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Abstract. We address a spectral problem for the Dirichlet-Laplace operator 
in a waveguide Πε which is periodically perforated by a family of holes, which 
are also periodically distributed along a line, the so-called “perforation string”. 
We assume that the two periods are different, namely, O(1) and O(ε) respecti-
vely, where 0 < ε � 1. We look at the band-gap structure of the spectrum 
σε as ε → 0. We derive asymptotic formulas for the endpoints of the spectral 
bands and show that σε has a large number of short bands of length O(ε) 
which alternate with wide gaps of length O(1). 

1. Introduction. In this paper we consider a spectral problem for the Laplace 
operator in an unbounded strip � � (−1, 1)×(0, H) ˆ R2 periodically perforated 
by a family of holes, which are also periodically distributed along a line, the so-
called “perforation string”. The perforated domain �ε is obtained by removing the 
double periodic family of holes ωε from the strip �. The diameter of the holes and 
the distance between them in the string is O(ε), while the distance between two 
perforation strings is 1. ε ˝ 1 is a small positive parameter. A Dirichlet condition 
is prescribed on the whole boundary ∂�ε . We study the band-gap structure of the 
essential spectrum of the problem as ε ! 0. 

We provide asymptotic formulas for the endpoints of the spectral bands and 
show that these bands collapse asymptotically at the points of the spectrum of the 
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Dirichlet problem in a rectangle obtained by gluing the lateral sides of the periodicity 
cell. These formulas show that the spectrum has spectral bands of length O(ε) that 
alternate with gaps of length O(1). In fact, there is a large number of spectral gaps 
and their number grows indefnitely when ε ! +0. 

It should be emphasized that waveguides with periodically perturbed boundaries 
have been the subject of research in the last decade: let us mention e.g. [33, 21, 
22, 2, 3] and the references therein. However the type of singular perturbation 
that we study in our paper has never been considered. We consider a waveguide 
perforated by a periodic perforation string, which implies using a combination of 
homogenization methods and spectral perturbation theory. 

As usual in waveguide theory, we frst apply the Gelfand transform (cf. [6], 
[29, 32, 25, 11] and (9)) to convert the original problem, cf. (5), into a family of 
spectral problems depending on the Floquet-parameter η 2 [−π, π] posed in the 
periodicity cell $ε (cf. (11)-(14) and Fig. 1, b). Each one of these problems has 
a discrete spectrum, cf. (16), which describe the spectrum σε as the union of the 
spectral bands, cf. (18) and (7). One of the main distinguishing features of this 
paper is that each problem constitutes itself a homogenization problem with one 
perforation string. As a consequence, in the stretched coordinates, cf. (28), there 
appears a boundary value problem in an unbounded strip � which contains the unit 
hole ω (cf. (29)-(31) and Fig. 2). 

The above mentioned homogenization spectral problems have di�erent boundary 
conditions from those considered in the literature (cf. [5, 14, 16] for an extensive 
bibliography). Obtaining convergence for their spectra, correcting terms and pre-
cise bounds for discrepancies (cf. (8)), as ε ! 0, prove essential for our analysis. 
We use matched asymptotic expansions methods, homogenization theory and basic 
techniques from the spectral perturbation theory. 

1.1. Formulation of the problem. Let 

� = {x = (x1, x2) : x1 2 R, x2 2 (0, H)} (1) 

be a strip of width H > 0. Let ω be a domain in the plane R2 which is bounded by 
a simple closed contour ∂ω which, for simplicity, we assume to be of class C1 , and 
that has the compact closure ω = ω [ ∂ω inside the rectangle $0 , 

$0 = (−1/2, 1/2) × (0, H) ˆ �. (2) 

We also introduce the strip �ε (see Figure 1,a) perforated by the holes � 
ωε(j, k) = x : ε−1(x1 − j, x2 − εkH) 2 ω with j 2 Z, k 2 {0, . . . , N − 1}, (3) 

where ε = 1/N is a small positive parameter, and N 2 N is a big natural number 
that we will send to 1. The period of the perforation along the x1-axis in the 
domain [ N[−1 

�ε = � \ ωε(j, k) (4) 
j2Z k=0 

is made equal to 1 by rescaling, and similarly, the period is made equal to εH in 
the x2-direction. For brevity, we shall denote by ωε the union of all the holes in (3). 

In the domain (4) we consider the Dirichlet spectral problem ˆ 
−�uε(x) = λεuε(x), x 2 �ε , 

(5)
uε(x) = 0, x 2 ∂�ε . 



3 ASYMPTOTIC STRUCTURE OF THE SPECTRUM 

Figure 1. a), the perforated strip �ε; b), the periodicity cell $ε 

The variational formulation of problem (5) refers to the integral identity 

ε ε(ru , rv)�ε = λε (u , v)�ε 8v 2 H0
1(�ε), (6) 

where (·, ·)�ε is the scalar product in the space L2(�ε), and H0
1(�ε) denotes the 

completion, in the topology of H1(�ε), of the space of the infnitely di�erentiable 
functions which vanish on ∂�ε and have a compact support in �ε . Since the bi-linear 
form on the left of (6) is positive, symmetric and closed in H0

1(�ε), the problem 
(6) is associated with a positive self-adjoint unbounded operator Aε in L2(�ε) with 
domain H0

1(�ε) \ H2(�ε) (see Ch. 10 in [1]). 
Problem (5) gets a positive cuto� value λε and, therefore, its spectrum σε ˆ† 

[λε 
†, 1). It is known, see e.g. [29, 32, 11, 25], that σε has the band-gap structure [ 

σε = Bε , (7)n 

n2N 

where Bε are closed connected bounded segments in the real positive axis. Then 

segments Bε and Bn
ε 
+1 may intersect but also they can be disjoint so that a spectral n 

gap becomes open between them. Recall that a spectral gap is a non empty interval 
which is free of the spectrum but has both endpoints in the spectrum. 

1.2. On the results and structure of the paper. In Section 2 we address 
the setting of the Floquet parametric family of problems (11)-(14), obtained by 
applying the Gelfand transform to the original problem (5). They are homogeniza-
tion spectral problems in a perforated domain, the periodicity cell $ε , with quasi-
periodicity conditions (13)-(14) on the lateral sides of $ε . For a fxed η 2 [−π, π], 
the problem has the discrete spectrum �ε(η), i = 1, 2, · · · , cf. (16). Section 2.2 con-i 

tains a frst approach to the eigenpairs (i.e., eigenvalues and eigenfunctions) of this 
problem via the homogenized problem, cf. (25). To get this homogenized problem, 
we use the energy method combined with techniques from the spectral perturbation 
theory. We show that its eigenvalues �0 

i , i = 1, 2, · · · do not depend on η, since they 
constitute the spectrum of the Dirichlet problem in υ = (0, 1) × (0, H), cf. (22). In 
particular, Theorem 2.1 shows that 

�ε
i (η) ! �0 as ε ! 0, 8η 2 [−π, π], i = 1, 2, · · · .i 

However, this result does not give information on the spectral gaps. 
Using the method of matched asymptotic expansions for the eigenfunctions of 

the homogenization problems (cf. Section 4) we are led to the unit cell boundary 
value problem (29)-(31), the so-called local problem, that is, a problem to describe 
the boundary layer phenomenon. Section 3 is devoted to the study of this statio-
nary problem for the Laplace operator, which is independent of η and it is posed 
in an unbounded strip � which contains the unit hole ω. Its two solutions, with 
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a polynomial growth at the infnity, play an important role when determining cor-
rectors for the eigenvalues �ε(η), i = 1, 2, · · · . Further specifying, the defnition i 

and the properties of the so-called polarization matrix p(�), which depend on the 
“Dirichlet hole” ω, cf. (36) and Section 3.1, are related with the frst term of the 
Fourier expansion of certain solutions of the unit cell problem (cf. (37) and (40)). 
The correctors ε�1(η) depend on the polarization matrix and the eigenfunctions ofi 

the homogenized problem, and we prove that for suÿciently small ε, 

|�ε
i (η) − �i 

0 − ε�1 
i (η)| � ciε3/2 (8) 

with some ci > 0 independent of η. These bounds are obtained in Section 5, see 
Theorems 5.1 and 5.2 depending on the multiplicity of the eigenvalues of (22). �1 

i (η) 
is a well determined function of η (cf. (59), (60), (66), (67), (69) and Remarks 3 
and 4); it is identifed by means of matched asymptotic expansions in Section 4. 

As a consequence, we deduce that the bands Bε = {�i
ε(η), η 2 [−π, π]} arei 

contained in intervals h i 
�0 
i + εB−(i) − ciε3/2 , �0 

i + εB+(i) + ciε
3/2 , 

of length O(ε), where B−(i), B+(i) are also well determined values for each eigen-
value �0 of (22) (cf. Corollaries 1 and 2 depending on the multiplicity). All of thisi 

together gives that for each i such that �0 < �0 
i+1, cf. (21), the spectrum σε opens i 

a gap of length O(1) between the corresponding spectral bands Bi
ε and Bε 

i+1. 
Dealing with the precise length of the band, we note that the results rely on the 

fact that the elements of the antidiagonal of the polarization matrix do not vanish 
(cf. (68)-(73)), but this is a generic property for many geometries of the unit hole 
ω (cf., e.g., (45) and (49)). Also note, that for simplicity, we have considered that 
ω has a smooth boundary but most of the results hold in the case where ω has a 
Lipschitz boundary or even when ω is a vertical crack, cf. Section 3.1. 

Summarizing, Section 2 addresses some asymptotics for the spectrum of the 
Floquet-parameter family of spectral problems; Section 3 considers the unit cell 
problem; Section 4 deals with the asymptotic expansions; in Section 5.1, we formu-
late the main asymptotic results of the paper, while the proofs are performed in 
Section 5.2. 

2. The Floquet-parameter family of spectral problems. In this section, we 
deal with the setting of the Floquet-parameter dependent spectral problems and 
the limit behavior of their spectra, cf. Sections 2.1 and 2.2, respectively. 

2.1. The model problem on the periodicity cell. The Floquet-Bloch-Gelfand 
transform (FBG-transform, in short) X1 −in·η u ε(x) ! Uε(x; η) = p e u ε(x1 + η, x2) (9)

2π 
n2Z 

see [6] and, e.g., [29, 32, 11, 25, 4], converts problem (5) into a η-parametric family 
of spectral problems in the periodicity cell 

$ε = {x 2 �ε : |x1| < 1/2} (10) 
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see Figure 1,b. Note that x 2 �ε on the left of (9), while x 2 $ε on the right. For 
each η 2 [−π, π], the spectral problem of the family is defned by the equations 

−�Uε(x; η) = �ε(η)Uε(x; η), x 2 $ε , (11) 

Uε(x; η) = 0, x 2 �ε , (12) 

Uε(1/2, x2; η) = e iηUε(−1/2, x2; η), x2 2 (0, H), (13) 

∂Uε 
iη ∂U

ε 

(1/2, x2; η) = e (−1/2, x2; η), x2 2 (0, H), (14)
∂x1 ∂x1 

where �ε = ∂$ε \ ∂�ε , η is the dual variable, i.e., the Floquet-parameter, while 
�ε(η) and Uε(·; η) denote the spectral parameter and an eigenfunction, respectively. 
If no confusion arises, they can be denoted by �ε and Uε , respectively. Conditions 
(13)-(14) are the quasi-periodicity conditions on the lateral sides {± 1 } × (0, H) of2 
$ε . 

The variational formulation of the spectral problem (11)-(14) reads: 

V 2 H1,η(rUε , rV )$ε = �ε (Uε, V )$ε per($ε; �ε), (15) 

where H1,η ($ε; �ε) is a subspace of H1($ε) of functions which satisfy the quasi-per 

periodicity condition (13) and vanish on �ε . In view of the compact embedding 
H1($ε) ˆ L2($ε), the positive, self-adjoint operator Aε(η) associated with the 
problem (15) has the discrete spectrum constituting the monotone unbounded se-
quence of eigenvalues 

0 < �ε 
1(η) � �ε 

2(η) � · · · � �ε (η) � · · · ! 1 (16)m 

which are repeated according to their multiplicities (see Ch. 10 in [1] and Ch. 13 
in [29]). The eigenfunctions are assumed to form an orthonormal basis in L2($ε). 

The function 

η 2 [−π, π] ! �ε (η) (17)m 

is continuous and 2π-periodic (see, e.g., Ch. 7 of [9]). Consequently, the sets 

Bε = {�ε (η) : η 2 [−π, π]} (18)m m 

are closed, connected and bounded intervals of the real positive axis R+. Results (7) 
and (18) for the spectrum of the operator Aε(η) and the boundary value problem 
(5) are well-known in the framework of the FBG-theory (see the above references). 
As a consequence of our results, we show that in our problem, depending on the 
geometry of the unit hole, and for certain lower frequency range of the spectrum, 
the spectral band (18) does not reduce to a point (cf. (70), (45), (68) and (72)). 

2.2. A homogenization result. A frst approach to the asymptotics for eigenpairs 
of (11)-(14) is given by the following convergence result, that we show adapting 
standard techniques in homogenization and spectral perturbation theory: see, e.g., 
Ch. 3 in [26] for a general framework and [14] for its application to spectral problems 
in perforated domains with di�erent boundary conditions. Let us recall $0 which 
coincides with $ε at ε = 0 (cf. (10), and (2)) and contains the perforation string 

ωε(0, 0), . . . , ωε(0, N − 1) ˆ $0 . (19) 

Theorem 2.1. Let the spectral problem (11)-(14) and the sequence of eigenvalues 
(16). Then, for any η 2 [−π, π], we have the convergence 

�ε (η) ! �0 , as ε ! 0, (20)m m 
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where 

0 < �0
1<�0

2 � · · · � �0 � · · · ! 1, as m !1, (21)m 

are the eigenvalues, repeated according to their multiplicities, of the Dirichlet pro-
blem 

−�U0(x) = �0U0(x), x 2 υ, υ � (0, 1) × (0, H) 
(22)

U0(x) = 0, x 2 ∂υ. 

Proof. First, for each fxed m, we show that there are two constants C, Cm such 
that 

0 < C � �ε (η) � Cm 8η 2 [−π, π]. (23)m 

To obtain the lower bound in (23), it suÿces to consider (15) for the eigenpair 
(�ε , Uε) with �ε � �1 

ε(η) and apply the the Poincaré inequality in H1($0) once 
that Uε is extended by zero in ωε . To get Cm in (23) we use the minimax principle, 

(rV, rV )$ε 
�ε (η) = min max ,m 1,ηEε V 2Eε ,V 6=0 (V, V )ˆHper ($ε;�ε) m $ε m 

where the minimum is computed over the set of subspaces Eε of H1,η ($ε; �ε) with m per 

dimension m. Indeed, let us take a particular Eε that we construct as follows. m 

Consider the eigenfunctions corresponding to the m frst eigenvalues of the mixed 
eigenvalue problem in the rectangle (1/4, 1/2) × (0, H), with a Neumann condition 
on the part of the boundary {1/2} × (0, H), and Dirichlet condition on the rest of 
the boundary. Extend these eigenfunctions by zero for x 2 [0, 1/4] × (0, H), and by 
symmetry for x 2 [−1/2, 0] × (0, H). Finally, multiplying these eigenfunctions by 
iηx1e gives Eε and the rigth hand side of (23).m 

Hence, for each η and m, we can extract a subsequence, still denoted by ε such 
that 

�ε (η) ! �0 (η), Uε (·; η) ! U0 (·; η) in H1($0) − weak, as ε ! 0, (24)m m m m 

(·; η) 2 H1,ηfor a certain positive �0 (η) and a certain function U0 ($0), both ofm m per 

which, in principle, can depend on η. Obviously, U0 (·; η) vanish on the lower andm 

upper bases of $0 . Also, we use the Poincaré inequality in $0 ˙ ω, cf. (2), 

kU ; L2($0 \ ω)k � CkrU ; L2($0 \ ω)k 8U 2 H1($0 \ ω), U = 0 on ∂ω, 

and we deduce 

ε−1kUε (·; η); L2({|x1| � ε/2} \ $0)k2 � CεkrUε (·; η); L2({|x1| � ε/2} \ $0)k2 .m m 

Now, taking limits as ε ! 0, we get U0 (·, η) = 0 on {0} × (0, H) (cf., e.g., [16]m 

and (23)). Hence, we identify (�0 (η), U0 (·; η)) with an eigenpair of the following m m 

problem: 

−�U0 (x; η) = �0 (η)U0 (x; η), x1 2 {(−1/2, 0) [ (0, 1/2)}, x2 2 (0, H),m m m 

U0 (x; η) = 0 for x2 2 {0, H}, x1 2 (−1/2, 1/2) and x1 = 0, x2 2 (0, H),m 

U0 iηU0(1/2, x2; η) = e (−1/2, x2; η), x2 2 (0, H), (25)m m 

∂U0 ∂U0 
m iη m(1/2, x2; η) = e (−1/2, x2; η), x2 2 (0, H),

∂x1 ∂x1 

where the di�erential equation has been obtained by taking limits in the variational 
formulation (15) for V 2 C1((−1/2, 0) × (0, H)) and for V 2 C1((0, 1/2) × (0, H)).0 0 

Now, from the orthonormality of Uε (·; η) in L2($ε), we get the orthonormality m 

of U0 (·, η) in L2($0). Also, an argument of diagonalization (cf., e.g., Ch. 3 in [26])m 

shows the convergence of the whole sequence of eigenvalues (16) towards those of 
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(25) with conservation of the multiplicity, and that the set {U0 (·; η)}1 m=1 forms am 

basis of L2($0). 
In addition, extending by η-quasiperiodicity the eigenfunctions U0 (·; η),mˆ 

U0 (x; η), x1 2 (0, 1/2), 
u 0 (x; η) = m (26)m iηU0e (x1 − 1, x2; η), x1 2 (1/2, 1),m 

we obtain a smooth function in the rectangle υ, and moreover that the pair (�0 (η),m 

U0 (·, η)) satisfes (22). In addition, the orthogonality of {U0 (·; η)}1 m=1 in L2($0) 
0 

m m 

(·; η)}1implies that the extended functions {u m=1 in (26) form an orthogonal basism 

in L2(υ), cf. also (53), and we have proved that �0 (η) coincides with �0 in them m 

sequence (21) for any η 2 [−π, π]. Consequently, the result of the theorem holds. 

Remark 1. Note that the eigenpairs of (22) can be computed explicitly � 
2 
� 

p 22�0 = π2 n + , U0 (x) = p sin(nπx1) sin(pπx2/H), m, n 2 N. (27)np npH2 H 

The eigenvalues �0 are numerated with two indexes and must be reordered in thenp 

sequence (21); the corresponding eigenfunctions U0 are normalized in L2(υ). Also,np 

we note that if H2 is an irrational number all the eigenvalues are simple. 

3. The unit cell problem and the polarization matrix. In this section, we 
study the properties of certain solutions of the boundary value problem in the 
unbounded strip �, cf. (29)-(31) and Figure 2. This problem, the so-called unit cell 
problem, is involved with the homogenization problem (11)-(14) and the periodical 
distribution of the openings in the periodicity cell $ε , but it remains independent 
of the Floquet-parameter. 

In order to obtain a corrector for the approach to the eigenpairs of (11)-(14) 
given by Theorem 2.1, we introduce the stretched coordinates 

ξ = (ξ1, ξ2) = ε−1(x1, x2−εkH). (28) 

which transforms each opening of the string ωε(0, k) into the unit opening ω. Then, 
we proceed as usual in two-scale homogenization when boundary layers arise (cf., 
e.g. [27, 18, 31, 23]): assuming a periodic dependence of the eigenfunctions on the 
ξ2-variable, cf. (32), we make the change (28) in (11)-(14), and take into account 
(20), to arrive at the unit cell problem. This problem consists of the Laplace 
equation 

−�ξW (ξ) = 0, ξ 2 �, (29) 

with the periodicity conditions 

∂W ∂W 
W (ξ1, H) = W (ξ1, 0), (ξ1, H) = (ξ1, 0), ξ1 2 R, (30)

∂ξ2 ∂ξ2 

and the Dirichlet condition on the boundary of the hole ω 

W (ξ) = 0, ξ 2 ∂ω. (31) 

Regarding (29)-(31), it should be noted that, for any �ε � C, we have 

�x + �ε = ε−2(�ξ + ε2�ε), 

and ε2�ε � Cε2 while the main part �ξ is involved in (29). Also, the boundary 
condition (31) is directly inherited from (12), while the periodicity conditions (30) 
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Figure 2. The strip � with the hole ω 

have no relation to the original quasi-periodicity conditions (13)-(14), but we need 
them to support the standard asymptotic ansatz 

w(x2)W (ε−1 x), (32) 

for the boundary layer. Here, w is a suÿciently smooth function in x2 2 [0, H] and 
W is H-periodic in ξ2 = ε−1x2. 

It is worth recalling that, according to the general theory of elliptic problems in 
domains with cylindrical outlets to infnity, cf., e.g., Ch. 5 in [25], problem (29)-(31) 
has just two solutions with a polynomial growth as ξ1 ! ±1. Here, we search for 
these two solutions W ±(ξ) by setting ±1 for the constants accompanying ξ1 (cf. 
Proposition 1). In order to do it, let us consider a fxed positive R such that 

ω ˆ (−R, R) × (0, H) (33) 

and defne the cut-o� functions χ± 2 C1(R) such that ˆ 
1, for ± y > 2R, 

χ±(y) = (34)
0, for ± y < R, 

where the subindex ± represent the support in ±ξ1 2 [0, 1). 

Proposition 1. There are two normalized solutions of (29)-(31) in the form X 
W±(ξ) = ±χ±(ξ1)ξ1 + χτ (ξ1)pτ± + Wf±(ξ), ξ 2 �, (35) 

τ=± 

where the remainder Wf±(ξ) gets the exponential decay rate O(e−|ξ1|2π/H ), and the 
coefficients pτ± � pτ±(�), with τ = ±, which are independent of R and compose a 
2 × 2-polarization matrix � � 

p++(�) p+−(�)
p(�) = . (36)

p−+(�) p−−(�) 

Proof. The existence of two linearly independent normalized solutions W ± of (29)-
(31) with a linear polynomial behavior ±ξ1 + p±±, as ±ξ1 ! 1, is a consequence 
of the Kondratiev theory [10] (cf. Ch. 5 in [25] and Sect. 3 [20]). Each solution 
has a polynomial growth in one direction and stabilizes towards a constant p�± in 
the other direction. In addition, it lives in an exponential weighted Sobolev space 
which guarantees that, substracting the linear part, the remaining functions have a 
gradient in (L2(�))2 . 

Let us consider the functions cW±(ξ) = W ±(ξ) � χ±(ξ1)ξ1, (37) 
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which, obviously, satisfy (30), (31) and 

W ±(ξ) = F±(ξ), 

with F ±(ξ) = F ±(ξ1) = ±�(χ±(ξ1)ξ1) = ±(∂2 χ± ξ1 + 2∂ξ1 χ±). By construction, ξ1 
± ± 2F has in ξ [R, 2R].compact support a 1 

Hvanishing ∂ω with in �. Let denote by the completioncompact support on us, 

c 

Let C1 (�) be the space of the infnitely di�erentiable H-periodic functions,c per 

of C1 (�) in the normc per 

kW, Hk = kryW ; L2(�)k. 

W± 

c− �ξ ξ 2 �, (38) 

The variational formulation of (38), (30) and (31) reads: to fnd 2 H sa-
tisfying the integral identity 

W ± ry 
c � � � 

F ±, V V 8V 2 H. (39), ry = 
�� 

Since supp(F ±) is compact, we can apply the Poincaré inequality to the elements 
of {V 2 H1([−2R, 2R]) × (0, H)) : V |∂ω = 0}, to derive that the right hand side of 
(39) defnes a linear continuous functional on H. In addition, the left-hand side of 
the integral identity (39) is the norm in the Hilbert space H, and consequently, the 
Riesz representation theorem assures that the problem (39) has a unique solution 

W 2 H satisfying (39).c 
In addition, since for each τ , τ = ±, function cW τ (ξ) in (37) is harmonic for 

|ξ1| > 2R with gradient in L2((−1, −2R) × (0, H)) \ L2((2R, +1) × (0, H)), the 
Fourier method (cf., e.g. [13, 25]) ensures that cW τ (ξ) = c 

τwhere the constants c± are defned by 

τ 
± + O(e −(±ξ1)2π/H ) as ± ξ1 ! +1, 

Z ZH H1 1τ c = ± lim 
T !1 H 0 

cW τ (±T, ξ2)dξ2 = lim 
T !1 H 0 

+ − 
± (c± respectively) are independent of R and they provide all the con-

(W τ (±T, ξ2) − τδτ,±T )dξ2. (40) 

Obviously, c 
τstants appearing in (35); namely, c± = pτ±(�). Hence, the result of the proposition 

holds. 

3.1. Properties of the polarization matrix. In this section, we investigate cer-
tain properties of the matrix p(�). This matrix represent an integral characteristics 
of the “Dirichlet hole” ω in the strip �. Its defnition is quite analogous to the 
classical polarization tensor in the exterior Dirichlet problem, see Appendix G in 
[28]. 

Proposition 2. The matrix p(�) + R I is symmetric and positive, where I stands 
for the 2 × 2 unit matrix and R given in (33). 

Proof. We represent (35) in the form ˆ 
±ξ1 − R , ±ξ1 > R, 

W ±(ξ) = W±(ξ) + (41)0 0 , ±ξ1 < R. 

The function W ± still satisfes the periodicity condition of (30) and the homogene-0 

ous Dirichlet condition (31) but remains harmonic in � \ �±(R), �±(R) = {ξ 2 � : 
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±ξ1 = R}, and its derivative has a jump on the segment �±(R), namely � � 
∂W± 0[W ±]±(ξ2) = 0, (ξ2) = −1, ξ2 2 (0, H),0 ∂|ξ1| ± 

where [φ]±(ξ2) = φ(±R ± 0, ξ2) − φ(±R � 0, ξ2). 
In what follows, we write the equations for τ = ±. Since �W± = 0 we multiply 0 

it W τ and apply the Green formula in (� \ �±(R)) \ {|ξ1| < T } and we send T to0 

+1. We get Z Z � �H H ∂W ± 0W0 
τ (±R, ξ2)dξ2 = − W0 

τ (±R, ξ2) (ξ2)dξ2 
0 0 ±∂|ξ1| � � 

= − rξW0 
τ , rξW ± . (42)0 � 

On the other hand, on account of (41) and the defnition of W τ , we have � � 
∂W τ 

W0 
τ (±R, ξ2) = W τ (±R, ξ2) and (ξ2) = 0. 

∂|ξ1| ± 
Consequently, we can write Z Z � �H H ∂W ± 0W0 

τ (±R, ξ2)dξ2 = − W τ (±R, ξ2) (ξ2)dξ2 
0 0 ±∂|ξ1| !Z � � � �H ∂W ± ∂W τ 0 = W τ (±R, ξ2) (ξ2) − W±(±R, ξ2) (ξ2) dξ2,0∂|ξ1| ∂|ξ1|0 ± ± 

and using again the Green formula for W τ and W0 
± , in a similar way to (42) we get Z H 

W τ 
0 (±R, ξ2)dξ2 

0 Z � �H ∂W ± ∂W τ 
0 = + lim W τ (τT, ξ2) (τT, ξ2) − W ±(τT, ξ2) (τT, ξ2) dξ20

T !1 ∂|ξ1| ∂|ξ1|0 

= −H (pτ±(�) + δτ,±R) . (43) 

Here, we have used the following facts: ∂/∂|ξ1| is the outward normal derivative at 
the end of the truncated domain {ξ 2 � : |ξ1| < R}, the function W τ is smooth 0 

near �±(R), the derivative ∂W±/∂|ξ1| decays exponentially and, according to (35)0 

and (41), the function W± admits the representation when ±ξ1 > 2R (cf. (35))0 

W ±(ξ) = χ±(ξ1) (p±± + R) + χ�(ξ1)p�± + Wf±(ξ).0 

Considering (42) and (43) we have shown the equality for the Gram matrix � � 
rξW0 

τ , rξW ± = H (pτ±(�) + δτ,±R) ,0 � 

which gives the symmetry and the positiveness of the matrix p(�) + R I . 

Now, we get the following results in Propositions 3 and 4 depending on whether 
ω is an open domain in the plane with a positive measure mes2(ω), or it is a crack 
with mes2(ω) = 0. 

Proposition 3. Let ω be such that mes2(ω) > 0. Then, the coefficients of the 
polarization matrix p(�) satisfy 

H (2p+− − p++ − p−−) > mes2(ω). 
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Proof. We consider the linear combination 

W0(ξ) = W +(ξ)−W −(ξ)−ξ1 = χ+(ξ1) (p++ − p+−)−χ−(ξ1) (p−− − p−+)+Wf0(ξ). 

It satisfes 
−�ξW0(ξ) = 0, ξ 2 �, W0(ξ) = −ξ1, ξ 2 ∂ω, 

with the periodicity conditions in the strip, and Wf0(ξ) = Wf+(ξ) − Wf−(ξ) gets 
−|ξ1|2π/H ).the exponential decay rate O(e We apply the Green formula twice to 

equations �W0 = 0 and �(W0 + ξ1) = 0 in � \ {|ξ1| < T } and �ξ1 = 0 in ω, and 
take into account the boundary condition for W0 as well as its exponential decay. 
Then, taking limits as T !1, we have Z Z 

0 < krW0; L2(�)k2 + mes2(ω) = − ξ1∂ν (ξ1)dν + W0∂ν (W0(ξ))dν 

∂ω ∂ω Z Z 
= − ξ1∂ν (ξ1 + W0(ξ))dν = (∂ν ξ1(ξ1 + W0(ξ)) − ξ1∂ν (ξ1 + W0(ξ))) dν 

∂ω ∂ω ZX H 

= − lim ± W0(±T, ξ2)dξ2 = −H (p++ + p−− − p+− − p−+) . 
T !1 0± 

Remark 2. We observe that for a hole ω, which is symmetric with respect to 
the x1-axis, the matrix p(�) becomes symmetric with respect to the anti-diagonal, 
namely, 

p++ = p−− . (44) 

Indeed, this is due to the fact that each one of the two normalized solutions in 
(35) are related with each other by symmetry. Also, we note that, on account of 
Proposition 2, the symmetry p+− = p−+ holds for any shape of the hole ω. 

Proposition 4. Let ω be the crack ω = {ξ 2 R2 : ξ1 = 0, ξ2 2 (h, H − h)}, where 
h < H/2. Then, 

p+− = p−+ > 0. (45) 

In addition, p−− = p++ = p−+ = p+−. 

Proof. First, let us note that due to the symmetry W +(ξ1, ξ2) = W −(−ξ1, ξ2), and 
the construction (41) when R = 0 reads ˆ 

−ξ1 + W �(−ξ1, ξ2), ξ1 < 0,
W−(ξ1, ξ2) = (46)

W �(ξ1, ξ2), ξ1 > 0. 

where W �(ξ1, ξ2) is the function defned in �+ = {ξ : ξ1 > 0, ξ2 2 (0, H)} satisfying 
the periodicity condition (30) and equations 

−�ξW
�(ξ) = 0, for ξ 2 �+ 

W �(0, ξ2) = 0, for ξ2 2 (h, H − h), (47) 
−∂ξ1 W �(0, ξ2) = 1/2, for ξ2 2 (0, h) [ (H − h, H). 

Indeed, denoting by Wf� the extension of W � to �− = {ξ : ξ1 < 0, ξ2 2 (0, H)}, 
in order to verify the representation (46), it suÿces to verify that the jump of Wf� 
and its the derivative of through �(0) = {ξ 2 � : ξ1 = 0} is given by " # 

∂Wf� 
[Wf�](0, ξ2) = 0, (0, ξ2) = −1,

∂ξ1 
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and hence, the function on the right hand side of (46) is a harmonic function in �. 
Now, considering (47), integrating by parts on (0, T ) × (0, H), and taking limits 

as T ! +1 provide Z ZH 

W �(0, ξ2)dξ2 = lim W �(T, ξ2)dξ2 = Hp−+(�). 
T !1 

�(0) 0 

Similarly, from (47), we getZ Z Z 
1 

0 = − W �(ξ)�ξW �(ξ)dξ = |rξW �(ξ)|2dξ − W �(0, ξ2)dξ2. 
2 

�+ �+ �(0) 

Therefore, we deduce Z 
H 

p−+(�) = |rξW �(ξ)|2dξ > 0 (48)
2 

�+ 

and from the symmetry of p(�) (cf. Proposition 2), we obtain (45). 
Also, from the defnition (46), we have p−−(�) = p−+(�), and (cf. (44)) all 

the elements of the polarization matrix p(�) coincide. Thus, the proposition is 
proved. 

From Proposition 4, note that when ω is a vertical crack, the inequality in Pro-
position 3 must be replaced by H (2p+− − p++ − p−−) = mes2(ω) = 0. Also, we 
observe that in order to get property (45) for a domain ω with a smooth boundary, 
we may apply asymptotic results on singular perturbation boundaries (cf. [7], Ch. 
3 in [8] and Ch. 5 in [17]) which guarantee that for thin ellipses 

ω = {ξ : (δ−2ξ1
2 + (ξ2 − H/2)2 � τ2}, τ = H/2 − h, (49) 

(45) holds true, for a small δ > 0. 

4. Asymptotic analysis in the periodicity cell $ε . In this section we construct 
asymptotic expansions for the eigenpairs (� εm(η), Uε

m(·; η)) of problem (11)-(14) on 
the peridicity cell $ε . The parameters m 2 N and η 2 [−π, π] are fxed in this 

mIn Sections 4.1-4.2 we consider the case in which the eigenvalue �0 

(22) is simple. Note that for many values of H, all the eigenvalues are simple (cf. 
Remark 1). Section 4.3 contains the asymptotic ansatz for the eigenpairs case where 

analysis. of 

m 

0�m 

4.1. Asymptotic ansätze. Let �0 

is an eigenvalue of (22) of multiplicity κm � 2. 

be a simple eigenvalue in sequence (21) and 

mlet U0 

Then, on account of the Theorem 2.1, for the eigenvalue � 
be the corresponding eigenfunction of problem (22) normalized in L2(υ). 

ε
m of problem (11)-(14) 

we consider the asymptotic ansätze 

mm = �0 + ε�1 

To construct asymptotics of the corresponding eigenfunctions U 

�ε
m (η) + · · · . (50) 

ε
m(x; η), we employ 

mm 

the method of matched asymptotic expansions, see, e.g., the monographs [34, 8] 
and the papers [31, 18, 23] where this method has been applied to homogenization 
problems. Namely, we take 

(x; η) = U0 (x; η) + εU1Uε
m (x; η) + · · · (51) 



13 ASYMPTOTIC STRUCTURE OF THE SPECTRUM 

as the outer expansion, and X 
± (x2; η)W±(x/ε) + mε

mU (x; η) = ε · · · , (52)w 
± 

as the inner expansion near the perforation string, cf. (3) and (19), 
Above, U0 (x; η) is built from the eigenfunction U0 

mm of (22) by formula ˆ 
m 

−iηU0 

are the solutions (35) to problem (29)-(31), while the functions U1 

number �1 (η) are to be determined applying matching principles, cf. Section 4.2. 

m 

0Um0Um 

m 

(x), x1 2 (0, 1/2),
(x; η) = (53)

(x1 + 1, x2), x1 2 (−1/2, 0),e 

W ± m and the , w± 

Note that near the perforation string, cf. (3), (19), the Dirichlet condition satisfed 
by U0 

(see, e.g., [23]); this is why the frst order function in (52) is ε. Also, above and 
in what follows, the ellipses stand for higher-order terms, inessential in our formal 
analysis. 

m(x; η) implies that the term accompanying ε0 in the inner expansion vanishes 

2 C1(υ), and the Taylor m4.2. Matching procedure. First, let us notice that U0 

formula applied in the outer expansion (51) yields 

m∂U0 

∂x1 

ε
m 

m 

m 

m 

(0, x2) + εU1 

−iη ∂U
0 

(1, x2) + εU1 

∂x1 

U (x; η) = 0 + x1 (+0, x2; η) + · · · , x1 > 0, 
(54) 

ε
m (−0, x2; η) + · · · , x1 < 0,U (x; η) = 0 + x1e 

where, for second formula (54), we have used (53). 
The inner expansion (52) is processed by means of decompositions (35). We have 

U 
U 

ε 
m
ε 
m 

(x; η) = εwm(x2; η)(ξ1 + p++) + εw− 
m(x2; η)p−+ ++ · · · , ξ1 > 0, 

(55)
(x; η) = εw− 

m(x2; η)(−ξ1 + p−−) + εwm 
+ (x2; η)p+− + · · · , ξ1 < 0. 

Recalling relationship between x1 and ξ1, we compare coeÿcients of ε and x1 = 
m 
± by εξ1 on the right-hand sides of (54) and (55). As a result, we identify w 

m 

m 

m 

11 UUm 

∂U0 

− (x2; η) = −e 

and also obtain the equalities X X 
m∂U0 

∂x1 

−iηm(x2; η) = (0, x2), (1, x2), (56)w w+ ∂x1 

m
τ 

m
τ(−0, x2; η) =(+0, x2; η) = (x2; η)pτ+, (x2; η)pτ−. (57)w w 

τ=± τ=± 

mmmm 

m 

m 
1Um 

Formulas (56) defne coeÿcients of the linear combination (52) while formulas (57) 
are the boundary conditions for the correction term in (51). Moreover, inserting 
ansätze (50) and (51) into (11)-(12), we derive that ˆ 

U1 (x; η) − �0 U1 (x; η) = �1 (η)U0 

(x1, H; η) = U1 
(x; η), x 2 $0−�x , x1 6= 0, 

(58)
(x1, 0; η) = 0, x1 2 (−1/2, 0) [ (0, 1/2), 

and the quasi-periodic conditions with η (cf. (13)-(14)). 
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Since U0 (x; η) is defned by (53), (�0 , U0 (x)) is an eigenpair of (22), andm m m 

kU0 ; L2(υ)k = kU0 (·; η); L2($0)k = 1, we multiply by U0 (x; η) in the di�eren-m m m 

tial equation of (58), integrate by parts and obtain Z 
�1 (η)U0 (x; η)U0 (x; η)dxm m m 

$0 ZH ZH 

∂U0 ∂U0 
m m = U1 (−0, x2; η) (−0, x2; η)dx2 − U1 (+0, x2; η) (+0, x2; η)dx2.m m∂x1 ∂x1 

0 0 

Thus, by (53) and (57), the only compatibility condition in (58) (recall that �0 ism 

a simple eigenvalue) converts into ZH 

�1 (η) = − Bm(x2; η) · p(�)Bm(x2; η)dx2 (59)m 

0 

where � �T
∂U0 ∂U0 

m −iη mBm(x2; η) = (0, x2), −e (1, x2) 2 C2 , (60)
∂x1 ∂x1 

and it determines uniquely the second term of the ansatz (50). 
Also, from (51), (52) and (55) the composite expansion approaching Uε (x; η) inm 

the whole domain $0 reads X 
mUε (x; η) ˇ U0 (x; η) + εU1 (x; η) + ε w (x2; η)W τ (x/ε)m m m τ � τ=± � 

− εw± m(x2; η)(ε−1|x1| + p±±) + εw� 
m(x2; η)p�± , ±x1 � 0. (61) 

4.3. The case of a multiple eigenvalue �0 . Let us consider the case where m 

�0 is an eigenvalue of (22) with multiplicity κm � 2. Let us consider �0 = m m 

· · · = �0 
−1 in the sequence (21) and the corresponding eigenfunctions U0 , · · · ,m+κm m 

U0 
−1 which are orthonormal in L2(υ). On account of Theorem 2.1 there are κmm+κm 

eigenvalues of problem (11)-(14), which we denote by �ε (η), l = 0, · · · , κm − 1,m+l 

satisfying 

�ε 
m+l(η) ! �0 as ε ! 0, for l = 0, · · · , κm − 1. (62)m+l 

Let Uε (·; η), l = 0, · · · , κm − 1, be the corresponding eigenfunctions among the m+l 

set of the eigenfunctions which form an orthonormal basis in L2($ε), cf. (15). 
Following Section 4.1, for each l = 0, · · · , κm − 1, we take the ansatz for �ε (η)m+l 

�ε = �0 + ε�1 · · , (63)m+l(η) + · m+l m 

the outer expansion for Uε (·; η)m+l 

Um
ε 

+l(x; η) = Um 
0

+l(x; η) + εUm 
1

+l(x; η) + · · · , (64) 

and the inner expansion X 
m+lUε (x; η) = ε w (x2; η)W ±(x/ε) + · · · , (65)m ± 

± 

m+lwhere the terms �1 (η), U1 (x; η) and w (x2; η) have to be determined by the m+l m+l ± 
matching procedure, cf. Section 4.2, while U0 (x; η) is constructed from U0 (x)m+l m+l 
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replacing U0 by U0 in formula (53), and W± are the solutions (35) to problemm m+l 

(29)-(31). 
By repeating the reasoning in Section 4.2, we obtain formulas for the above 

mentioned terms in (63), (64) and (65) by replacing index m by m + l in (54)-
(60), while we realize that the compatibility condition for each �1 (η) is satisfed. m+l 

Indeed, multiplying by U m 
0

+l0 (x; η), l0 = 0, · · · , κm − 1 in the partial di�erential 

equation satisfed by U m 
1

+l0 (x; η) (cf. (58)) 

−�xUm 
1

+l(x; η) − �0 Um 
1

+l(x; η) = �1 
m+l(η)Um 

0
+l(x; η), x 2 $0 , x1 =6 0,m 

and integrating by parts, we obtain Z 
�1 
m+l(η)Um 

0
+l(x; η)U m 

0
+l0 (x; η)dx 

$0 ZH � � � �T 
∂U0 ∂U0 ∂U0 ∂U0 

m+l0 iη m+l0 m+l −iη m+l = − (0, x2), −e (1, x2) ·p(�) (0, x2), −e (1, x2) dx2,
∂x1 ∂x1 ∂x1 ∂x1 

0 

where the top index T indicates the transpose vector. Since the eigenfunctions U0 
m+l 

and U0 can be explicitly computed (cf. the explicit formulas (27) in Remark 1),m+l0 

we conclude now that 

ZH 
∂U0 ∂U0 

m+l0 � m+l � �(x1, x2) (x1, x2)dx2 = 0, with x1 2 {0, 1}, l 6= l0 ,
∂x1 ∂x1 

0 

and, hence, for each l = 0, · · · , κm − 1, the κm compatibility conditions to be 
satisfed by the pairs (�1 (η), U1 (x; η)), cf. (58), provide a unique �1 (η)m+l m+l m+l 

given by ZH 

�1 
m+l(η) = − Bm+l(x2; η) · p(�)Bm+l(x2; η)dx2, (66) 

0 

where Bm+l(x2; η) is defned by � �T
∂U0 ∂U0 

m+l −iη m+lBm+l(x2; η) = (0, x2), −e (1, x2) . (67)
∂x1 ∂x1 

Therefore we have determined completely all the terms in the asymptotic ansatze 
(63), (64) and (65) for l = 0, · · · , κm − 1. 

5. Justification of asymptotics. In this section, we justify the results obtained 
by means of matched asymptotic expasions in Section 4. Since the case in which all 
the eigenvalues of the Dirichlet problem (22) are simple can be a generic property, 
we frst consider this case, cf. Theorem 5.1 and Corollary 1, and then the case in 
which these eigenvalues have a multiplicity greater than 1, cf. Theorem 5.2 and 
Corollary 2. We state the results in Section 5.1 while we perform the proofs in 
Section 5.2. 



 ���� ���� ���� ����

���� ����

´ 16 S.A. NAZAROV, R. ORIVE-ILLERA, M.-E. PEREZ-MART ́INEZ 

5.1. Asymptotics of eigenvalues: the results. 

Theorem 5.1. Let m 2 N, let �0 be a simple eigenvalue of the Dirichlet problem m 

(22) and let �1 (η) be defined in (59) and (60). There exist positive εm and cmm 

independent of η such that, for any ε 2 (0, εm], the eigenvalue �ε (η) of problem m 

(11)-(14) meets the estimate 

ε3/2|�ε (η) − �0 − ε�1 (η)| � cm (68)m m m 

and there are no other different eigenvalues in the sequence (16) satisfying (68). 

Theorem 5.1 shows that ε�1 (η) provides a correction term for �ε (η) improving m m 

the approach to λ0 shown in Theorem 2.1. In particular, it justifes the asymptotic m 

ansatz (50) and formula (59). This corrector depends on the polarization matrix 
p(�), which is given by the coeÿcients pτ± � pτ±(�), with τ = ±, in the decom-
position (35), and on the eigenfunction U0 of problem (22), which corresponds tom 

�0 and is normalized in L2(υ) (cf. (59) and (60)).m 

In order to detect the gaps between consecutive spectral bands (18) it is worthy 
writing formulas 

�1 (η) = B0(m) + B1(m) cos(η), with (69)m !ZH 2 2
∂U0 ∂U0 

m mB0(m) = p++ (0, x2) + p−− (1, x2) dx2,
∂x1 ∂x1 

0 

B1(m) = 

ZH 

2p+− 
∂U0 ∂U0 

m m(0, x2) (1, x2)dx2,
∂x1 ∂x1 

0 

which are obtained from (59) and (60). Formula (27) demonstrates that 

ZH 

B0(m) = (p++ + p−−) 
∂U0 

m (0, x2)
∂x1 

2 

dx2, 

0 

and that the integral in B1(m) does not vanish. We note that B1(m) = 0 only in 
the case when p+− = 0; if so, p(�) is diagonal and the solutions of (35), W± , decay 
exponentially when ξ1 ! �1, respectively. However, we have given examples of 
cases where p+− 6= 0 (cf. (45) and (49)). 

Remark 3. Let us consider that the eigenvalue �0 coincides with �0 in formula m nq 

(27) for certain natural n and q. Then, we obtain 

2π2 2π2B0(m) = 2 (p++ + p−−) n , B1(m) = (−1)n4p+−n , 

and, consequently, 

�1 (η) = 2 (p++ + p−−) n 2π2 + (−1)n4p+−n 
2π2 cos(η). (70)m 

Corollary 1. Under the hypothesis of Theorem 5.1, the endpoints Bε±(m) of the 
spectral band (18) satisfy the relation 

ε3/2|Bε±(m) − �0 − ε(B0(m)±|B1(m)|)| � cm . (71)m 

Hence, the length of the the band Bε is 2ε|B1(m)| + O(ε3/2).m 
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Note that for the holes such that the polarization matrix (36) satisfes p+− = 0, 
asymptotically, the bands Bε have the precise length 2ε|B1(m)| + O(ε3/2) andm 

they cannot reduce to a point, namely to the point �0 + εB0(m) (cf. (69) andm 

Remark 3). Also note that if p+− = 0, Theorem 5.1 still provides a correction term 
for �ε (η) which however does not depend on η (cf. (68), (69) and Remark 3), them 

width of the band being O(ε3/2). Although the length of the band is shorter than 
in the cases where p+− 6= 0, bounds in Corollary 1 may not be optimal (cf. Remark 
3) and further information on the corrector depending on η can be obtained by 
constructing higher-order terms in the asymptotic ansatz (51). 

Theorem 5.2. Let m 2 N, let �0 be an eigenvalue of the Dirichlet problem (22)m 

with multiplity κm > 1. Let �1 (η) defined in (66) and (67) for l = 0, · · · , κm −1. m+l 

There exist positive εm and cm independent of η such that, for any ε 2 (0, εm], and 
for each l = 0, · · · , κm − 1, at least one eigenvalue �ε (η) of problem (11)-(14)m+l0 
satisfying (62) meets the estimate 

|�ε − ε�1 ε3/2(η) − �0 
m+l(η)| � cm . (72)m+l0 m 

In addition, when l 2 {0, 1, · · · , κm − 1}, the total multiplicity of the eigenvalues 
in (16) satisfying (72) is κm. 

Corollary 2. Under the hypothesis in Theorem 5.2, the spectral bands B m
ε 

+l asso-
ciated with �ε (η), for l = 0, · · · , κm − 1, cf. (18), are contained in the interval m+l 

[�0 + ε min �m 
1

+l(η) − cmε3/2 , �0 + ε max �m 
1

+l(η) + cmε3/2].m m 
0 � l � κm − 1 0 � l � κm − 1 

η 2 [−π, π] η 2 [−π, π] 

(73) 
Hence, the length of the the bands Bε are O(ε) but they may not be disjoint.m+l 

Remark 4. Under the hypothesis of Theorem 5.2, it may happen that for l = 
0, · · · , κm − 1 only the eigenvalue �ε (η) in the sequence (16) satisfes (72). This m+l0 
depends on the polarization matrix p(�). As a matter of fact, it can be shown by 
contradiction under the assumption that for two di�erent l the functions �1 (η)m+l 

do not intersect at any point η, cf. (69) and (70). For instance, this follows for ω 
with p+−(�) = 0. 

5.2. The proofs. In this section we prove the results of Theorems 5.1 and 5.2 and 
their respective corollaries. 

Proof of Theorem 5.1. Let us fx η in [−π, π]. Let us endow the space 
H1,η ($ε; �ε), with the scalar product hUε, V εi = (rUε , rV ε)$ε + (Uε, V ε)$ε ,per 

and the positive, symmetric and compact operator T ε(η), 

hT ε(η)Uε, V εi = (Uε, V ε)$ε 8Uε, V ε 2 H1,η ($ε; �ε). (74)per 

The integral identity (15) for problem (11)-(14), can be rewritten as the abstract 
equation 

T ε(η)Uε(·; η) = τ ε(η)Uε(·; η), in H1,η ($ε; �ε),per 

with the new spectral parameter 

τ ε(η) = (1 + �ε(η))−1 . (75) 

As is well known since T ε(η) is compact (cf. e.g, Section I.4 in [30] and III.9 in [1]), 
its spectrum consists of the point τ = 0, the essential spectrum, and of the discrete 
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spectrum {τ ε (η)}m2N which, in view of (16) and (75), constitutes the infnitesimal m 

sequence of positive eigenvalues� 
τε (η) = (1 + �ε (η))−1 
m m m2N . 

For the point 
εtm(η) = (1 + �m 

0 + ε�m 
1 (η))−1 (76) 

2 H1,ηcf. (50) and (59), we construct a function Uε ($ε; �ε) such thatm per 

; H1,ηkUε ($ε; �ε)k � cm, (77)m per 

ε ; H1,η ε3/2kT ε(η)Uε − t (η)Uε ($ε; �ε)k � Cm , (78)m m m per 

where cm and Cm are some positive constants independent of ε 2 (0, εm], εm > 
0. These inequalities imply the estimate for the norm of the resolvent operator 
(T ε(η) − tε (η))−1 

m 

ε ; H1,η −1ε−3/2k(T ε(η) − t (η))−1 ($ε; �ε) ! H1,η ($ε; �ε)k � c ,m per per m 

with cm = c−1Cm > 0. According to the well-known formula for self-adjoint ope-m 

rators 

ε ε ; H1,ηdist(t (η), σ(T ε(η)) = k(T ε(η) − t (η))−1 ($ε; �ε) ! H1,η ($ε; �ε)k−1 
m m per per 

supported by the spectral decomposition of the resolvent (cf., e.g., Section V.5 in 
[9] and Ch. 6 in [1]), we deduce that the closed segment 

ε ε3/2 ε ε3/2][t (η) − cm , t (η) + cmm m 

contains at least one eigenvalue τ ε(η) of the operator T ε(η). Since the eigenvalues p 

of T ε(η) satisfy (75) and we get the defnition (76), we derive that 

ε3/2(1 + �ε(η))−1 − (1 + �0 + ε�1 (η))−1 � cm . (79)p m m 

Then, simple algebraic calculations (cf. (79) and (23)) show that, for a εm > 0, the 
estimate 

�ε(η) − �0 − ε�1 ε3/2 
p m (η) � Cm , (80)m 

is satisfed with a constant Cm independent of ε 2 (0, εm]. Due to the convergence 
with conservation of the multiplicity (20), p = m in (80) and this estimate becomes 
(68). 

To conclude with the proof of Theorem 5.1, there remains to present a function 
2 H1,ηUε ($ε; �ε) enjoying restrictions (77) and (78). In what follows, we constructm per 

Uε using (61) suitably modifed with the help of cut-o� functions with “overlapping m 

supports”, cf. [19], Ch. 2 in [17] and others. We defne 

Vεm(x; η) = U0 (x; η) + εU1 (x; η), (81)out m m 

with U0 satisfying (53) and U1 is the solution of (58) satisfying the boundary m m 

conditions (13)-(14) and (57). Similarly, we defne X 
Vεm m(x; η) = ε w± (x2; η)W ±(ε−1 x), (82)in 

± 

and 

Vεm (x; η) = εw± 
m(x2; η)(ε−1|x1| + p±±) + εwm ±x1 > 0, (83)mat � (x2; η)p�±, 

mwith w defned in (56), and W± and matrix p(�) in Proposition 1. Finally, we set± 

(x; η) = Xε(x1)Vεm (x; η) − Xε(x1)X (x1)VεmUε (x; η) + X (x1)Vεm (x; η), (84)m out in mat 
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where Xε and X are two cut-o� functions, both smooth functions of the x1 variable, 
such that ˆ ˆ 

1, for |x1| > 2Rε, 1, for |x1| < 1/6,
Xε(x1) = and X (x1) = (85)

0, for |x1| < Rε, 0, for |x1| > 1/3. 

Note that (83) takes into account components in both expressions (81) and (82), but 
the last subtrahend in Uε compensates for this duplication. In further estimations, m 

term (83) will be joined to either Vεm or Vεm in order to obtain suitable bounds. out in 

2 H1,ηFirst, let us show that Uε ($ε; �ε). Indeed, the function defned in (84)m per 

Vεmenjoys the conditions (13)-(14) and (12). This is due to the fact that Uε = m out 

near the sides {x1 = ±1/2, x2 2 (0, H)} and the quasi-periodicity conditions (13)-
= Vεm(14) are verifed by both terms in (81). Also, Uε near the hole string (19)m in 

so that the Dirichlet condition are fulflled on boundary of the perforation string 
�ε \ $0 because W ± satisfy (31). Finally, formulas (56) and (27) assure that 

m mw± (H; η) = w± (0; η) = 0 and hence the Dirichlet condition is met on �ε \ ∂$0 as 
well. 

First of all, we recall (81) and (85) to derive 

; H1,ηkUε ($ε; �ε)km per 

� Uε ; L2(1/3, 1/2) × (0, H)) = kVεm; L2(1/3, 1/2) × (0, H))km out 

� U0 ; L2(1/3, 1/2) × (0, H)) − εkU1 ; L2(1/3, 1/2) × (0, H))k � c > 0,m m 

for a small ε > 0. Thus, (77) is fulflled. 
Using (74) and (76), we have 

kT ε(η)Uε − tε (η)Uε ; H1,η ($ε; �ε)k = sup |hT ε(η)Uε − tε (η)Uε , Wεi|m m m per m m m 

= (1 + �0 + ε�1 (η))−1 sup (rUε , rWε)$ε − (�0 + ε�1 (η))(Uε , Wε)$ε (86)m m m m m m 

where supremum is computed over all Wε 2 H1,η ($ε; �ε) such thatper 

; H1,ηkWε ($ε; �ε)k � 1.per 

Taking into account the Dirichlet conditions on ∂ωε we use the Poincaré and Hardy 
inequalities, namely, for a fxed T such that ω ˆ �T � � \ {y1 < T}, Z Z 

|U |2 dy � CT |ryU |2dy 8U 2 H1(�T \ ω), U = 0 on ∂ω, 
�T \ω �T \ω 

where CT is a constant independent of U , and Z Z 21 11 
z(t)2 dt � 4 

dz 
(t) dt 8z 2 C1[0, 1), z(0) = 0. 

0 t2 0 dt 

Then, we have 

k(ε + |x1|)−1Wε; L2($ε)k � ckrWε; L2($ε)k � c. (87) 

Clearly, from (69), (1 + �0 + ε�1 (η))−1 � 1 for a small ε > 0 independent of η,m m 

and there remains to estimate the last supremum in (86). We integrate by parts, 
take the Dirichlet ans quasi-periodic conditions into account and observe that 

(rUε , rWε)$ε − (�0 + ε�1 (η))(Uε , Wε)$ε m m m m 

= (�Uε + (�0 + ε�1 (η))Uε , Wε)$ε .m m m m 
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On the basis of (81)-(84) we write 

�Uε + (�0 + ε�1 (η))Uε (88)m m m m� � 
= Xε �U0 + �0 U0 + ε(�U1 + �0 U1 + �1 U0 ) + ε2�1 U1 (89)m m m m m m m m m m 

− Xε�Vεm+[�, Xε](Vεm − Vεm ) + X (�Vεm ) + [�, X ](Vεm − Vεm ) (90)out mat in mat in mat 

)X (Vεm − XεVεm+(�0 + ε�1 ) =: S1 
ε + S2 

ε + S3 
ε + S4 

ε + S5 
ε . (91)m m in mat 

Here, [�, χ] = 2rχ · r + �χ is the commutator of the Laplace operator with a 
function χ, and the equality [�, XεX ] = [�, X ] + [�, Xε], which is valid due to the 
position of supports of functions in (85), is used when distributing terms originated 
by the last subtrahend in (84). Let us estimate the scalar products (Sk

ε , Wε)$ε for 
Sε in (88).k 

Considering S1 
ε , because of (25), (58), (85) and (69), we have that in fact Sε = 1 

ε2Xε�1 U1 , hencem m 

ε2|(S1 
ε , Wε)$ε | � ε2�1 (η)kU1 ; L2($ε)kkWε; L2($ε)k � Cm .m m 

As regards S2 
ε , we take into account that the supports of the functions ∂x1 

Xε 

and �Xε belong to the adherence of the thin domain $ε = {x 2 $ε : |x1| 2εR 

(εR, 2εR)}, cf. (85). Thus, the error in the Taylor formula up to the second term, 
and relations (56), (57) and (83) provide 

|Vεm(x; η) − Vεm (x; η)| � c(|x1|2 + ε|x1|),out mat 

∂Vεm ∂Vεm 
out mat(x; η) − (x; η) � c(|x1| + ε), ±x1 2 [εR, 2εR]. 

∂x1 ∂x1 

Above, we have also used the smoothness of the function U1 which holds on account m 
−iηy1that V = U1 e is a periodic function in the y1 variable, solution of an ellipticm 

operator with constant coeÿcients (cf. (58), (13)-(14) and (92)), and therefore it is 
a smooth function. Then, we make use of the weighted inequality (87) and write 

|(S2 
ε , Wε)$ε | � kS2 

ε; L2($ε )kkWε; L2($ε )k � cεk(ε + |x1|)−1Wε; L2($ε)kεR εR ! 1� � 2H 2εRR R Vεm Vεm 2 
1 out mat 1× − + |Vεm − Vεm |2 

d|x1|dx2ε2 ∂x1 ∂x1 ε4 out mat 
0 εR � � 1 

1 1 2
3 

2� c ε2 + ε4 (mes2$
ε ) 

1 

εk(ε + |x1|)−1Wε; L2($ε)k � cε 2 .ε2 ε4 εR 

Dealing with S3 
ε , we match the defnitions of the cut-o� functions χ± and Xε 

such that Xε(x1) = χ±(x1/ε) for ±x1 > 0 (cf. (34)). Recalling formulas (35), (82) 
and (83), we write 

�Vεm(x; η) − Xε(x1)�Vεm (x; η)in mat X X ∂2 m∂w± 
m ∂W± w± = 2 (x2; η) (y) + ε (x2; η)Wf±(y),

∂x2 ∂ξ2 ∂x2 
2± ± 
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when ±x1 > 0, respectively. Note that W± are harmonics and both, ∂W±/∂ξ2 and 

W ± decay exponentially as |ξ1| ! 1, see Proposition 1.f Thus, 

|(S3 
ε , Wε)$ε | � 

∂W±
� 
k(ε + |x1|) 

∂ξ2 

� 
W ± 

1/2 

−2δt/εdt(ε + t)2 e 

f 
Z 

; L2($ε)k + εk(ε + |x1|) ; L2($ε)k k(ε+|x1|)−1Wε; L2($ε)k 

� c 

0 B@ 
1 
2 

1 CA 3 
2krWε; L2($ε)k � cε . 

0 

Above, obviously, we take the positive constant δ to be 2π/H, cf. Proposition 1, 
and we note that the last integral has been computed to obtain the bound. With 

− XεVεmthe same argument on the exponential decay of Vεm 
mat, one derives thatin 

|(S5 
ε , Wε)$ε | � cε 3 2 . 

Moreover, the supports of the coeÿcients ∂x1 X and �X in the commutator [�, X ] 
are contained in the set $ε \ {1/6 < |x1| < 1/3} while the above-mentioned decay 
brings the estimate 

−2δ/(3ε)|(S4 
ε , Wε)$ε | � ce . 

Revisiting the obtained estimates we fnd the worst bound cε3/2 , and this shows 
(78). 

The fact that the constants εm and cm of the statement of the theorem are in-
dependent of η follows from the independence of η of the above inequalities throug-
hout the proof. Indeed, we use formulas (53) and (69) for the boundedness of 
U0 and �1 (η), while we note that the fact that kU1 ; H1($ε)k is bounded by am m m 

constant independent of η follows from the defnition of the solution of (58) with 
the quasi-periodic boundary conditions (13)-(14). Further specifying, the change 

−iηy1V = U1 e converts the Laplacian into the di�erential operator m � ∂ �� ∂ � ∂2 

− + iη + iη − , (92)
∂y1 ∂y1 ∂y2 

2 

and therefore, performing this change in (58), gives the solution V 2 H1 ($0).per 

Then, as a consequence of the variational formulation of the problem for V in the 
set of spaces L2($0) ˆ H1 ($0), the bound of kU1 ; H1($ε)k independently ofper m 

η 2 [−π, π] holds true. Hence, the proof of Theorem 5.1 is completed. � 

Proof of Corollary 1. Due to the continuity of the function (17), the maximum 
and minimum of �ε (η) for η 2 [−π, π] are achieved at two points η± ε,m 2 [−π, π].m 

These extremes, the endpoints, Bε±(m) satisfy (68). Also (68) is satisfed for η = 
±π. 

In order to show (71) for the maximum Bε+(m), we consider η = η+ to be π or 
−π in such a way that �1(η+) = B0(m) + |B1(m)|. Then, we write 

�0 + εB0(m) + ε|B1(m)| − cmε3/2 � �ε (η+) � �0 + εB0(m) + ε|B1(m)| + cmε3/2 
m m m 

and 

ε3/2�0 + ε�1 (η+ ε3/2 � �ε (η+ + ε�1 (η+ .m m ε,m) − cm m ε,m) � �0 
m m ε,m) + cm 
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Consequently, from (69), we derive 

�0 + εB0(m) + ε|B1(m)| − cmε3/2 � �ε (η+) � �ε (η+ 
m m m ε,m) 

� �0 + εB0(m) + ε|B1(m)| + cmε3/2 ,m 

which gives (71) for Bε+(m). 
We proceed in a similar way for the minimum Bε−(m) and η = η− such that 

�1(η−) = B0(m)−|B1(m)| and we obtain (71). Obviously, this implies that Bε±(m) 
belong to the interval h i 

�0 + εB0(m) − ε|B1(m)| − cmε3/2 , �0 + εB0(m) + ε|B1(m)| + cmε3/2 
m m 

Therefore, the whole band Bε is contained in the interval above whose length ism 

2ε|B1(m)| + O(ε3/2) and the corollary is proved. � 

Proof of Theorem 5.2 This proof holds exactly the same scheme of Theorem 5.1. 
Indeed, for each l = 0, · · · , κm − 1 we follow the reasoning in (74)-(80) and we 
deduce (cf. (79) and (23)) that for each l, and for a εm,l > 0, the estimate 

�ε − ε�1(η) − �0 
m+l(η) � Cm,lε

3/2 (93)p m 

is satisfed for a certain natural p� p(l) and Cm,l independent of ε 2 (0, εm,l]. Due to 
the convergence with conservation of the multiplicity (62), the only possible eigen-
values �ε(η) of problem (11)-(14) satisfying (93) are the set {�ε (η)}l=0,··· ,κm−1.p m+l 

Then, it suÿces that there are κm linearly independent eigenfunctions associated 
with the eigenvalues {�ε (η)}l=0,··· ,κm−1 in (93), to deduce the result of the theo-p(l) 

rem. 
We use a classical argument of contradiction (cf. [15, 24]). We consider the set 

of functions {Uε (x; η)}l=0,··· ,κm−1, constructed in (84), and we verify that theym+l 

satisfy almost orthogonality conditions 

m+l; H
1,η ε1/2kUε ($ε; �ε)k � cem and hUmε +l , Umε +l0 i � Ce m , with l =6 l0 ,per 

(94) 

for certain constants ecm and Ce m. Indeed, the frst inequality above is a consequence 
of (77), for l = 0, · · · , κm − 1, while the second one follows from the orthogonality 
of the set of eigenfunctions {U0 (x, η)}l=0,··· ,κm−1 and the defnitions (81)-(85).m+l e ; H1,ηThen, we defne Uε = Uε kUε ($ε; �ε)k−1 and consider Wε the m+l m+l m+l per m+l 

projection of T ε(η)Ueε − tε (η)Ueε in the space of the eigenfunctions of T ε(η)m+l m m+l 

associated with all the eigenvalues {�ε (η)}l=0,··· ,κm−1 in (93) for certain constants p(l) 

Cm,l, and more precisely, satisfying 

(1 + �ε (η))−1 − (1 + �0 + ε�1 
m+l(η))−1 � ecmε3/2 . (95)p(l) m 

for a constant ecm that we shall set later in the proof, cf. (79) and defnitions 
(74)-(76) for the operator T ε(η) and the “almost eigenvalue” tε (η). Then, we show m 

Wfε Umε +l; H
1,η � e m+l − e ($ε; �ε) Cm, (96)per 

Wε = Wε ; H1,η −1where f kWε ($ε; �ε)k−1 , and Ce m = 2ec max0�l�κm−1 Cl,m. m+l m+l m+l per m 

This is due to the fact that e 
m+l; H

1,η −1Umε +l −Wε 
per($ε; �ε) � ecm max Cl,m, 

0�l�κm−1 
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and some straightforward computation (cf., eg., Lemma 1 in Ch. 3 of [26]). Now, 
from (94) and (96) and straightforward computations we obtain 

hWf mε +l , Wf mε +l0 i � 5Ce m with l 6= l0 , (97) 

and this allows us to assert that set {Wfε }l=0,··· ,κm−1 defnes κm linearly inde-m+l 

pendent functions. Indeed, to prove it, we proceed by contradiction, by assuming 
that there are constants αε

l di�erent from zero such that 

κmX−1 

αεWfε = 0.l m+l 

l=0 

Let us consider α�,ε = max0�l�κm−1 |αε| and assume, without any restriction thatl 

α�,ε = αε 
0. Then, we write 

κmX−1 
αε 
lhWfε , Wfε i � 

αε hWfε Wfε i � (κm − 1)5Ce m.m m m+l, m 
0l=1 

Now, setting (κm − 1)5Ce m < 1 gives a contradiction, since the left hand side takes 
the value 1, cf. (97). In this way, we also have fxed ecm in (95). 

WεThus, {f }l=0,··· ,κm−1 defne κm linearly independent functions, which obvi-m+l 

ously implies that they are associated with κm eigenvalues; hence {�ε (η)}l=0,··· ,κm−1p(l) 

coincides with {�ε (η)}l=0,··· ,κm−1 and this concludes the proof of the theorem. m+l 

� 
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