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Abstract. In this article we prove results concerning the decay and 
first order asymptotic behaviour of solutions to a system of equations 
that model heat transfer in a porous medium by an incompressible flow 
with fractional dissipation. 

1. Introduction and statement of results 

Recently, Castro, Córdoba, Gancedo and Orive [6] introduced a system of 
equations to model heat transfer by an incompressible fluid in a porous 
medium with fractional dissipation. The transport velocity is given by 
Darcy’s law ( )

v = −k ∇p + gT eN , 
where v ∈ RN is the liquid discharge (flux per unit area), p is the pressure, 
k is the matrix position-independent medium permeabilities in the different 
directions respectively divided by the viscosity, T is the liquid temperature, g 
is the acceleration due to gravity and the vector ϵN ∈ RN is the last canonical 
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vector. While the Navier–Stokes equation and the Stokes equation are both 
microscopic equations, Darcy’s law yields a macroscopic description of a flow 
in the porous medium [2]. To simplify the notation, we consider k = g = 1. 

Then, this model leads to the system 
∂T 

+ v · ∇T = −νΛ2αT 
∂t 

v = −(∇p + TeN ) 
div v = 0 

T0(x) = T (x, 0), (1.1) 
1 

with ν > 0 and the operator Λ given by Λ ≡ (−∆) 2 , for 0 ≤ α ≤ 1. To 
simplify notation, we will choose ν = 1. Castro et al [6] proved existence of 
strong and weak solutions in different spaces for the supercritical (0 < α < 
1 1 
2 ), critical (α = 2 ) and subcritical (12 < α ≤ 1) cases. They also obtained 
some results on blowup of solutions and existence of global attractors. For 
other results about (1.1), see the work of Xiang and Yan [25], Xue [26], 
Yamazaki [27] and Yuan and Yuan [28]. For results concerning the inviscid 
case, i.e., ν = 0 in (1.1), see D. Córdoba, Gancedo and Orive [8], [9]. 

Concerning the decay of weak solutions to (1.1), Castro et al [6] proved 
that for T0 ∈ Lp(RN ) ( )− N(p−2) 

∥T (t)∥Lp ≤ ∥T0∥Lp 1 + Ct 4pα , (1.2) 
with 2 ≤ p < ∞, α ∈ [0, 1] and C = C(α, p). Note that when p = 2, this 
establishes a maximum principle but provides no information on decay rates. 
A second result concerning decay can be deduced from a Corollary proved 
by A. Córdoba and D. Córdoba (Corollary 2.6, [7]) in dimension N = 2. 
This leads to ( )− p−1 

∥T (t)∥Lp ≤ ∥T0∥Lp 1 + Ct pα (1.3) 
provided T0 ∈ L1 ∩ Lp, with 1 < p < ∞, α ∈ [0, 1] and C = C(α, ∥T0∥L1 ). 

The main goal of this article is to complement and extend these results 
for ∥T (t)∥L2 and to obtain estimates for the decay of the difference between 
the solution and its linear part. 

The first two results describe the behaviour of the L2 norm when the 
initial data is in L2 only: the norm decays to zero, but with no uniform rate. 

Theorem 1.1. Let 0 < α ≤ 1. For any weak solution to (1.1) with T0 ∈ 
L2(RN ) 

lim ∥T (t)∥L2 = 0. 
t→∞ 
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Theorem 1.2. Let t ∗ > 0, r > 0, ϵ > 0 be arbitrary, 0 < α ≤ 1. Then there 
exists T0 ∈ L2(RN ) with ∥T0∥L2 = r such that 

∥T (t ∗)∥L2 ≥ 1 − ϵ. 
∥T0∥L2 

Theorem 1.2 is proved by choosing Tf0 ∈ L2(RN ) which is also in Lp(RN )∩ 
λ 

Lq(RN ), for appropriate p, q > 2 and scaling it to T0 = Tf0 with large λ, 
leaving its L2 norm invariant. For this rescaled initial data, the arbitrarily 
slow decay is obtained by estimating the linear and nonlinear terms in the 
integral equation associated to (1.1). For proving Theorem 1.1 we use the 
Fourier Splitting method, developed by M.E. Schonbek [18], [19], [20]. This 
method consists in obtaining a differential inequality on the L2 norm of T (t), 
which depends on the behaviour of small frequencies of Tb(t), for large t. 

We now extend and complement the results in (1.2) and (1.3). 

Theorem 1.3. Let T0 ∈ Lp(RN ) ∩ L2(RN ), 1 ≤ p < 2, and let 0 < α ≤ 1. 
Then for any weak solution to (1.1) ( )− N 

( 
2 

)
∥T (t)∥L2 ≤ C 1 + t 4α p −1 

, t > 0 ( )
where C = C α, ∥T0∥Lp . 

The proof of this Theorem is again based on the Fourier Splitting method. 
The fact that the initial data is in Lp(RN ) ∩ L2(RN ), 1 ≤ p < 2 provides the 
estimates needed to obtain uniform decay, as opposed to the non-uniform 
one of solutions in Theorem 1.2. 

We note that Theorems 1.1 and 1.2 provide substantially more informa-
tion about the decay than the estimate (1.2) with p = 2, which only gives a 
maximum principle. The hypotheses on T0 in Theorem 1.3 are less restric-
tive than those needed to obtain (1.3) and moreover, Theorem 1.3 holds in 
dimension N ≥ 2, as opposed to just N = 2. 

We address now the decay of the Lp norm of T and its derivatives, for 
1 ≤ p ≤ ∞. 

1Theorem 1.4. Let T0 ∈ L1(RN ) ∩ L 2α
N 
−1 (RN ) with < α ≤ 1 and N ≥ 2.2 

Then for a solution T to (1.1) ( )
N 1− 1 

pt 2α ∥T (t)∥Lp ≤ C∥T0∥L1 , 1 ≤ p ≤ ∞. (1.4) 
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1Theorem 1.5. Let T0 ∈ L1(RN ) ∩ L 2α
N 
−1 (RN ) with < α ≤ 1 and N ≥ 2.2 

If k ∈ NN , then for a solution T to (1.1) ( )
|k| N+ 1− 1 

2α pt 2α ∇kT (·, t) ∈ BC(0, ∞; Lp(RN )), 

and, in particular, ( )
|k| N+ 1− 1 
t 2α 2α p ∥∇kT (t)∥Lp ≤ C∥T0∥L1 , (1.5) 

for 1 ≤ p ≤ ∞. 

The proof of Theorem 1.4 is based on an argument by Kato [12] (see also 
Carrillo and Ferreira [5] for the case of the dissipative quasigeostrophic equa-
tion), in which an iterative differential inequality is obtained for ∥T (t)∥Lp 

and ∥T (t)∥ p . We prove this Theorem by solving the inequality by induction 
L 2 

on p = 2n and then interpolating. Theorem 1.5 is also proved by induction, 
the key point being an estimate obtained for Λh∇kT , for h < 1, in terms of 
the decay for ∇kT . 

Finally, we state the results concerning first order decay of solutions. 

1Theorem 1.6. Let T0 ∈ L1(RN ) ∩ L 2α
N 
−1 (RN ) with < α ≤ 1, N ≥ 2 and2 

k ∈ NN . Then 
(1) For a solution T to (1.1) and the kernel ∫ 

ixξ −|ξ|2α 
Kα(x, t) = 

1 
e e t dξ, 

2π RN 

we have ( )
|k|+1− − N 1− 1 
2α 2α p∥∇kT (·, t) −∇kKα(t) ∗ T0∥Lp ≤ Ct 

for t > 1, except in the case α = 1 and N = 2. 
(2) For α = 1 and N = 2, i.e., T0 ∈ L1(R2) ∩ L2(R2), and T a solution 

to (1.1) ( )
|k|+1− − 1− 1 

p∥∇kT (·, t) −∇kK(t) ∗ T0∥Lp ≤ C(1 + t) 2 ln(1 + t) 

for t > 1, where K(x, t) denotes the heat kernel. 
Now, let T1 be the integral solution to the non-homogeneous heat equation 

∂T1 ( )
+ H[K(t) ∗ T0] · ∇ K(t) ∗ T0 − ∆T1 = 0 

∂t 
T1(x, 0) = T0(x), x ∈ R2 , (1.6) 
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where the operator H is defined in (2.1) and K is the heat kernel in R2 . 
Then 

(3) For α = 1 and N = 2, i.e., T0 ∈ L1(R2) ∩ L2(R2), and T a solution 
to (1.1) ( )

|k|+1− −
2 p∥∇kT (·, t) −∇kT1(·, t)∥Lp ≤ Ct 1− 1 

for t > 1 and where T1(x, t) is solution of (1.6). 

This Theorem provides information on the decay of the first order term of 
solutions to (1.1), i.e., the decay of the difference between the full solution to 
(1.1) and its linear part. From (1) in the Theorem, we see that the first order 
term decays faster than the linear part, cf. Lemma 3.2. However, in (2), i.e., 
for in the case α = 1 and N = 2, we obtain a decay which is slower than that 
of the linear part. Thus, in part (3) we introduce a natural corrector term 
T1, such that the corrected first order term, i.e., the difference between the 
full solution and the corrector, again decays faster than the linear part. The 
proof Theorem 1.6 is based on estimates obtained as a result of Theorem 
1.5. 

This article is organized as follows. In Section 2 we provide a new proof of 
the existence of weak solutions to (1.1), following the ideas of Resnick [17]. 
We do so because the approximate solutions of Castro et al [6], obtained by 
parabolic regularization with a term of the form ϵ∆T , are not suitable for 
using the Fourier Splitting method. Then, in Section 3 we collect estimates 
concerning the linear part of (1.1) and the Calderón-Zygmund kernel that 
relates v to T . We then prove Theorems 1.1 and 1.2. In Section 4 we prove 
Theorem 1.3 and in Section 5 we prove Theorems 1.4, 1.5 and 1.6. 

2. Existence of weak solutions 

In this section we prove existence of weak solutions to (1.1). We regularize 
the equation by mollifying the nonlinear term and we then obtain regular, 
approximate solutions Tm, which are shown to converge to a weak solution T 
through energy estimates. Castro et al [6] proved existence of weak solutions 
by regularizing with a parabolic term of the form ϵ∆T . However, in this 
case the use of the Fourier Splitting Method for proving decay may lead to 
technical complications due to the simultaneous presence of the dissipative 
terms Λ2αTm and ∆Tm. As a result of this, we prefer to give a different proof 
of existence of solutions that will allow us to later use the Fourier Splitting 
Method in a clear manner. 
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Namely, we use a mollifier in time ψδ to regularize the advective term 
(v · ∇)T in such a way that ψδ(v) depends on the values of v, hence of 
T , at past times t − s, with t − 2δ < t − s < t − δ. Then, on strips 

τSk = RN × (kδ, (k + 1)δ), with δ = and k = 0, · · · ,m − 1, the equationm 
becomes linear. We glue solutions to these linear equations on the strips Sk 
to obtain an approximate solution Tm in RN × [0, τ ], which, through energy 
estimates, we prove to be convergent to a weak solution T . 

We introduce now the definition of weak solutions. 

Definition 2.1. A function 

T = T (x, t) ∈ L∞(0, τ ; L2(RN )) ∩ L2(0, τ ; Hα(RN )) 

is a weak solution to (1.1) if for all ϕ ∈ C∞(RN × [0, τ))c ∫ τ ( )
⟨T (t), ϕ(t)⟩ − ⟨T0, ϕ(0)⟩ + − ⟨T, ∂tϕ⟩ + ⟨T, Λ2αϕ⟩ − ⟨T v, ∇ϕ⟩ ds = 0. 

0 

We now find an explicit expression for the kernel that allows us to obtain 
v in terms of T . The incompressibility condition and Darcy’s Law lead to 

∂T −∆p = 
∂xN 

which, after taking the inverse of the Laplacian implies that ( )
v = H[T ] = − − 

∂ ∇∆−1 + eN T. 
∂xN 

Integrating by parts, we obtain ∫ 
N − 1 

H[T ](x, t) = − T (x, t) eN + PV HN (x − y)T (y, t) dy, x ∈ RN ,
N 

RN 

(2.1) 
where ∑( 2 2 )1 (N − 1)x − =N xN x1xN N x2xN N j ̸ j

HN (x) = −
|x|N+2 , |x|N+2 , · · · , |x|N +2 ,

SN−1 

for any N ≥ 2 and SN−1 = 2πN/2/Γ(N/2) is the surface area of the unit ball 
in RN . Then, the Calderón-Zygmund Theorem leads to the estimate 

∥v∥Lp ≤ C∥T ∥Lp , 1 < p < ∞. (2.2) 
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We now describe the retarded mollifier used to regularize (1.1). Let ψ ∈ 
C∞(R+) such that ∫ ∞ 

ψ ≥ 0, supp ψ ⊆ [1, 2] and ψ(s)ds = 1, 
0 

and set, for t > 0, ∫ ∞ 
ψδ[f ](t) = ψ(τ)fe(t − δτ )dτ 

0 

where for a given function f = f(x, t), with x ∈ RN and t ∈ [0, τ ] we have { f(x, t) x ∈ Rn, t ∈ [0, τ ]ef(x, t) = 
0 elsewhere. eNote that ψδ[f ](t) depends on the values of f(s), with t − 2δ < t − s < t − δ. 

For any τ > 0, given δ = τ we obtain from (1.1) a sequence of regularized m 
equations 

∂Tm ( )
+ ψδ[vm] · ∇ Tm + Λ2αTm = 0, Tm(x, 0) = T0(x), (2.3)

∂t 
where vm = H[Tm], for H the operator defined in (2.1). Note also that as 
the mollifier acts on the time variable only, the incompressibility condition 
leads to ∇ · ψδ[vm] = 0. On every strip Sk = RN × [kδ, (k + 1)δ], we can 
solve the linear equation (2.3) and then glue them together to obtain an 
approximate solution Tm. 

In the following Proposition we address the existence of solutions to a 
linear problem. 

Proposition 2.2. Let w ∈ L∞(0, τ ; L2(RN )) with ∇ · w = 0 and T0 ∈ 
L2(RN ). Then there exists a unique function T such that 

T ∈ C(0, τ ; L2(RN )) ∩ L2(0, τ ; Hα(RN )) 

and is a weak solution to 
∂T ( )

+ w · ∇ T + Λ2αT = 0, T (x, 0) = T0(x). (2.4)
∂t 

A detailed proof of this Proposition can be found in Niche and Planas 
[15]. 

If T ∈ L∞(0, τ ; L2(RN )), then ψδ[T ] ∈ L∞(0, τ ; L2(RN )), hence by (2.2) 
we have ψδ[v] ∈ L∞(0, τ ; L2(RN )). So, by Proposition 2.2 we have solutions 
on each strip Sk, which glued together provide solutions Tm to (2.3). 
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Theorem 2.3. Let T0 ∈ L2(RN ). Then, for any 0 < α ≤ 1, there exists a 
weak solution to (1.1). 

Proof. Let {Tm}m∈N be a sequence of approximate solutions, as described 
in the last paragraph. Multiplying by Tm and integrating in space and then 
in time we obtain ∫ t 

∥Tm(t)∥2 + ∥Λ2αTm(s)∥L 
2 
2 ds ≤ ∥T0∥2 

L2 L2 
0 

which implies that we can extract a subsequence, which we again call Tm, 
that converges weakly-∗ in L∞(0, τ ;L2(RN )) and weakly in L2(0, τ ; Hα(RN )). 

First, let N = 2. Let ϕ ∈ C∞(R2 × [0, τ)). Then, as 2α < 2 + ϵ, we have c 

|⟨Λ2αTm, ϕ⟩| = |⟨Tm, Λ2αϕ⟩| ≤ ∥Tm∥L2 ∥Λ2αϕ∥L2 

≤ ∥Tm∥L2 ∥ϕ∥H2α ≤ ∥Tm∥L2 ∥ϕ∥H2+ϵ , 

so in any bounded open ball Ω ⊂ supp ϕ, we have 

∥Λ2αTm∥H−(2+ϵ)(Ω) ≤ ∥Tm∥L2 ≤ C 
independently of m. Similarly we have that 

⟨ψδ[vm]Tm, ∇ϕ⟩ ≤ ∥ψδ[vm]∥L2 ∥Tm∥L2 ∥∇ϕ∥L∞ 

≤ ∥vm∥L2 ∥Tm∥L2 ∥∇ϕ∥L∞ ≤ C∥∇ϕ∥L∞ ≤ C∥∇ϕ∥H1+ϵ , 

where we used the embedding H1+ϵ(Ω) ⊂ L∞(Ω) (which is valid only when 
∂TmN = 1, 2) , we conclude from (2.3) that is in L2(0, τ ; H−(2+ϵ)(Ω)), as( ) ∂t 

both Λ2αTm and ψδ[vm] · ∇ Tm are. By the Aubin-Lions Compactness 
Lemma (see Th. 2.1, Chapter 3 in Temam [23]), there exists a subsequence 
Tm that converges strongly in L2(0, T ; L2(Ω)). Passing to the limit in the 
weak formulation of (2.3) we obtain a weak solution T . 

Now, let N ≥ 3. As before, consider ϕ ∈ C∞(R2 × [0, τ)) and let r ≥ N ≥c 2 
α. Then 

|⟨Λ2αTm, ϕ⟩| ≤ ∥ΛαTm∥L2 ∥Λαϕ∥L2 ≤ ∥ΛαTm∥L2 ∥ϕ∥Hα ≤ ∥ΛαTm∥L2 ∥ϕ∥Hr 

which leads to ∥Λ2αTm∥H−r(Ω) ≤ ∥ΛαTm∥L2 where Ω ⊂ supp ϕ is a bounded ( )
open ball. Then Λ2αTm ∈ L2 0, τ ; H−r . Now we have ( )
⟨ ψδ[vm] · ∇ Tm, ϕ⟩ = ⟨ψδ[vm]Tm, ∇ϕ⟩ ≤ ∥ψδ[vm]∥L2 ∥∇ϕ∥ N ∥Tm∥ 2N . 

L α N−2αL 

As N > 2α, 
∥Tm∥ 2N ≤ ∥Tm∥Hα , 

L N−2α 
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where we have used a fractional Sobolev Embedding (cf. Theorem 6.7 in 
Di Nezza, Palatucci and Valdinoci [14]). Moreover, our choice of r implies, 
again due to a Sobolev Embedding, that Hr−1 is continuosly embedded in 

N 
L α , so 

∥∇ϕ∥ N ≤ ∥∇ϕ∥Hr−1 ≤ ∥ϕ∥Hr . 
L α 

Then ( )
⟨ ψδ[vm] · ∇ Tm, ϕ⟩ ≤ ∥ψδ[vm]∥L2 ∥∇ϕ∥Hα ∥Tm∥Hr ≤ ∥Tm∥L2 ∥ϕ∥Hr ∥Tm∥Hα ( ) ( )
which implies that ψδ[vm] · ∇ Tm ∈ L2 0, τ ; H−r . As before, by using 
the Aubin-Lions Compactness Theorem we obtain a subesquence Tm that( )
converges strongly in L2 0, τ ; L2(Ω) . This allows us to pass to the limit in 
(2.3), thus obtaining a weak solution T . � 

Remark 2.4. The solution just obtained need not be unique. However, it 
is unique for 1 < α ≤ 1 amongst those in2 

T ∈ C(0, τ ; L2(RN )) ∩ L2(0, τ ; Hα(RN )) ∩ Lp(0, τ ; Lq(RN )) 

where q > N and p = α , see Castro et al [6].2α−1 α− N − 1 
2q 2 

3. Non-uniform decay 

In this section we address the long time behaviour of solutions when the 
initial data T0 is just in L2 . We first list results and estimates we need in 
order to prove that the L2 norm tends to zero, but with no uniform rate. 

The following Lemma provides decay rates for the kernel Kα. 

Lemma 3.1. (M. E. Schonbek and T. Schonbek [21]) Let β, γ be multi-
indices such that |γ| < |β| + 2α max(j, 1), j = 0, 1, 2, · · · , 1 ≤ p ≤ ∞. Then ( )

|γ|−|β|
j −j− N 1− 1 

∥x γ ∂t ∇βKα(t)∥Lp = Ct 2α 2α p 

for some constant C depending only on α, β, γ, j, p, N . 

In order to obtain the asymptotic behaviour of the solution T , we need 
some estimates on the solution to the corresponding linear equation. 

Lemma 3.2. (Carrillo and Ferreira [5]) Let β be a multi-index in in NN . 
Then, given T0 ∈ Lr(RN ) and 1 ≤ r ≤ p ≤ ∞, ( )

|β| 1 − 1 
∥∇β Kα(t)T0∥Lp ≤ Ct− 

2α − 
2 
N
α r p ∥T0∥Lr (3.1) 

for some constant C depending only on α, β, p, N . 
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3.1. Decay to zero of the L2 norm of solutions. In order to study the 
decay of solutions to (1.1) we use the Fourier Splitting method, developed 
by M.E. Schonbek to prove decay of energy for solutions to parabolic con-
servation laws [18] and to Navier-Stokes equations [19], [20]. The idea of the 
method is to obtain a differential inequality for the value of the L2 norm at 
large times, in terms of the behaviour of the small frequencies of solutions. 

We proceed formally, assuming the solutions are regular. After multiply-
ing (1.1) by T , integrating in space and applying the Fourier transform, we 
obtain ∫ ∫ 

d |Tb|2 dξ = −2 |ξ|2α|Tb|2 dξ. (3.2)
dt RN RN 

We then choose { }r ′ (t)
B(t) = ξ ∈ RN : |ξ|2α ≤ 

2 r(t) 
where r(t) is a positive, increasing function, with r(0) = 1 and r(t) ≥ 1. 
Substituting in (3.2) we get ∫ ∫ ∫ 

|ξ|2α|Tb|2 dξ = |ξ|2α|Tb|2 dξ + |ξ|2α|Tb|2 dξ 
RN B(t) B(t)c ∫ 

r ′ (t) 
∫ 

≥ |ξ|2α|Tb|2 dξ + |Tb|2 dξ 
2 r(t)B(t) B(t)c 

which after multiplying by r(t) and integrating leads to the main inequality ∫( ) (∫ )d 
r(t) |Tb(t)|2 dξ ≤ r ′ (t) |Tb(t)|2 dξ . (3.3)

dt RN B(t) 

Proof of Theorem 1.1. We first prove the Theorem for N ≥ 3, 0 < α ≤ 1 
and N = 2, 0 < α < 1. Assume the solution T is regular. We note that 

| \ ≤ ∇(Tv)(s)| = |ξ|| c Tv∥L∞v · ∇T (s)| | \ Tv| ≤ |ξ|∥ c 

≤ |ξ|∥Tv∥L1 ≤ |ξ|∥v∥L2 ∥T ∥L2 ≤ C|ξ|∥T ∥2 
L2 , (3.4) 

where we used (2.2). From an integral solution to (1.1) ∫ t 
−|ξ|2αt c −|ξ|2α(t−s) \Tb(ξ, t) = e T0(ξ) + e v · ∇T (s) ds (3.5) 

0 

after using (3.4) and ∥T (t)∥2 ≤ C we obtain
L2(RN ) ∫ ∫ ( (∫ t )2)

|Tb(ξ, t)|2dξ ≤ C |e−|ξ|2αtTc0(ξ)|2 + | \ dξv · ∇T (s)| ds 
B(t) B(t) 0 
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≤ C |e−|ξ|2αtTc0(ξ)|2 dξ + C |ξ|2 ∥T (s)∥2 

L2 ds dξ 
B(t) B(t) 0 ( )N+2 (∫ t )2r ′ (t)≤ C∥Kα(t)T0∥2 + C 2α ∥T (s)∥L 

2 
2 dsL2 

2 r(t) 0 ( )N +2 r ′ (t) 2α≤ C∥Kα(t)T0∥2 + Ct2 , (3.6)L2 
2 r(t) 

where Kα(t)T0 is the solution to the fractional heat equation with initial 
data T0. Taking r(t) = (t + 1)N and substituting (3.6) in (3.3), we obtain 

d ( ) ( )
(t + 1)N ∥T (t)∥2 ≤ C(t + 1)N−1 ∥Kα(t)T0∥2 + (t + 1)2− N+2 

L2 L2 2α 
dt 

which leads to ∫ t 
∥T (t)∥L 

2 
2 ≤ ∥T0∥2 

L2 (t + 1)−N + C(t + 1)−N (s + 1)N−1∥Kα(s)T0∥L 
2 
2 ds 

0 

2α+(t + 1)2− N +2 
. 

As 
lim ∥Kα(t)T0∥2 = 0L2 
t→∞ 

and we have N ≥ 2 and α < 1, we obtain the result for smooth solutions. 
This same argument applies to the regularized solutions Tm in (2.3) and we 
then obtain the same estimate for Tm. This estimate is independent of m, 
so semicontinuity of the norm implies it holds a.e. in t for weak solutions T , 
then for all time because T is in Cw(R+, L

2). For full details concerning this 
argument, see pages 267–269 in Lemarié-Rieusset [13] and the appendix in 
Wiegner [24]. 

We address now the case N = 2 and α = 1. We use the same ideas, but 
with a variation due to Kajikiya and Miyakawa [11]. As 

(v\· ∇)T ≤ ∥(v\· ∇)T ∥L∞ ≤ ∥(v · ∇)T ∥L1 

≤ ∥v∥L2 ∥∇T ∥L2 ≤ C∥T ∥L2 ∥∇T ∥L2 ≤ C∥∇T ∥L2 , 

then ∫ t ∫ t 
2

(v\· ∇)T ds ≤ C ∥∇T ∥L 
2 
2 ds ≤ C 

0 0 

as the solution T is in L∞((0, T ), L2) ∩ L2((0, T ),H1), as α = 1. Then ∫ 
r ′ (t)|Tb(ξ, t)|2 dξ ≤ C∥Kα(t)T0)∥L2 + C . 
r(t)B(t) 
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Taking r(t) = (t + 1)µ, with 0 < µ < 1, we have 
d ( ) ( )

(t + 1)µ∥T (t)∥2 ≤ Cµ(t + 1)µ−1 ∥Kα(t)T0∥2 + µ(t + 1)−1 
L2 L2 

dt 
so ∫ t 
∥T (t)∥2 ≤ C(t+1)−µ+C(t+1)−µ (s+1)µ−1∥Kα(s)T0∥2 

L2 ds+Cµ
2 ≤ Cµ2 .L2 

0 

So 
lim sup ∥T (t)∥L2 ≤ Cµ2 

t→∞ 
for all 0 < µ < 1, which proves the result for smooth solutions. An argument 
similar to the one before extends the result to weak solutions. � 

3.2. Non-uniform decay. Proof of Theorem 1.2: We follow the idea of 
M.E. Schonbek [21] and Niche and M.E. Schonbek [16] for the Navier-Stokes 
and dissipative quasi-geostrophic equations respectively. Given a smooth T0 
with ∥T0∥L2 = r, we will construct a scaled T λ with the same norm such 0 
that for arbitrary t ∗ , the linear part of the integral solution ∫ t ∗ ( )

λT λ(x, t ∗ ) = Kα(t ∗ ) ∗ T0 
λ(x) − Kα(t ∗ − s) ∗ v · ∇ T (s) ds (3.7) 

0 

has L2(RN ) norm arbitrarily close to that of T λ and such that the integral 0 
term has arbitrarily small L2(RN ) norm. In order to obtain this second 
condition estimate, we will have to choose T0 in Lp(RN ) ∩ Lq(RN ), for some 
p, q > 2 to be determined later. 

N 
∥T λGiven T0 ∈ L2(RN ), let T0 

λ(x) = λ 2 T0(λx). Clearly, ∥T0∥L2 = 0 ∥L2 . 
Now, if Θ(x, t) is the solution to 

Θt + Λ2αΘ = 0, Θ0(x) = T0(x), (3.8) 

then Θλ(x, t) = λ 
N 
2 Θ(λx, λ2αt) is the solution to (3.8) with initial data 

Θλ 
0 (x) = T0 

λ(x) = λ 
N 
2 T0(λx). But now ∫ ∫ 

∥Θλ(t)∥2 = |Θλ(x, t)|2 dx = λN |Θ(λx, λ2αt)|2 dxL2 
RN RN ∫ ∫ 

= |Θ(y, λ2αt)|2 dy = e −2|ξ|2αλ2αt|Tb0(ξ)|2 dξ. 
RN RN 

Then for the given arbitrary t ∗ > 0 ∫ −2|ξ|2αλ2αt ∗ ∥Θcλ(t ∗)∥2 e |Tb0(ξ)|2 dξL2 RN 
lim = lim ∫ = 1. (3.9) 
λ→0 λ→0∥Θc0∥2 |Tc0(ξ)|2 dξ

L2 RN 
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So for a small enough λ > 0, we can make this ratio as close to one as we 
want, regardless of t ∗ > 0. 

We now address the integral term in (3.7). If T0 in Lp(RN ) ∩ Lq(RN ) with 
1 1 1 = + , for p, q ̸= ∞ we have that2 p q 

λ∥Kα(t ∗ − s) ∗ (v · ∇)T λ(s)∥L2 = ∥∇Kα(t ∗ − s) ∗ (v λT λ)(s)∥L2 

≤ ∥∇Kα(t ∗ − s)∥L1 ∥(v λT λ)(s)∥L2 

≤ C(t ∗ − s)− 
2
1 
α ∥v λ(s)∥Lp ∥T λ(s)∥Lq 

≤ C(t ∗ − s)− 
2
1 
α ∥T λ(s)∥Lp ∥T λ(s)∥Lq 

≤ C(t ∗ − s)− 
2
1 
α (s + 1)− 

4 
N
α ∥T0 

λ(s)∥Lp ∥T0 
λ(s)∥Lq 

≤ C(t ∗ − s)− 
2
1 
α (s + 1)− 

4 
N
α λ 

N 
2 ∥T0(s)∥Lp ∥T0(s)∥Lq , 

where we have used Lemma 3.1, (2.2), the Maximum Principle (1.2) and the 
scaling ( )

∥T0 
λ∥Lp = λN 

2
1 − 

p 
1 
∥T0∥Lp , 1 ≤ p < ∞. 

Then ∫ t ∗ ( ) ( )1− 1 Nλ ∗ ∥Kα(t ∗ − s) ∗ v · ∇ T (s)∥L2 ds ≤ C t 2α λ 2 ∥T0(s)∥Lp ∥T0(s)∥Lq . 
0 

(3.10) 
So for any ϵ > 0, t ∗ > 0, we can find λ > 0 such that by (3.9) 

∥Kα(T ) ∗ T0 
λ∥L2 ϵ ≥ 1 − 

∥T λ 20 ∥L2 

and by (3.10) ∫ T λ∥Kα(T − s) ∗ (v · ∇)T λ(s)∥L2 ds ϵ0 ≤ . 
∥T λ 

0 ∥L2 2 

Then 
∥T λ(T )∥L2 ≥ 1 − ϵ. 
∥T λ∥L20 

which proves the Theorem. � 

4. Uniform decay 

In this section we prove uniform decay of solutions, provided the initial 
data is in Lp(RN ) ∩ L2(RN ), 1 ≤ p < 2. We again use the Fourier Splitting 
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Method, as in Section 3.1. Due to technical reasons, we address separately 
the cases N = 2 and N ≥ 3. 

We will need the following Lemma. 

Lemma 4.1. (Niche and M. E. Schonbek [16]) Let h ∈ Lp(RN ), 1 ≤ p < 2 
and let S(t) = {ξ ∈ RN : |ξ| ≤ g(t)− 

2
1 
α }, for a continuous function g : R+ → 

R+ . Then ∫ 
− N ( 2 −1)

2α|ĥ|2dξ ≤ Cg(t) p . 
S(t) 

4.1. Decay with N = 2. From the integral solution (3.5) ∫ t 
−|ξ|2αt c −|ξ|2α(t−s) \Tb(ξ, t) = e T0(ξ) + e v · ∇T (s) ds 

0 

and using (3.4), we obtain the estimate ∫ t 
| \ |Tb0(ξ)|2 |ξ|2∥Tb(s)∥4T (ξ, t)|2 ≤ C

( 
+ t L2 ds

)
. 

0 

Integrating in B(t) and using Lemma 4.1 we get ∫ ∫ ∫ ∫ t 
|Tb(t)|2 dξ ≤ |Tb0(ξ)|2 dξ + C t

( 
|ξ|2∥Tb(τ )∥4 

L2 dτ
) 
dξ 

B(t) B(t) B(t) 0 (r ′ (t)) 1 
( 

2 −1
)

α p≤ C 
r(t) ( ) 1∫ r ′ (t) 2α ∫ t

2r(t) ( )
3+ Ct r ∥Tb(τ)∥4 

L2 dτ dr 
0 0 

where we passed to polar coordinates in the second term. Using this in the 
main inequality (3.3) leads to 

d ( ∫ 
| b ) (r ′ (t))

α 
1 
(

p 
2 −1

)
r(t) T (t)|2 dξ ≤ Cr ′ (t)

dt R2 r(t) ∫ t(r ′ (t)) 2 
+ Ctr ′ (t) α ∥Tb(τ)∥L 

4 
2 dτ. (4.1) 

r(t) 0 

To prove decay in R2 , we use a bootstrap argument introduced by Zhang [29] 
for the 2D Navier-Stokes equations. We first obtain a preliminary decay. 

Lemma 4.2. Let T (t) be a regular solution to (1.1). Then, ( )
∥T (t)∥2 ≤ C(α)[ln(e + t)]− 1+ 

α 
1 
, t ≥ 0, 0 < α ≤ 1.L2 
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Proof. First consider 0 < α < 1. Taking r(t) = ln(e + t) in (4.1), we 
]1+ 1 

) 
t2 

α
[

obtain 
2 (1− 1 

( 2 −1) [ln(e + t)] 

p 

p

( 11+[ln( )]+ t αe 
)d 

dt 
[ln(e + t)]α 

∥Tb(t)∥2 
L2 ≤ C + C .21+( )+ t αe 1+ 1 

(e + t) α 
1 
α 

The estimate follows after integration. Indeed, as p < 2 [ ] 2 1− 1 
)

ln(e + s) ( )
1+ 1 

and as α < 1 ∫ t ∫ ln(e+t)2ds 

pα 

α 

∫ ∫ ln(e+t) ( ) ( )
ds ≤ C, 

t 2 1− 1 2s− −1
ds = sα αp pe

(
2 −10 1(e + s) p 

( )
2 
α 

s − 1 
s α −2 s≤ ds ≤ C. e 

d ( )
[ln(e + t)]3∥Tb(t)∥2 

L2 
dt 

21+( )+ αe s
] 1 
α

[
Now let α = 1. Taking r(t) = [ln(e + t)]3 in (4.1) we have 

0 1ln(e + s) 

2 +1
[ln(e + t)] p 

2 + C(e + t)−1≤ C . (4.2) 
(e + t) p 

As ∫ ∫ ln(e+t) (
1− 2 

p

)2 +1 
pt [ln(e + s)] 

2 

2 +1 s 
ds ≤ Cds = s p e 

0 (e+) p 1 

and ∫ t ds ≤ ln(e + t), 
e + s0 

then the estimate follows after integrating (4.2). � 
Proof of Theorem 1.3 for N = 2. We treat the cases 0 < α < 1 and 
α = 1 separately. 

1 −δWe first consider 0 < α < 1 and choose r(t) = (1 + t)α in (4.1), for 
10 < δ < α . From now on, constants are Cδ = C(α, δ, p) and remain finite 

when δ goes to zero, for all possible values of α and p. Only those constants 
that may blowup are explicitly written in closed form. 

From (4.1) and Lemma 4.1, for a smooth solution T (t) we get ( )
) ∫ 

d 
dt

(
(1 + t) 

1 
α
−δ∥T (t)∥2 

L2 

)
α

− 2 

( 

1 −1 −δ−1≤ Cδ(1 + t) p 

0 
11+[ln( )]+ αe s 

t ∥T (s)∥2 
L21 

Cδ(1 + t)− +δ ds(4.3)+ α 
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where we have used the preliminary decay from Lemma 4.2. Integrating 
between 0 and t we obtain 

Cδ 

1−C (1 + )t αδ∥T (t)∥2 
L2 

+δ≤ ( )( 
+δ

)− 1 
(1 + t) α 

2 

t ∥T (s)∥2 
L2 

1−− (1 + )t α 
−1( 

1−C (1 + )t αδ 

)+ 2 
α 

p 

1 − 1 
p − δ ∫ 

+δ ds.+ 

If p ̸= 1, after letting δ go to zero we have ∫ 
− 1 

11+[ln( )]+0 αe s 

α 
1−≤ C(1 + )t α

( ) 
11+[ln( )]+ αe s 

t ∥T (s)∥2 
L22 −1∥T (t)∥2 

L2 + C(1 + t) + C ds.p 

0 

As ∫ (t 

0 

1− 1+[ln( )] α+e s 
)
ds < ∞, 

using Gronwall’s inequality we obtain 
1−
α

( ) ( )
2 

α
− 1 

≤ C(1 + t) 
2 

For p = 1, from (4.3) we have 

1−≤ C(1 + )t α 
−1 −1∥T (t)∥2 

L2 + C(1 + t) p p . 

((1 + t)δ − 1)
δ 

1 1− −C (1 + ) C (1 + )t + t αδ δ 

11+[ln( )]+ αe s 

α ∫ t ∥T (s)∥2 
L2 

+ Cδ ds. 

∥T (t)∥2 
L2 

+δ≤ 

0 

Letting δ go to zero we obtain 

11+[ln( )]+ αe s 

∫ t ∥T (s)∥2 
L21−≤ C(1 + )t α 

0 

which after Gronwall’s inequality leads to 

∥T (t)∥2 
L2 + C ds 

11+[ln( )]+ αe s 

1−≤ C(1 + )t α 

We now consider α = 1. Using r(t) = (t + 1)2 in (4.1) we have ∫ 

∥T (t)∥2 
L2 . 

( ) t ∥T (s)∥2 
L2d ( )

(1 + t)2∥T (t)∥2 
L2 

dt 
2− −2≤ C + C(1 + t) + C ds.p 

0 



17 Decay of solutions to a porous media equation 

Integrating between 0 and t and dividing by (1 + t) we obtain ( ) ∫ t2 (s + 1)∥T (s)∥2 
L2− −2

(1 + t)∥T (t)∥L 
2 
2 ≤ CC(1 + t) p + C ds 

0 (s + 1)[ln(e + s)]1+ 
α 
1 

which has the form ∫ t 
ψ(t) ≤ C + [ψ(τ )b(τ) + a ′ (τ )] dτ 

0 
for ( )

− 2 −2 [ln(e + t)]−2 
ψ(t) = (1 + t)∥T (t)∥L 

2 
2 , a(t) = C(1 + t) p , b(t) = C . 

(1 + t) 
As ∫ t 

b(s) ds < ∞ 
0 

by a version of Gronwall’s inequality (see Corollary 1.6, Băınov and Simeonov 
[1]) ∫ ∫ ∫t t t( ) ( )

ψ(t) ≤ C exp b(s) ds + a ′ (s) exp b(τ)dτ ds 
0 0 τ 

we obtain ( )
−( 

p 
2 −1) − −1 

L2 p∥T (t)∥2 ≤ C(1 + t)−1 + C(1 + t) ≤ C(1 + t) 
2 

which proves the decay. Using the same argument at the end of the proof of 
Theorem 1.1, we extend the estimate to weak solutions. � 

4.2. Decay with N ≥ 3. As before, we need preliminary estimates and 
decays. 
Lemma 4.3. Let T (t) be a regular solution to (1.1). Then, 

|Tb(ξ, t)| ≤ C
(
|Tb0(ξ)| + |ξ|1−2α

)
, ξ ∈ B(t). 

Proof. From (3.4) and the Maximum Principle (1.2), we obtain 

| \ ≤ C|ξ|.v · ∇T (t)| ≤ C|ξ|∥T ∥2 
L2 

So the integral equation (3.5) becomes ∫ t 
|Tb(ξ, t)| ≤ |Tb0(ξ)| + C e−|ξ|2α(t−s)|ξ| ds 

0 
−|ξ|2αt = |Tb0(ξ)| + C|ξ|1−2α

(
1 − e 

) 
≤ C

(
|Tb0(ξ)| + |ξ|1−2α

)
which proves the Lemma. � 

We now obtain a preliminary decay. 
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Lemma 4.4. For a regular solution T (t) to (1.1), we have { ( )}
N+2 N 2− min −2, 

2α p −1
2α∥T (t)∥2 ≤ C(t + 1) , t ≥ 0.L2 

Proof. Considering B(t) defined in (3.1) and Lemma 4.3, we have ∫ ∫ ∫ 
|Tb(ξ, t)|2 dξ ≤ C |Tb0(ξ)|2 dξ + C |ξ|2−4α dξ, 

B(t) B(t) B(t) 

and by Lemma 4.1, we obtain ∫ ( ) ( )
−1 −2

2α p 2α|Tb(ξ, t)|2 dξ ≤ C
(r ′ (t))− N 2 

+ C
(r ′ (t))− N +2 

. 
r(t) r(t)B(t) 

Using this and r(t) = (t + 1)N in (3.3), we obtain ( ) ( )
− N 2 N+2−1 −22α p 2α∥T (t)∥2 

L2 ≤ C(t + 1) + C(t + 1)− 

which proves the Lemma. � 

Lemma 4.5. Let B(t) defined in (3.1) with r(t) = (1 + t)N . For T (t) a 
regular solution to (1.1), we have 

|Tb(ξ, t)| ≤ |Tb0(ξ)| + C, ξ ∈ B(t). 

Proof. By using (3.4) in the integral equation (3.5), together with the decay 
estimate from Lemma 4.4 we obtain ∫ t 

|Tb(ξ, t)| ≤ |Tb0(ξ)| + C|ξ| ∥T (s)∥L 
2 
2 ds 

0∫ { ( )}t N+2 N 2− min −2, 
2α p −1

2α≤ |Tb0(ξ)| + C|ξ| (s + 1) ds 
0 

≤ |Tb0(ξ)| + C 
as N ≥ 3. This proves the Lemma. � 
Proof of Theorem 1.3 for N ≥ 3. Let T (t) be a regular solution. Using 
Lemma 4.5 in (3.3), Lemma 4.1 and r(t) = (t + 1)N we obtain 

d ( ) ( − N 
( 

2 
) 

−N )−1
(t + 1)N ∥T (t)∥2 ≤ C(t + 1)N−1 (t + 1) 2α p + (t + 1) 2α .L2 

dt 
Integrating, we get ( ) ( )

− N −1 − N −1 
p 2α∥T (t)∥2 ≤ C(t + 1)−N + C(t + 1) 2α 
2 

≤ C(t + 1) p 
2 

L2 

which proves the Theorem. As before, the argument at the end of the proof 
of Theorem 1.1, allows us to extend the estimate to weak solutions. � 
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5. Asymptotic behaviour 

In this section we study decay of norms and some aspects of asymp-
totic behaviour of solutions to (1.1) when the initial data T0 is in L1(RN ) ∩ 
L 2α

N 
−1 (RN ). This choice is motivated by the fact that given a solution T , the 

scaled function Tλ(x, t) = λ2αT (λx, λ2α−1t) is also a solution and its norm 
is invariant precisely in L 2α

N 
−1 (RN ), i.e., 

∥Tλ(t)∥ N = ∥T (λ2α−1t)∥ N , λ > 0. 
2α−1 2α−1L L 

Estimates similar to the ones we address here have been proved, for initial 
data in Lebesgue scale-invariant spaces, by Kato [12] and Carpio [3], [4] for 
the Navier-Stokes and vorticity equations and by Carrillo and Ferreira [5] 
for the dissipative quasi-geostrophic equations. 

We introduce now the definitions needed to prove existence of solutions 
to (1.1) with T0 in L1(RN ) ∩ L 2α

N 
−1 (RN ). We closely follow the Appendix in 

Carrillo and Ferreira [5]. 
We consider the space of functions 

Eq,T = {h : h ∈ BC(0, T ; L 2α
N 
−1 (RN )), tν h ∈ BC(0, T ; Lq(RN ))} 

= 2 − 1 − Nwhere ν αq , endowed with the normα 

= sup tν ∥h(t)∥Lq + sup ∥h(t)∥ N .∥h∥Eq,T 2α−1L0<t<T 0<t<T 

A mild solution to (1.1) is a function in Eq,T such that ∫ t ( )
T (x, t) = Kα(t) ∗ T0(x) − ∇Kα(t − s) ∗ TH[T ] (s) ds (5.1) 

0 

where H[T ] is as defined in (2.1). 

Theorem 5.1. Let T0 ∈ L1(RN ) ∩ L 2α
N 
−1 (RN ). Then, there exits a unique 

mild solution to (1.1) with 1/2 < α ≤ 1 such that 

T ∈ BC(0, ∞; L1(RN ) ∩ L 2α
N 
−1 (RN )). 

As the operator H is Calderón-Zygmund, then 

∥H[T ]∥Lp ≤ C∥T ∥Lp , 1 < p < ∞ 

so the proof of the analogous existence result for the dissipative quasi-
geostrophic equation by Carrillo and Ferreira [5] carries over with minimal 
changes. We refer the reader to [5] for the details. 
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Proof of Theorem 1.4. Using the inequality ∫ ∫ 
|T |p−2T Λ2αT dx ≥ 

2 (
Λα|T | 2 

p )2
dx, p ≥ 2, α ∈ [0, 1], 

p RN 

RN 

proved by A. Córdoba and D. Córdoba [7] and Ju [10], we obtain from (1.1) ∫ 
d p 
∥T (t)∥p ≤ −2 |ΛαT 2 |2dx. (5.2)Lp

dt 
The fractional Gagliardo-Nirenberg inequality 

2α N 
N +2α N+2α∥u∥L2 ≤ C∥u∥
L1 ∥Λα u∥

L2 

leads, after taking u = T p/2 , to 
p ( ) (N+2α) ( p )− 4α 

N 2∥ΛαT 2 ∥L 
2 
2 ≥ C ∥T ∥L

p 
p ∥T ∥ p

N . (5.3) 
L 2 

Making yp = ∥T ∥pp , for p ≥ 2, and using (5.3) in (5.2) we have 

− 4α N +2αd 
yp ≤ −2Cy p

N yp N . (5.4)
dt 2 

Let pn = 2n , n ≥ 1. As y p1 = ∥T (t)∥L1 ≤ ∥T0∥L1 , solving (5.4) for n = 1 we 
2 

have 
N ( N ) N 

2αt 2α yp1 (t) ≤ ∥T0∥2 = Mp1 .L1 
4Cα 

By induction, we get 
d ( ) − 4α ( )

− N +2α 
N N 2 pn−1−1 ypn yp ≤ −2CM tpn−1dt 

which implies 
N ( N ) N N 
2α (pn−1)t ypn (t) ≤ M2 2α (pn − 1) 2α .pn−1 4Cα 

So 
n∏ ( N )Nn n(n+1)N 

Mpn = Mpk ≤ ∥T0∥1 
pn 

4Cα 
2α 2 4α 

k=1 

which implies 
1 

lim M pn < ∞.pn 
n→∞ 

Having obtained the result for p = 2n , we conclude the proof using interpo-
lation for the remaining norms. � 
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Remark 5.2. This Theorem can be generalized for any initial data T0 ∈ 
NLp(RN ) ∩ L 2α

N 
−1 (RN ) with 1 ≤ p ≤ Similarly, if the initial data is just2α−1 . 

T0 ∈ L 2α
N 
−1 (RN ), we get 

1− 1 − N 
2α 2pα ∥T (t)∥Lpt ≤ C∥T0∥ N (5.5)

2α−1L 

Nfor 2α−1 ≤ p ≤ ∞. 

Proof of Theorem 1.5. The proof is by induction. We assume the result 
for ∇kT and prove a preliminary decay for Λh∇kT for an appropiately cho-
sen, small enough h < 1. Then, as for some integer m we have hm + j = 1, 
with j < h, we apply this result m times with Λh and then once using Λj . 
The decay for ∇k+1T then follows. 

The case |k| = 0 is (1.4). We now prove the result for ∇k+1T . Taking 
derivatives in (5.1) and using the decay estimates for ∇kT and Lemma 3.1 

( )
|k|+h− − 

2 
N
α 1− 1 

∥Λh∇T (t)∥Lp ≤ Ct 2α p ∥T0∥L1 ∫ t/2 
+ Λh∇k∇Kα(t − s) ∗ (TH[T ])(s) ds

Lp 
0∫ t 

+ Λh∇Kα(t − s) ∗ ∇k(TH[T ])(s) ds
Lp 

t/2 ( )
|k|+h − N 1− 1 

2α p≤ Ct− 
2α t ∥T0∥L1 + I1 + I2. 

We note that the operator H commutes with derivatives. First, we estimate 
I1 for 1 < p < ∞. Using the Kernel estimates of Lemma 3.2 and Hölder’s 
inequality, we obtain ( )∫ t/2 1+|k|+h 1 − 1− − N 

2α 2α r pI1 ≤ C (t − s) TH[T ](s) ds
Lr 

0 ( )∫ t/2 1+|k|+h 1 − 1− − N 
2α 2α r p≤ C (t − s) ∥T (s)∥La H[T ](s) ′ ds,

La 
0 

1 1 Nwhere1 = + a ′ . Using the estimates of (1.4) and (5.5) with a ≥ 2α−1 , we r a 
obtain ( ) ( ) ( )∫ t/2 1+|k|+h − N 1 − 1 2α−1− − N − 1 − N 1− 1 

2α r N a dsI1 ≤ C (t − s) 2α p s 2α a s 2α ′ 

0 
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1+|k|+h− − N 1 − 1 −1+ 1 − N 1− 1 

2α 2α r p 2α 2α r≤ Ct s ds 
0 

NThen, if r < N−1 , we conclude that ( )
|k|+h− − N 1− 1 

I1 ≤ Ct 2α 2α p . (5.6) 

The conditions on r and a are simultaneously satisfied taking 1 < r < N
N 
−1 . 

Now Lemma 3.2 and Hölder’s inequality lead to ∫ t 
− 1+h N−

2α 2qα I2 ≤ C (t − s) ∇k(TH[T ])(s) qp ds 
Lt/2 q+p ∫ t ∑ − 1+h N ( )−

2α 2qα ≤ C (t − s) ∥∇k−iT (s)∥Lq ∇iH[T ](s) ds.
Lp 

t/2 0≤i≤k 

Using the estimates (1.5) with order less or equal than |k| for 1 < p < ∞ 
Nand (1.5) for 2α−1 ≤ q < ∞, we get ∫ t|k| N(p−1) N − 1+h N− −1+ 1 + −

I2 ≤ Ct− 
2α t 2pα t 2α 2qα (t − s) 2α 2qα ds. 

t/2 

This integral is bounded if h < 2α − 1 because there exists q ≥ 1 such that 
the exponent in the integrand is as large as −1. Then, taking h = 2α−1 , we 2 
obtain 

|k|+h N(p−1)− 
2α 2pαI2 ≤ Ct− t . 

This, together with (5.6), proves the decay for Λh∇kT . 
Now we proceed as in the comments at the beginning of the proof, by 

applying this result m times with Λh and then once using Λj , where hm+j = 
1, with j < h and m an integer. The analysis of the estimates on the 
iterations is always the same, so we show the method for the second iteration 
only. We have ( )

|k|+2h− − N 1− 1 
2α 2α p∥Λ2h∇kT (t)∥Lp ≤ Ct ∥T0∥L1 ∫ t/2 

+ Λ2h∇k∇Kα(t − s) ∗ (TH[T ])(s) ds
Lp 

0∫ t 
+ Λh∇Kα(t − s) ∗ Λh∇k(TH[T ])(s) ds.

Lp 
t/2 

The first integral is estimated as I1. In the second integral, we use the 
following general estimate for the operator Λs on products of functions (see 
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[22]), for s > 0 

∥Λs(fg)∥Lr ≤ C(∥f∥ ′ ∥Λs g∥Lq ∥ + ∥g∥ ′ ∥Λsf∥Lq )Lq Lq 

′ 1 1with 1 < r < q ≤ ∞ and 1 = + ′ . We obtain the right estimate for this r q q 
second term, working as in the case of I2 in the estimate for the decay of 
Λh∇kT . 

Now , we address the cases p = 1 and p = ∞. For p = ∞, we use the 
previously proven case p = 2N Indeed, using the Gagliardo-Niremberg 2α−1 . 
estimates we conclude that 

3−2α 2α−1 
2 2∥∇kT ∥L∞ ≤ C∥∇kT ∥ ∥∇∇kT ∥ ,2N 2N 
2α−1 2α−1L L 

2Nand using (1.5) for k and k + 1 with p = 2α−1 , we obtain the result. Finally, 
we prove the case p = 1. Again, we use the integral (5.1) and decompose it 
in I1 and I2 as before. We get ∫ t/2|k| 1+|k|

∥∇kT (t)∥L1 ≤ Ct− 
2α ∥T0∥L1 + (t − s)− 

2α (TH[T ])(s) ds
L1 

0∫ t 
+ (t − s)− 

2
1 
α ∇k(TH[T ])(s) ds

1 
t/2 

|k|
≤ Ct− 

2α ∥T0∥L1 + I1 + I2. 

By using Hölder’s inequality in the first integral we obtain ∫ t/2
1+|k|

I1 ≤ Ct− 
2α T (s) ∥H[T ](s)∥ ′ ds,

La La 
0 

Nand by (1.4) and (5.5) taking a ≥ 2α−1 , we get ∫ t/2
1+|k| |k|
2α −1+ 1 

I1 ≤ Ct− s 2α ds ≤ Ct− 
2α . 

0 

To finish the proof ∫∑ t 
I2 ≤ C (t − s)− 

2
1 
α ∥∇k−iT (s)∥La ∇iH[T ](s) ′ ds,La 

t/20≤i≤k 

Nand by (1.5) and (5.7), taking again a ≥ 2α−1 , we conclude that ∫ t|k| |k|− (t − s)−1+ 1 
I2 ≤ Ct−1+ 

2
1 
α 2α 2α ds ≤ Ct− 

2α . � 
t/2 
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N 
Remark 5.3. With an analogous argument, but using T0 ∈ L 2α−1 , we 
obtain 

|k| 1− 1 N 
t 2α t 2α − 

2pα ∥T (t)∥Lp ≤ C∥T0∥ N , N ≤ p ≤ ∞. (5.7)2α−12α−1L 

Proof of Theorem 1.6, (1). First, we observe that, by estimate (1.5), we 
have for t ≥ 1 ( )

− k − N 1− 1 
2α 2α p∥∇kT (t)∥Lp ≤ C(1 + t) , (5.8) 

where 1 ≤ p ≤ ∞. As a consequence of the estimate (3.1), we have for t ≥ 1 ( )
− k − N 1 − 1 

2α 2α r p∥∇kKα ∗ T0(t)∥Lp ≤ C(1 + t) ∥T0∥Lr , (5.9) 

where 1 ≤ r ≤ p ≤ ∞. Now, we split the bilinear term into two parts to 
obtain ∫ t/2 
∥∇kT (·, t) −∇kKα(t) ∗ T0∥Lp ≤ ∇k∇Kα(t − s) ∗ (TH[T ])(s) ds

Lp 
0∫ t 

+ ∇Kα(t − s) ∗ ∇k(TH[T ])(s) ds
Lp 

t/2 

≤ I1 + I2. 

First, we estimate I2 as in the proof of Theorem 1.5. Note that by (5.9), we 
have ∫ t∑ N− 1 −

2αI2 ≤ C (1 + t − s) 2αq ∥∇k−iT (s)∥La ∇iH[T ](s) ds,
Lr 

t/20≤i≤k 

1 1 1with 1 + = + , and 0 ≤ 1 ≤ 1 − 1 . Using (5.8), we obtain a r p q q p ( ) ∫ 
|k| 

2− 1 − 1 N− − N − 1 t 
−

2α 2α p q 2αI2 ≤ C(1 + t) (1 + t − s) 2αq ds, 
t/2 

and, taking q > N and q ≥ p 
2α−1 p−1 , ( )

|k|+1− − N 1− 1 
2α pI2 ≤ C(1 + t) 2α (1 + t)1− 

2 
N
α . (5.10) 

Now, we estimate I1 for 1 < p < ∞. Using (5.9) and Hölder’s inequality, 
we get ( )∫ t/2 1+|k|− − N 1− 1 

I1 ≤ C (1 + t − s) 2α 2α p ∥T (s)∥La H[T ](s) 
La ′ ds, 

0 
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where 1 = 1 + 1 
′ . Using the estimate (5.8), we obtain a a ( ) ∫ t/21+|k|− − N 1− 1 

2α 2α pI1 ≤ C(1 + t) (1 + s)− 
2 
N
α ds. (5.11) 

0 

This last integral is bounded if N > 2 or α < 1, and with (5.10) we conclude 
the proof for these cases. � 
Proof of Theorem 1.6, (2). Using the same steps as in the proof of 
Theorem 1.6 (1), we have by (5.10) for α = 1 and N = 2 

|k|+1− −1+ 1 
I1 ≤ Ct 2 p . 

Now, using the estimate (5.11) for α = 1 and N = 2, we conclude. � 
In order to obtain the optimal decay in the region (0, t/2) as in (t/2, t), 

we consider a corrector of K(t) ∗ T0. Let be T1 the solution of the non-
homogeneous heat equation 

∂T1 ( )
+ H[K(t) ∗ T0] · ∇ K(t) ∗ T0 − ∆T1 = 0 

∂t 
T1(x, 0) = T0(x), x ∈ R2 

where the operator H is defined in (2.1) and K is the kernel of the heat 
equation in R2 . Thus, in the integral sense: ∫ t 

T1(t) = K(t) ∗ T0 − ∇K(t − s) ∗ (K(s) ∗ T0H[K(s) ∗ T0])ds. (5.12) 
0 

Proof of Theorem 1.6, (3). Using the integral formulas (5.1) and (5.12), 
we have ∫ t 
∥∇kT (·, t) −∇kT1(·, t)∥Lp ≤ ∇K(t − s) ∗ ∇k(TH[T ])(s) ds

Lp 
t/2 ∫ t 

+ ∇K(t − s) ∗ ∇k(K(s) ∗ T0H[K(s) ∗ T0])(s) ds
Lp 

t/2 ∫ t/2 
+ ∇k∇K(t − s) ∗ [TH[T ](s) − K(s) ∗ T0H(K(s) ∗ T0)] ds

Lp 
0 

≤ I2 + J2 + J1. 

We note that by (5.10) with α = 1 and N = 2, we obtain the decay estimate 
of the term I2. Now, we estimate J2 as I2. Note that by (5.9), we have ∫∑ t 

− 1 − 1 
2J2 ≤ C (1 + t − s) q ∥∇k−iK ∗ T0(s)∥La ∇iH[K ∗ T0](s) ds,

Lr 
t/20≤i≤k 
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1 1 1with 1 + = + , and 0 ≤ 1 ≤ 1 − 1 . Using (5.9) again, we obtain a r p q q p ∫ 
|k|− −2+ 1 + 1 t 

− 1 − 1 
2 p q 2J2 ≤ C(1 + t) (1 + t − s) q ds, 

t/2 
pand, taking q > 2 and q ≥ p−1 , we prove 

|k|+1− −1+ 1 
J2 ≤ C(1 + t) 2 p . 

Finally, we estimate J1. Using (5.9), we get 
1+|k| 

∫ t/2 
− −1+ 1 

J1 ≤ C(1 + t) 2 p ∥TH[T ](s) − K(s) ∗ T0H(K(s) ∗ T0)∥L1 ds 
0 

We proved that the integral is uniformly bounded. We note that 

∥TH[T ](s) − K(s) ∗ T0H(K(s) ∗ T0)∥L1 

≤ ∥(T − K(s) ∗ T0)H[T ](s)∥L1 + ∥K(s) ∗ T0H(T (s) − K(s) ∗ T0)∥L1 

≤ C∥T (s) − K(s) ∗ T0∥La (∥T (s)∥ ′ + ∥K(s) ∗ T0∥La ′ ),La 

where we use the Hölder’s inequality with 1 = 1 + 1 
′ . Now, we use the a a 

estimates(5.8) and (5.9), and Theorem 1.6 (2), to obtain 
1+|k| 

∫ t/2 1+|k|− −1+ 1 − −1+ 1 
2 p 2 2 pJ1 ≤ C(1 + t) (1 + s)− 3 

ln(1 + s)ds ≤ C(1 + t) , 
0 

and we conclude the proof. � 
Acknowledgments. The authors thank Gabriela Planas for important 
comments and remarks concerning the proof of Theorem 1.3. The first au-
thor thanks the hospitality of colleagues at ICMAT in Madrid, Spain, where 
this work was started during the Calculus of Variations, Singular Integrals 
and Incompressible Fluids Trimester, September 2010 - December 2010. The 
second author thanks the hospitality of colleagues at Instituto de Matemática 
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´ [6] A. Castro, D. Córdoba, F. Gancedo, and R. Orive, Incompressible flow in porous 
media with fractional diffusion, Nonlinearity, 22 (2009), 1791–1815. 
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