(22) Avila Ferrer, F. J.; Cerezo, J.; Soto, J.; Improta, R.; Santoro, F. First-

principle computation of absorption and fuorescence spectra in solution 

accounting for vibronic structure, temperature efects and solvent inhomoge-

nous broadening. Comput. Theoret. Chem. 2014, 1040–1041, 328–337. 

(23) Etinski, M.; Rai-Constapel, V.; Marian, C. M. Time-dependent approach 

to spin-vibronic coupling: Implementation and assessment. J. Chem. Phys. 

2014, 140 . 

(24) Jacquemin, D.; Adamo, C. In Density-Functional Methods for Excited 

50 
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