
 Repositorio Institucional de la Universidad Autónoma de Madrid 

https://repositorio.uam.es 

 Esta es la versión de autor del artículo publicado en: 
 This is an author produced version of a paper published in: 

ACM Computing Surveys 54.10s (2022): 1-49

DOI: https://doi.org/10.1145/3507901

 Copyright: © ACM 2022

 El acceso a la versión del editor puede requerir la suscripción del recurso 

Access to the published version may require subscription 

MV.5035330
Resaltado



1

Face Image Quality Assessment:
A Literature Survey

Torsten Schlett, Christian Rathgeb, Olaf Henniger, Javier Galbally, Julian Fierrez, and Christoph Busch

Abstract—The performance of face analysis and recognition
systems depends on the quality of the acquired face data, which
is influenced by numerous factors. Automatically assessing the
quality of face data in terms of biometric utility can thus be useful
to detect low-quality data and make decisions accordingly. This
survey provides an overview of the face image quality assessment
literature, which predominantly focuses on visible wavelength
face image input. A trend towards deep learning based methods
is observed, including notable conceptual differences among the
recent approaches, such as the integration of quality assessment
into face recognition models. Besides image selection, face image
quality assessment can also be used in a variety of other
application scenarios, which are discussed herein. Open issues
and challenges are pointed out, i.a. highlighting the importance
of comparability for algorithm evaluations, and the challenge
for future work to create deep learning approaches that are
interpretable in addition to providing accurate utility predictions.

Index Terms—Biometrics, biometric sample quality, face qual-
ity assessment, face recognition.

I. INTRODUCTION

Face Image Quality Assessment (FIQA) refers to the pro-
cess of taking a face image as input to produce some form
of “quality” estimate as output, as illustrated in Figure 1. A
FIQA algorithm (FIQAA) is an automated FIQA approach.
See Figure 2 for some example images with varying quality.
While FIQA and general Image Quality Assessment (IQA) are
overlapping research areas, there are important distinctions,
which we discuss in subsection II-B. Most of the published
FIQA literature focuses on single face image input in the
visible spectrum. Therefore, unless otherwise specified in this
survey, FIQA(A) refers to single-image Face Image Quality
Assessment (Algorithms) in the visible spectrum, with a
Quality Score (QS [66]) output that can be represented by: A)
a single scalar value, or B) a vector of quality values measuring
different quality-related features. For a discussion of (F)IQA
that instead compares two image variants, i.e. full/reduced-
reference methods, see subsection II-C. Regarding FIQA out-
side the visible spectrum, see subsection VI-G.

The term “quality” is an intrinsically subjective concept that
can be defined in different ways, with ISO/IEC 29794-1 [68]
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TABLE I
MOST RELEVANT SURVEY PARTS FOR READERS WITH DIFFERENT INTENT

AND KNOWLEDGE BACKGROUND.

Intent of knowledge acquisition Knowledge
background

Relevant parts

Basics (definition, goal, etc.) Non-expert Section I
Concepts and categorization
(input data, training data, etc.)

Expert Sections II-A to
II-D and III

Applications Non-expert Section II-E
(use-cases in automated systems)
Overview of published works (coarse) Expert Sections IV-A,

IV-C, and VII;
Tables II, III,
and IV

Survey of published works (detailed) Expert Sections IV-B
and IV-D

Comparison and evaluation
(selective comparison, metrics, etc.)

Expert Section V

Open issues and challenges
(research directions, problems, etc.)

Non-expert Sections VI and
VII

Face image Preprocessed
(Optional)

Quality assessment
(FIQAA)

0.90

Quality score
(+Decision)

High

Fig. 1. Typical FIQA (Face Image Quality Assessment) process: A face
image is preprocessed and a FIQAA (FIQA Algorithm) is applied, resulting
in a scalar quality score output, based on which a decision can be made. Face
image taken from [67].

differentiating between three aspects referred to as character,
fidelity, and utility. In the context of facial biometrics these
can be described as follows [69]:

• Character: Attributes inherent to the source biometric
characteristic being acquired (e.g. the face topography
or skin texture) that cannot be controlled during the
biometric acquisition process (e.g. scars) [70].

• Fidelity: For a biometric sample [70], e.g. a face image,
fidelity reflects the degree of similarity to its source bio-
metric characteristic [68]. For instance, a blurred image
of a face omits detail and has low fidelity [67].

• Utility: The fitness of a sample to accomplish or fulfill
the biometric function (e.g. face recognition comparison),
which is influenced i.a. by the character and fidelity [70].
Thus, the term utility is used to indicate the value of an
image to a receiving algorithm [67].

This survey considers “utility” as the primary definition of
what a quality score should convey, which is in accordance
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to the quality score definition of ISO/IEC 2382-37 [70] and
the definition in the ongoing Face Recognition Vendor Test
(FRVT) for face image quality assessment [67]. Thus, a QS
should be indicative of the Face Recognition (FR) perfor-
mance. Note that this entails that the output of a specific
FIQAA may be more accurate for a specific FR system, so
the FIQA utility prediction effectivity ultimately depends on
the combination of both, the FIQAA and the FR system.
To facilitate interoperability, it is however desirable that the
FIQAA is predictive of recognition performance in general for
a range of relevant systems, instead of being dependent on a
single FR technology.

In short, under this survey’s definitions, a FIQAA is typ-
ically meant to output a scalar quality score to predict the
FR performance from a single face input image. Being able
to predict FR performance without necessarily running an FR
algorithm makes FIQA useful for a variety of scenarios, which
are described further in subsection II-E. FIQA as a predictor
for FR performance has attracted the predominant interest of
researchers so far and is thus the main focus in the present
survey. FIQA for other tasks in the field of face biometrics,
such as emotion analysis [71], attention level estimation [72],
gender or other soft biometrics recognition [73], etc. may
open interesting research lines in the future and can take
advantage of current developments that employ FIQA for FR
performance prediction.

The contributions of this survey are:

• An introduction to FIQA (section II), i.a. including the
distinction against general IQA (subsection II-B), the
conceptual problem with single-image utility assessment
(subsection II-D), and an overview of both common and
uncommon FIQA application areas (subsection II-E).

• A categorization of the surveyed FIQA approaches (sec-
tion III) with a taxonomy that differentiates between
factor-specific and monolithic approaches, in addition to
various other aspects (Figure 6).

• A survey of more than 60 FIQAA publications from
2004 to 2021 (section IV), including condensed overview
tables for the publications (Table III, Table IV) and their
used datasets (Table II). This part is meant for literature
overview purposes and does not have to be read in
sequence.
Prior work listed varying publication numbers, with
Hernandez-Ortega et al. [48] being a recent example
that contained a summary for some prior publications

Fig. 2. Face images of a single subject with various qualities. Face image
quality degrades from left to right as quality degradation factors such as facial
expression, pose, and illumination are introduced. Face images taken from
[67].

Roll Pitch

Yaw

Fig. 3. Facial pose is usually represented by the pitch, yaw, and roll angles
defined by ISO/IEC 39794-5 [76]. Pitch and yaw are also known as tilt and
pan. A frontal face has 0◦ for all three angles.

ranging from 2006 to 2020. A fingerprint/iris/face quality
assessment survey by Bharadwaj et al. [74] considered
less than ten FIQAA publications from 2005 to 2011.
The European JRC-34751 report [75] also listed some
FIQAAs from 2007 to 2018. To our knowledge this FIQA
survey is the most comprehensive one to date.

• An introduction for the Error-versus-Reject-Characteristic
(ERC) evaluation methodology (subsection V-A), which
is a standardization candidate in addition to being com-
monly used in recent FIQA literature, and a subsequent
concrete evaluation that includes a variety FIQA ap-
proaches (subsection V-B). The ERC introduction men-
tions details not considered in recent FIQA literature, and
the evaluation discusses its weaknesses to note opportu-
nities and challenges for future work.

• A detailed discussion of various FIQA issues and chal-
lenges (section VI), including avenues for future work.

Table I should allow readers with different intent and
background knowledge to quickly identify the most relevant
parts of this survey.

II. QUALITY ASSESSMENT IN FACE RECOGNITION

During enrolment, a classical face recognition system ac-
quires a reference face image from an individual, proceeds
to pre-process it, including the step of face detection, and
finally extracts a set of features which are stored as reference
template. At the time of authentication a probe face image
is captured and processed in the same way and compared
against a reference template of a claimed identity (verification)
or up to all stored reference templates (identification). Refer
to ISO/IEC 2382-37 [70] for the standardized vocabulary
definitions of terms such as enrolment, templates or references.

A. Controlled and Unconstrained Acquisition

Regarding the face image acquisition [70], two different
scenarios can be distinguished [75]:

• Controlled: In a controlled scenario, the biometric cap-
ture subject is cooperative [70], so that e.g. the head pose
(see Figure 3) is adjusted to frontally face the camera with
a neutral expression, and the environmental conditions
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such as lighting can be controlled. This is typically the
case when face images are acquired for government-
issued ID documents.

• Unconstrained: Here the capture subject is not cooper-
ative, i.e. the subject is either indifferent [70] or inten-
tionally uncooperative [70], and there is no control over
the environmental conditions. Surveillance video FR is
an example for this scenario [77].

There are other scenarios in between those two extremes, e.g.
smartphone FR with a cooperative capture subject but incom-
plete control over the environment [75], and the literature
usually refers to close-to-optimal capture conditions as “con-
trolled”, with anything else falling under the “unconstrained”
category [75]. FIQA can be used during controlled acquisition
to ensure a certain level of quality by providing immediate
feedback. For unconstrained acquisition, e.g. via video cam-
eras, FIQA can be used to filter out images below a certain
quality level. While the same FIQAA type and configuration
could be used for both, stricter requirements that are desirable
for a controlled government ID image acquisition scenario may
be too strict for unconstrained scenarios. To facilitate helpful
feedback, FIQA for the controlled scenario preferably should
also be able to provide an explanation in terms of multiple
separate human-understandable factors, such as the pose an-
gles (see Figure 3) or the illumination direction. In contrast,
FIQA for the fully unconstrained scenario by definition cannot
benefit from explainability during the acquisition process since
there is no control, e.g. when automatically deciding whether a
video frame is processed further or not. However, explainable
FIQA can also be beneficial when images are analysed after
the acquisition process is complete. Hence, using FIQA for
actionable feedback during a controlled acquisition is just
one important application scenario, while other use cases are
independent of the acquisition type.

B. FIQA versus IQA

FIQA can be seen as a specific application within the
wider field of Image Quality Assessment (IQA), which is a
very active research area of image processing. Even though
related to IQA, FIQA has been mainly developed within the
biometric context and focuses on distinctive face features.
Consequentially, general IQA algorithms (IQAA) have shown
poor performance when directly applied to FIQA, and, con-
versely, the very specific FIQA algorithms usually do not
generalize to the broader application field of IQA.

General non-biometric IQA typically aims to assess images
in terms of subjective (human) perceptual quality, meaning that
technically objective quality scores generated by such IQAAs
usually intent to predict or model subjective perceptual quality
[78].

Biometric FIQA on the other hand is usually concerned with
the assessment of the biometric utility for facial biometrics,
which can be objectively defined in the context of specific FR
systems. FIQA works may also test or train FIQAAs using
ground truth data stemming from human quality assessments,
but for biometric purposes the intent still differs from general
perceptual quality assessment, insofar that the question is how

well the images can be used for facial biometrics, versus how
good/undistorted the images look overall for a human.

It can be expected that perceptual quality and biometric
utility coincide to some degree, thus general IQA can be
utilized for FIQA as well. The reverse is less likely, since
FIQA algorithms may be specifically developed for face
images, so that results for non-face images are not expected
to be useful. This also means that FIQA can perform better
for the purpose of biometric utility prediction than a general
IQA that has not been developed with facial biometrics in
mind. Some of the surveyed FIQA literature tested known
IQA algorithms together with specialized FIQA algorithms.
For instance, Terhörst et al. [50] tested the general IQAAs
BRISQUE [79], NIQE [80], and PIQE [81]) together with
their fully FR-specialized SER-FIQ FIQAA and three other
FIQAAs.

C. Full/Reduced/No-reference Quality Assessment

IQA literature draws a distinction between approaches that
require a “reference” version of the input and those that do
not [74][54][48] (not to be confused with biometric references
[70], e.g. in a FR database):

• Full-reference: IQA that compares the input image
against a known reference version thereof, i.e. a version
that is known to be of higher or equal quality. Conversely,
the input image can be seen as a potentially degraded (e.g.
blurred) version of the reference image.

• Reduced-reference/Partial-reference: Similar to full-
reference IQA, a reference version of the input image
has to exist first, but only incomplete information of the
reference is known and used for the IQA, e.g. some statis-
tics of the image. The distinction between full-reference
and reduced-reference approaches is not necessarily clear,
since full-reference approaches may also “reduce” their
input to a different representation, with information loss,
before the comparison step.

• No-reference: No reference version of the input image
is required for the IQA. Note that such an IQAA can
still use other forms of internal data: An IQAA could
e.g. utilize some fixed set of images unrelated to the
input image and still be categorized as no-reference IQA.
Likewise, machine learning IQA models are not automat-
ically classified as reduced-reference IQA just because
they incorporate information from training images.

See Figure 4 for an illustration of the three concepts. Full-
or reduced-reference approaches are more common and viable
for IQA than for FIQA, since both an original and a degraded
image exists, e.g. for an image or video compression scenario
[78] (a use case neglected by FIQA literature so far). Almost
all of the published FIQA literature more specifically con-
sidered single-image input FIQA approaches, which implies
no-reference FIQA, and means that no other data specific to
the corresponding person (or biometric capture subject [70])
is required to facilitate the FIQA. An outlier is the recent
work from Dihin et al. [82], which does consider multiple
full-reference IQAAs for face images, for both FIQA and for
FR. Note that any FR comparison method can technically fall
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Fig. 4. Full-reference, reduced/partial-reference, and no-reference quality
assessment approaches differ in the used input data, as described in section II.

under the definition of full/reduced-reference (F)IQA if the
comparison scores are repurposed as quality scores. Further-
more, any full/reduced-reference (F)IQA method can techni-
cally be used as a no-reference method if an image degradation
function is added, such that the single input image serves
as the unmodified “reference” as well as the degraded input.
Obviously this has less potential for FIQA than specialized
approaches. Nonetheless, this idea has in fact been applied to
utilize full-reference IQA for single-image face presentation
attack detection (PAD). An prominent example for this is the
work by Galbally and Marcel [83], which incorporated various
full-reference IQAAs and applied Gaussian filtering as the
degradation function, using the IQAA output to classify the
input image as either genuine or as a presentation attack. Many
of these PAD works which are utilizing full-reference IQA
appear to use similar IQAA configurations, and neither FIQA
nor FR is their primary concern, so we do not reference more
herein.

D. The Quality Paradox

Usually FIQA algorithms are intended to predict biometric
utility for a single biometric sample, meaning that a single
quality score is produced for a single image. Predicting
biometric utility in the context of face recognition implies that
the quality score has to indicate the “accuracy” or “certainty”
of comparison scores generated for a sample pair that includes
the assessed sample. Thus, a FIQAA only receives a single
sample S, which is also part of one or more comparisons with
other samples unknown to the FIQAA during the assessment
of sample S. This conceptual problem is referred to as the
“quality paradox”. How FIQA approaches are affected by this
quality paradox differs with the concepts:

• FIQA approaches that only repurpose general IQA meth-
ods are already inherently not conceptually linked to FR
utility, i.e. independently of the quality paradox.

• FIQA approaches trained on ground truth QSs do have to
consider the quality paradox when the ground truth QSs
are generated:

– Relying on human-defined ground truth QSs will
generally depend on the subjective assessments,
again technically independent of the quality paradox,

except for human quality assessments that are guided
by some protocol (e.g. collective human FIQA via
pairwise comparisons in [57]).

– For FR-derived ground truth QSs the quality paradox
becomes fully relevant, since the FR comparison
pairs have to be selected and the pairwise FR com-
parison scores have to be transformed into QSs
per sample. Thus, the task of deriving the ground
truth QSs itself becomes important to the FIQA
design. Some recent examples of differing ground
truth generation approaches are:
∗ FaceQnet v0 [53]: Normalized comparison score

between a target sample and a mated ICAO-
compliant (i.e. assumed high quality) sample as
the target sample ground truth QS.

∗ FaceQnet v1 [48]: Extended the FaceQnet v0 [53]
approach by score fusion for multiple FR systems.

∗ PCNet [47]: FIQA model training with loss as
the squared difference between the minimum of
the predicted per-sample QS for a mated pair
of samples and a corresponding FR comparison
score.

∗ SDD-FIQA [45]: Computed the ground truth QS
per sample as the Wasserstein distance between
FR comparison score sets for randomly selected
mated and non-mated pairs (that each include the
sample).

• There also exist FIQA approaches that directly use FR
models during training/inference without ground truth QS
generation, and approaches that unify FR/FIQA in one
model. While these approaches still technically have to
contend with the limits imposed by the quality paradox
for single-sample FIQA, they can more directly estimate
the quality (or “certainty”) of the feature embeddings that
the FR model generates.

The data aspect categorization described in subsection III-B is
especially relevant with respect to these considerations.

E. Application Areas of FIQA

There are various use cases for FIQA:
• Acquisition process threshold: Face images that result

in a quality score below a set threshold can be rejected
during the acquisition process [70]. Besides assessing
image data stemming directly from cameras, FIQA could
also be applied to measure the impact of printing and
scanning, but among the surveyed literature this was only
evaluated indirectly in one work by Liao et al. [20].

• Acquisition process feedback: One or multiple FIQAAs
may not only be used for image rejection, but also
to provide feedback to assist the FR system operator.
E.g. individual requirements from ISO/IEC 39794-5 [76],
ICAO [84][85], or ISO/IEC 19794-5 [86] can be checked
and reported automatically when an image is acquired
for FR system enrolment [70], or for passports and
other government-issued ID documents. Capture subjects
[70] themselves can also receive immediate feedback
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for possibly less rigid requirements, e.g. during ABC
(Automatic Border Control) at airports.

• Quality summarization [87]: Quality can also be mon-
itored by summarizing it over time, for different cap-
ture devices [70] or locations [68], or per user. This,
for instance, enables the identification of defective or
underperforming capture devices, problematic locations,
times of day, or seasonal variations, as well as users that
consistently yield low quality samples [87].

• Video frame selection: Images in a video sequence can
be ranked and selected by their assigned quality scores.
This can be used e.g. to improve both computational per-
formance and recognition performance for identification
via video-surveillance.

• Conditional enhancement: Optional image enhancement
could be applied to images within a certain quality
range: Images of sufficiently high quality may not require
enhancement, images with very low quality may not
be salvageable by enhancement, and images within a
medium quality range may be adequate for enhancement.
In addition, multiple enhancement steps could be applied
depending on the quality variation after each application,
and different enhancement configurations may be selected
for different quality aspects. While image enhancement
could be applied to every image unconditionally, this
could technically degrade/falsify otherwise high qual-
ity images, and introduce a significant computational
overhead that could make additional hardware neces-
sary (e.g. GPUs). The former drawback was shown e.g.
for illumination FIQA by Rizo-Rodriguez et al. [23].
Likewise, the FIQA application list of Hernandez-Ortega
et al. [48] noted [88] and [89] as examples for the
latter drawback, with [88] listing multiple methods taking
seconds to minutes, while [89] states a requirement
of 30ms per single image using a GPU. Furthermore,
multiple images can be selected by quality as a collective
basis to construct an improved image - this was done
in an enhancement approach stage of the video-focused
method by Nasrollahi and Moeslund [21]. Lastly, it is also
possible to enhance image regions individually depending
on region-specific quality scores, which was done in one
approach of Sellahewa and Jassim [65].

• Compression control: The change in quality can be mea-
sured when an image is compressed in a lossy fashion.
Analogous to conditional enhancement, this measurement
can further be used to control the compression, e.g.
by iteratively adjusting the overall compression factor.
Besides the FIQAA literature listed in this survey, it is
also possible to employ full/reduced-reference FIQA/IQA
for this use case, since a reference is available in the form
of the compression input image.

• Database maintenance: Existing images in a database
can be ranked and filtered by quality. This means that
the image with the highest quality can be selected per
subject, and that a FR system operator can be notified au-
tomatically if a subject has no image of sufficient quality.
In systems that do not store images to preserve privacy or
storage space, any FIQAA of course needs to be applied

beforehand to obtain a quality score (QS). Furthermore,
images or templates [70] in the database can be updated
in a controlled manner, by comparing the associated
QS to the QS of a new image/template. This could be
done automatically e.g. after a successful verification.
Hernandez-Ortega et al. [48] noted that such updates
may also consist of incremental improvements [90][91],
instead of replacements. Besides subject-specific incre-
mental improvements, new quality-controlled data can
also be employed to improve biometric models via online
learning [92][74]. Database maintenance, in conjunction
with quality summarization/monitoring, is especially rel-
evant in large systems with multiple contributors to a
single central database, such as the European Schengen
Information System (SIS), the VISA Information System
(VIS), the Entry Exit System (EES), or the US ESTA
(Electronic System for Travel Authorization).

• Context switching [74][48]: A recognition system can
adapt to different quality contexts by switching between
multiple recognition algorithm configurations (or modes
[70]), using quality assessment for the switch activation
[93]. Such a strategy does not necessarily have to be
applied to a pure FR system - it could also be devised
for a multi-modal biometric system [70].

• Quality-weighted fusion [74][48]: Similar to full context
switching, a biometric system can fuse scores or decisions
in a weighted fashion based on quality assessments
[94][95]. Quality-based feature-level fusion for face video
frames is considered e.g. in the surveyed literature [11]
and [52].

• Comparison improvement: Quality can be used directly
as part of FR comparisons [70]. For example, Shi and Jain
[52] computed quality in terms of uncertainty for each FR
feature dimension and incorporated it in their comparison
algorithm.

• Face detection filter: In more general terms than video
frame selection, FIQA could inherently be used to in-
crease the robustness of face detection by ignoring can-
didate areas in an image with especially low quality. This
kind of application is however only indirectly examined
through the video frame selection works among the
surveyed literature. Conversely, the confidence of face
detectors themselves can be utilized as a type of FIQA,
which was used by Damer et al. [11].

• Partial presentation attack avoidance: Although the
surveyed literature does not focus on this application,
rejecting or weighing images based on their assessed
quality can also reduce the opportunities for presentation
attacks [70][96], since accepting images for enrolment or
as probe irrespective of their quality could be a poten-
tial vulnerability. FIQA or IQA can also be employed
specifically for the purpose of PAD (Presentation Attack
Detection) [97]. Pure FIQA is however not meant for
comprehensive PAD, because such attacks can consist of
data with high biometric utility too.

• Progressive identification: An identification system
could conduct searches going progressively from the
highest quality reference templates to the lowest quality
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ones. Assuming that these templates vary noticeably in
quality and that the search requires an extensive amount
of time, such a strategy can help by showing results
with higher confidence (due to higher qualities) early
on in the search process. This could also be used to
stop a search early, i.e. once a number of matches
with acceptable certainty has been found. However, a
sufficiently fast identification over the entire database
makes such considerations irrelevant, and this approach
is presumably not as useful as general computational
workload reduction strategies surveyed by Drozdowski
et al. [98], since it relies on the existence of exploitable
quality variation in the database. While the listed FIQA
literature does not explore this approach, it does con-
sider FIQA-based computational workload reduction in
terms of video frame selection. Instead of progressing
from highest to lowest quality, Hernandez-Ortega et al.
[48] noted that the system could use the quality of the
probe image to start with comparisons to templates of
similar quality, which may also imply similar acquisition
conditions, and thus could improve the accuracy.

III. CATEGORIZATION

The surveyed works are categorized using a taxonomy and
several additional aspects. At the highest level our taxonomy
differentiates between factor-specific FIQA approaches and
monolithic FIQA approaches. The factor-specific taxonomy
branch subdivides methods into categories for interpretable
(and typically actionable) factors, such as blur, which could
help an operator to avoid face image deficiencies in a re-
capture attempt. The monolithic approaches produce com-
paratively opaque assessments/quality scores, which cannot
be immediately interpreted with respect to some concrete
separable factor by themselves, but can indicate overall FR
utility. As described in subsection III-A, some of the factor-
specific branches can be seen as predominantly capture-related
or subject-related. The subsequent subsection III-B, subsec-
tion III-C, subsection III-D, and subsection III-E describe
aspects that are assigned per literature in Table III and Ta-
ble IV. Figure 6 shows an overview of both the taxonomy and
the per-literature aspect abbreviations. The primary approach
commonalities are described together with the corresponding
literature references in subsection IV-A and subsection IV-C.

Note that the taxonomy is meant to group common FIQA
approaches in the surveyed literature, it is not meant to
enumerate all feasible FIQA concepts. Also note that many
of the surveyed works described multiple approaches that
belong to different categories of the taxonomy. Some of the
surveyed works considered certain quality measure types, but
did not specify a concrete approach, and are consequently not
present in the method-specific reference lists of the taxonomy-
describing text passages (e.g. pose in [34] or [16]).

A. Aspect: Capture- and Subject-related FIQA

ISO/IEC TR 29794-5:2010 [66] includes an informative
facial quality classification scheme that distinguishes between

static/dynamic subject characteristics/acquisition process prop-
erties. At the time of writing a standard ISO/IEC 29794-5 is
under development, which will replace the former Technical
Report (TR), and it is intended to further categorize its
included factor-specific measures as either capture-related or
subject-related.

Capture-related FIQA is influenced by circumstances ex-
ternal to the capture subject, such as the used sensor (e.g.
camera focus, resolution) or the illumination setup. Subject-
related FIQA conversely is influenced by the subject, e.g. pose,
expression, or movement. While some methods or factors can
be predominantly seen as either capture- or subject-related,
others are more obviously influenced by a mixture of capture-
and subject-related properties. This can be mapped directly to
the factor-specific categories used in this survey, instead of
individual methods or papers:

• Size - Inter-eye distance: This is subject-related (distance
to camera, facial structure). It is technically capture-
related as well, since the camera/image resolution is
involved, but that typically is a static acquisition property.
I.e. it is usually assumed that the camera and its resolution
cannot be improved during acquisition, meaning that only
the distance to the subject can be adjusted in a re-capture
attempt.

• Size - Image resolution: If the considered image was
cropped to the face, then the measure is subject-related
similar to inter-eye distance. Otherwise, if the camera’s
full image resolution is assessed, this factor is fully
capture-related.

• Illumination: Illumination is generally seen as a dynamic
acquisition process property [66], i.e. capture-related. But
measures may be influenced by subject-related proper-
ties too - e.g. facial hair and skin tone (lighter/darker
hair/skin), or possibly pose. Conversely, it is of course
also possible that illumination conditions happen to be
sufficiently extreme to disrupt any primarily subject-
related measure.

• Pose: This is predominantly subject-related.
• Blur: Blur is both capture-related and subject-related,

since it can be caused by subject/camera motion, or
improper camera configuration.

• Symmetry: Measures for symmetry depend on symmetric
illumination, and most of the surveyed variants implicitly
measured frontal pose deviation as well (landmark-based
approaches being the exception, although they naturally
still rely on a pose that allows landmark detection).
Thus these measures are both capture-related and subject-
related.

Monolithic approaches can by definition generally be consid-
ered as both capture-related and subject-related.

B. Aspect: Data

The following data aspect categories are ordered to reflect
the degree of FR(-data)-integration or -utilization, ranging
from hand-crafted designs to full FR model integration:

1) Dhc - Hand-crafted: Methods that do not require any
training data, except for the optional tuning of parame-
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Fig. 5. Timeline of the surveyed FIQA literature with categories as depicted by Figure 6. Numbers in the bars denote literature counts.

Illumination

Brightness moments

Contrast

Uniformity

Blur

Edge analysis

Frequency analysis

Low-pass filter

Symmetry

Holistic

Whole image

Fitted to face

Localized

Key points

Facial landmarks

Pose

Facial landmarks

Appearance templates

Reconstruction error

Center of mass

Size

Inter-eye distance

Image resolution

Dynamic range

Entropy

FIQAA

Factor-specific Monolithic

Other

Attributes

Noise

Skin tone

...

Opaque machine learning

Opaque machine learning

Data
Dhc Hand-crafted
Duat Utility-agnostic training
Dhgt Human ground truth training
Dfrt FR-based ground truth training
Dfri FR-based inference
Dint FR-integration

Fusion
Fe Explicit
Ft Trained
Fc Cascade

None
Deep Learning

Dl Used
Not used

Video
V Video-frame context

Single image context

Fig. 6. A taxonomy of the FIQA approaches in the surveyed literature (left), with additional separate aspect-specific categories (right).

ters such as thresholds. All of the surveyed approaches
belonging to this category are factor-specific, such as for
example the symmetry and blur measures in [26].

2) Duat - Utility-agnostic training: Methods that require
some kind of training data, but do not train to predict
ground truth QSs. Pose angle estimation for FIQA is one
example where training may be required, but where the
training does not intend to directly predict utility. This
category also includes approaches that compare the input
image against information (e.g. some image statistics)
derived from a training set, as long as this comparison
does not use a FR system. In this category, a concrete
example for a factor-specific approach is the landmark-

based pose estimation in [22], and a concrete example
for a monolithic approach is [62], which compares the
input against a fixed averaged image.

3) Ground truth QS training: Approaches that are trained
using ground truth QSs to predict utility or subjective
estimates thereof.

a) Dhgt - Human ground truth: Works using human
assessments for training. The multi-branch deep
learning model in [3] is a factor-specific example in
this category, and the deep learning model trained
on human-derived binary quality labels in [51] is
a monolithic example.
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b) Dfrt - FR-based ground truth: Ground truth QSs
were derived either via one or multiple FR systems.
A recent factor-specific example for this category
is the random forest fusion in [1], and a prominent
monolithic example is “FaceQnet” [53][48].

4) Dfri - FR-based inference: Approaches that directly uti-
lize FR models during FIQA model training or inference,
without FIQA model training on ground truth QSs. This
obviates a distinction between FR-derived and human-
defined ground truth QSs, although e.g. the subject
identities of the FR training data may still be specified
by humans. The used FR models themselves are not
modified with respect to their FR feature inference. All
surveyed approaches in this category are monolithic.
Recent examples are “SER-FIQ” [50] and “ProbFace”
[46].

5) Dint - FR-integration: Hybrid FR/FIQA approaches that
simultaneously trained FR and FIQA as part of a single
integrated system/model, generating both FR features
and quality assessment output during inference. The only
surveyed approaches that fall into this category are the
recent monolithic “data uncertainty learning” [49] and
“MagFace” [44]. Most recently, the latter has also been
included in pure evaluation literature [41][40].

Many surveyed works considered multiple clearly separable
approaches. Thus, to minimize clutter in the overview tables,
each work is marked only with the highest applicable category
as per the list order above, i.e. from Dhc to Dint.

C. Aspect: Fusion

Various works fused multiple separable FIQAAs. Note that
only pure FIQAA fusion methods are marked, since some
surveyed works included approaches that also incorporated
non-FIQAA-derived information into the fusion, such as FR
scores [36] or EXIF data [16]. While the output of fusion
methods may be similarly opaque to the output of monolithic
FIQAAs, their input FIQAAs can be (and often were) factor-
specific.

• Fe - Explicit: These approaches derived a single QS
from the output of the separable FIQAAs by comput-
ing weighted sums with manually determined weights
[31][30][21], or via other hand-crafted fusion functions
[23][19][12][42].

• Ft - Trained: Trained fusion approaches did likewise
include weighted sum computation, except with auto-
matically derived weights [15][60][57], but more often
relied on various types of machine learning models such
as ANNs (Artificial Neural Networks, including deep
learning) [39][34][23][6][3], GMMs (Gaussian Mixture
Models) [39][33][14], AdaBoost [10], or random forests
[8][7][1].

• Fc - Cascade: Cascaded approaches [37][20][14][13][7]
combined FIQAAs in multiple stages. Since the cascade
algorithm itself was hand-crafted in all surveyed cases,
these approaches can be considered as a special kind of
explicit fusion. The difference to the other explicit fusion
methods is that these approaches can exit the cascade

early in each stage if the quality is deemed to be too
low. This design can help to reduce the computational
workload of the entire quality assessment subsystem
when many of the input images are of low quality, e.g.
in a video frame selection scenario. While the FIQAAs
within the stages are clearly separable, approaches may
reuse common data to further improve computational
efficiency, as done in [37]. Also, while the per-stage
FIQAAs are clearly separable in the sense that they
could technically be used as individual FIQAAs, the
cascaded SVM (Support Vector Machine) approach in
[20][7] trained binary SVM classifiers specifically for
the cascaded combination, which used the early exits to
determine a discrete quality level per stage (1 to 5).

D. Aspect: Deep Learning

The surveyed FIQA literature can be broadly categorized
into works that do not make use of deep learning for FIQA
(“non-DL”) and works that do (“DL”). Most of the surveyed
works overall are non-DL literature, but the majority of the
more recent works are DL literature. The trend towards DL-
based FIQA research is illustrated by the timeline in Figure 5.
In the taxonomy most of the non-DL works belong to the
factor-specific branch, while most DL works can be found un-
der the monolithic category. Note that non-DL literature does
encompass FIQA approaches based on other kinds of machine
learning (including shallow artificial neural networks), as well
as purely hand-crafted methods. The DL literature is marked
with “Dl” in the tables.

E. Aspect: Video

While face video quality assessment that used temporal
inter-frame information is outside the scope of this face
(single-)image quality assessment survey, we do include video-
centric literature that used single-image methods to assess
isolated video-frames. These works are marked with “V” in
the tables to distinguish them from the “pure” FIQA works,
but be aware that this does not indicate a technical difference
of the FIQAAs themselves.

IV. FACE IMAGE QUALITY ASSESSMENT ALGORITHMS

The following subsections and tables are divided into the
factor-specific and monolithic categories introduced in sec-
tion III. For each there is one subsection that highlights the
overarching commonalities/differences (factor-specific subsec-
tion IV-A, monolithic subsection IV-C), followed by a corre-
sponding subsection with introductions for all of the surveyed
works in chronological order (factor-specific subsection IV-B,
monolithic subsection IV-D). Table III (factor-specific) and
Table IV (monolithic) provide a condensed overview of the
literature, and show the categorization of the works for every
aspect listed in Figure 6. Table II additionally lists the datasets
used to develop and evaluate the FIQA approaches of the
surveyed literature. The implications of the dataset variety are
discussed in subsection VI-A.
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TABLE II
DATASETS THAT WERE USED IN THE LITERATURE TO CREATE OR EVALUATE FIQA APPROACHES. IN-HOUSE DATASETS OR DATASETS USED ONLY FOR

OTHER PURPOSES (SUCH AS PURE FR MODEL TRAINING) ARE NOT LISTED. THE LEFT TABLE LISTS DATASETS THAT WERE USED ONCE, AND THE RIGHT
TABLE LISTS DATASETS USED IN MULTIPLE WORKS. THE FIQA LITERATURE REFERENCES IN THE RIGHTMOST COLUMNS ARE PRECEDED BY MARKERS

THAT DENOTE THE USAGE TYPE: C - DATASET USED ONLY FOR FIQAA CREATION (MODEL TRAINING OR MANUAL CONFIGURATION);
E - ONLY FOR FIQAA EVALUATION; B - BOTH CREATION & EVALUATION.

Dataset Year Used in
UTKFace [99] 2021 E [45]

CyberExtruder [100] 2020 E [48]
MEDS-I [101] 2020 B [1]

IJB-S [102] 2019 E [52]
ImageNet [103] 2019 C [54]

CMU-FIA [104] 2018 B [56]
NCKU face [105] 2018 C [55]

FIIQD [9] 2017 B [9]
Honda/UCSD [106] 2017 E [7]

FEI [107] 2016 B [58]
MIT [108] 2016 B [58]

AFLW [109] 2015 B [60]
BioLab-ICAO [17] 2012 B [17]

IIT-NRC [110] 2011 E [21]
Pointing’04 [111] 2011 C [21]

XM2VTS [112] 2010 B [23]
FRI-CVL [113] 2008 E [30]

HERMES project [114] 2008 E [30]
Cohn-Kanade [115] 2007 B [33]

WVU [116] 2007 B [33]

Dataset Usage timespan Used in
LFW [117] 2011 to 2021 17: B [7][57][60] E [3][6][22][40][42][43][44][45][46][48][49]

[50][52][54]
FERET [118] 2007 to 2020 9: B [33][58][60][64] C [50] E [12][19][22][26]

VGGFace2 [119] 2019 to 2021 7: B [48][53] C [47] E [40][42][46][54]
CASIA-WebFace [120] 2017 to 2021 7: B [6][51][52] C [45][57] E [3][54]

CAS-PEAL [121] 2009 to 2018 6: B [12][58][61] C [19][55] E [27]
FRGC [122] 2006 to 2018 6: B [10][13][34][60] C [14][55]

MS-Celeb-1M [123] 2019 to 2020 5: B [52] C [49][50][54] E [3]
CFP [124] 2019 to 2021 5: E [43][44][46][49][52]

IJB-C [125] 2019 to 2021 5: E [44][45][47][49][52]
YTF [126] 2014 to 2020 5: B [15] E [6][11][49][52]

MS1MV2 [127] 2021 4: C [43][44][45][46]
IJB-A [128] 2017 to 2019 4: B [3] C [54] E [52][57]

ChokePoint [64] 2011 to 2018 4: B [56][59] E [55][64]
SCface [129] 2011 to 2018 4: B [61] E [22][55][60]

Extended Yale [130] 2010 to 2018 4: B [23][62][65] C [55]
CPLFW [131] 2021 3: E [43][44][46]

IJB-B [132] 2021 3: E [43][44][46]
Adience [133] 2020 to 2021 3: E [43][45][50]

BioSecure [134] 2019 to 2021 3: E [40][48][53]
GBU [135] 2012 to 2014 3: B [12][19] E [16]

AT&T [136] 2010 to 2016 3: B [58][65] C [14]
CMU-PIE [137] 2009 to 2011 3: C [24] E [26][64]

FRVT 2006 [138] 2008 to 2010 3: E [24][25][28]
Yale [139] 2007 to 2014 3: B [12][19] E [32]

BANCA [140] 2006 to 2008 3: B [35][36] E [29]
AgeDB [141] 2021 2: E [44][46]

CALFW [142] 2021 2: E [44][46]
MEDS-II [143] 2019 to 2020 2: B [2][4]

MegaFace [144] 2019 to 2020 2: E [49][52]
AR [145] 2014 to 2018 2: C [14][55]

PaSC [146] 2013 to 2018 2: B [56] E [16]
MBGC [147] 2012 to 2014 2: E [12][19]

Q-FIRE [148] 2012 to 2014 2: E [12][18]

The surveyed FIQA works have been developed by a large
variety of research groups. Independently of author relation-
ships, various FIQA works are clearly based on prior work,
which is noted both in the introductory literature text and the
overview tables.

A. Factor-specific - Commonalities
The factor-specific approach commonalities can be de-

scribed by the factor subcategories depicted in Figure 6:
• Size: Testing the inter-eye distance [34][32][28][25][17]

[16][1] or the image resolution [37][31][30][21][15]
against some threshold is a comparatively simple ap-
proach to FIQA. It is present in various mostly older
works alongside other FIQA methods. The referenced
image resolution approaches mostly considered images
cropped to the face and focused on video-frame selection.
Besides the face detection step, using the image resolution
is trivial, while inter-eye distance requires eye landmark
detection.

• Illumination: Many of the surveyed works included
mostly simple illumination measures, comprising the
brightness moments (mean, variance, skewness, or kurto-
sis) [39][33][30][21][19][12][16][7][5][1], contrast mea-
sures [32][19][12][16][5][1], dynamic range measures

[34][31][7], entropy measures [13][10][11], or uniformity
measures [34][23][22][24][9]. Note that “illumination” is
of course also directly or indirectly measured by FIQAAs
categorized under other parts of the taxonomy, which
are consequently not listed here to avoid many duplicate
listings of the same FIQAAs.

• Blur: Blur measures, or conversely sharpness measures,
are also known as (de)focus measures. The measures can
be subdivided into edge analysis approaches [36][35]
[34][32][29][28][25][24][18][17][19][12][16][15][8][5]
[1], frequency analysis approaches [33][31][26][18][13]
[10], and low-pass filter approaches [30][21][26][18].
Edge analysis involves image gradient computation,
frequency analysis inspects the image transformed into
the frequency domain, and low-pass filter approaches
compare an artificially blurred version of the image with
the original. Besides these more common subcategories,
there were some comparatively opaque (i.e. less easily
explainable) deep learning approach among the FIQA
literature that measured blur [6][3].

• Symmetry: Holistic symmetry measures compare the en-
tire left and right half of the face. The halves are defined
either as fixed left/right splits of the whole input image
[29][26][16][8][5], or are fitted to the face within the
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TABLE III
FACTOR-SPECIFIC FIQA LITERATURE IN REVERSE CHRONOLOGICAL ORDER.

Reference Aspects Method(s) Datasets
2020 [1] DfrtFt 17 hand-crafted ISO/IEC TR 29794-5:2010 [66] related measures: Left-right symmetry

×7, capture-related ×10; 11 fused as random forests. 2 black-box COTS systems for FR.
MEDS-I

2020 [2] DlDuat 3 binary attributes (Eyes open, glasses, frontal); Non-DL: 23 models, i.a. SVMs; DL:
Pretrained AlexNet [149], GoogLeNet [150]. Best results via SVM+DL score-level fusion.

In-house, MEDS-II

2019 [3] DlDhgtFt Multi-branch CNN trained for 4 factors: Alignment, Occlusion, Pose, Blur (+ fused overall
QS); QS ground truths manually annotated for 3000 images.

IJB-A, MS-Celeb-1M,
CASIA-WebFace, LFW

2019 [4] DlDuat Same as [2], but i.a. with smartphone images. Continuation of [2]. In-house, MEDS-II
2019 [5] Dhc 8 factors compared to mean scores from 26 humans. Continuation of [8]. In-house (Smartphone)
2018 [6] DlDfrtFt CNN with MFM[151] & NIN[152] layers, trained using 15 synthetic degradation classes

(5 types × 3 settings).
CASIA-WebFace, LFW, YTF

2017 [7] DhgtFcFt Subjective QS random forest, 7 hand-crafted features. LFW, Honda/UCSD
2017 [8] DfrtFt 9 factors plus random forest: Lighting symmetry, Pose symmetry, Brightness, Image

contrast, Global Contrast Factor, Exposure, Blur, Sharpness, Vertical edge density.
In-house (Smartphone)

2017 [9] DlDhgt ResNet-50 trained on subjective illumination QSs. Open source. FIIQD
2015 [10] DfrtFt AdaBoost on 3 “objective” measures [13] + optional training-set-“relative” measures.

Continuation of [13].
FRGC

2015 [11] DuatV Entropy, Viola-Jones [153] face detection confidence. YTF
2014 [12] DfrtFe ANN on 5 factors/7 measures equivalent to [19] vs. logistic regression, SVR, and 10

normalization/fusion combinations. Continuation of [19].
CAS-PEAL, Yale, GBU, FERET,
MBGC, Q-FIRE

2014 [13] DuatFcV Pose/Alignment (Reconstruction), Blur, Illumination. FRGC
2014 [14] DuatFcFtV Two stages: 1. Pose (yaw/roll), 2. 12 GLCM features [154] fed into a GMM. In-house (ABC), FRGC, AR,

AT&T
2014 [15] DfrtFtV Facial symmetry, Illumination, Blur, Resolution. YTF
2013 [16] Dhc 9 FIQAA, i.a. Illumination (Direction), SEMC focus [24], Edge density [25], . . . , and

SVM vs. GPO oracle. Continuation of [24].
Unknown, GBU, PaSC

2012 [17] Duat 30 factors, i.a. Hair Across Eyes, Looking Away, Varied Background. BioLab-ICAO
2012 [18] Dhc Blur (MTF vs.: ED [155], LoG, SG, DCT). Q-FIRE
2012 [19] DuatFe 12 measures: Sharpness ×4, Contrast ×2, Illumination ×2, Focus ×2, Brightness ×2;

Combined FIQAA with 7 factors.
CAS-PEAL, Yale, GBU, FERET,
MBGC

2012 [20] DhgtFc 5-class cascade SVM with Gabor magnitude features. In-house
2011 [21] DuatFeV Pose (Linear Auto-associative Neural Networks), Illumination, Blur, Resolution. QS

relative to face image sequence. Continuation of [30].
In-house (100 videos),
Pointing’04, IIT-NRC

2011 [22] Duat Landmark-based: Pose (Yaw/pitch/roll), Illumination (Histogram mass center variance),
Symmetry (Lines).

FERET, LFW, SCface

2010 [23] DhgtFeFt Illumination of triangle mesh regions (Mean, ANN-weighted, Combined). Extended Yale, XM2VTS
2010 [24] Dhc Illumination (Direction), SEMC focus, Edge density. Continuation of [25]. FRVT 2006, CMU-PIE
2010 [25] Dhc Region density, Edge density, Eye distance. Continuation of [28]. FRVT 2006
2009 [26] Dhc 2 factors: Asymmetry (Imaginary Gabor filters), Sharpness ((I)DCT). FERET, CMU-PIE
2009 [27] Dhc Symmetry (3 variations based on SIFT [156]). CAS-PEAL
2008 [28] Dhc Edge density, Eye distance. FRVT 2006
2008 [29] DhcV Blur (Sobel & Laplacian), Symmetry (Per-pixel). BANCA
2008 [30] DuatFeV Pose (Center of mass distance), Illumination, Blur, Resolution. FRI-CVL, HERMES project
2007 [31] DuatFeV Pose (Eye positions via gradient image), Illumination range & symmetry, Blur, Resolution,

Skin content.
Unspecified (7 videos)

2007 [32] Duat 6 factors: Lighting + Pose symmetry (LBP), Inter-eye distance, Illumination strength
(Histogram), Contrast (Standard deviation), Blur (Gradient).

Yale

2007 [33] DfrtFt 4 measures: Blur (Frequency kurtosis), Illumination (Weighted sum), Pose (Yaw),
Expression (GMM).

FERET, WVU, Cohn-Kanade

2006 [34] DhgtFt 27 factors listed, but few metric details; classification-error-based QS normalization; 3×
QS fusion, i.a. ANN-based.

In-house (Passport database),
FRGC

2006 [35] Duat Same as [36], plus another score-level measure. Continuation of [36]. BANCA
2006 [36] Duat Average face image correlation, Blur, Classification score sum of log-likelihoods. BANCA
2005 [37] DhcFc 17 factors: Image resolution/AR, Blur, Illumination, Color balance, Background

uniformity/tone, Shadows, Hot spots, Eyes tilt/position/red/looking away, Head
width/height/rotation.

Unspecified (189 images)

2004 [38] DuatV Pose (Haar features learned via SquareLev.R). Unspecified (300 faces)
2004 [39] DhgtFt RBF-ANN on: Brightness, Spectrum ×7, Noise ×2. Unspecified (850 images)
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image [32][31][8][5][1]. Fixed left/right halves assume
that the face is frontal without rotation, while fitted
halves can account for some degree of head rotation.
Besides these holistic methods there are localized sym-
metry measures which compare a number of paired local
features within the left/right face halves, either based on
general key points e.g. via SIFT (Scale Invariant Feature
Transform) [27], or based on facial landmarks [22][15].
Of the surveyed methods, only the localized landmark-
based measures inherently avoided the inclusion of image
background information, although any of the methods
could be extended to exclusively consider the facial area.

• Pose: Most pose FIQAAs were based on facial land-
marks [37][33][31][22][17][14][7]. Others operated in a
holistic manner by using appearance templates [157] to
estimate pose angle ranges [38][21], by assessing the
frontal face reconstruction error [13][10], by assessing
the pose without angles in terms of the pixels’ center
of mass deviation [30], or via comparatively opaque
machine learning approaches that assessed whether the
pose is frontal or not, either with scalar [3] or binary
[4][2] output. Among the methods that did correspond
to specific pitch/yaw/roll angles (see Figure 3) most did
consider the yaw angle in addition to either the roll or
pitch angle, while the rest considered either only the yaw
angle or all three angles [37][33][22]. The one landmark-
based method that did not correspond to any specific
angle [31] computed the deviation of a landmark-derived
point from the horizontal face center, which is closer to
the holistic center of mass deviation approach of [30].

• Other: There are some comparatively rare factor-specific
FIQA approaches in the literature which were collected
under the “Other” taxonomy category, namely binary
attributes such as with/without glasses in [4][2], noise
measures in [39][6], skin tone measures in [31][34][37],
deep learning “alignment” and “occlusion” measures
based on human ground truth in [3], and miscellaneous
standard requirement check methods such as ink mark &
crease detection in [17][34][37].

B. Factor-specific - Literature introductions
Luo [39] considered general IQA related to brightness, blur,

and noise in the context of face images. Ten features were
extracted from a grayscale image and passed to a RBF (Radial
Basis Function) ANN (Artificial Neural Network) to produce
the final quality score. As an alternative to the ANN, a GMM
(Gaussian Mixture Model) was used as well, but reportedly
resulted in worse performance. The IQAA was trained with
and compared against the quality estimates of a single human
on an unspecified dataset. The 10 features consisted of 1
measure for average pixel brightness, 7 values derived from the
sub-bands of two-level wavelet decomposition, and 2 different
noise measures (one based on a square window with minimum
grayscale pixel value standard deviation, and one combining
the standard deviation of square windows in binarized versions
of the high-frequency sub-bands).

The approach of Yang et al. [38] estimated only the left-
right/up-down pose angle, without producing any kind of

normalized QS other than the binary decision between frontal
and non-frontal pose; faces being declared “frontal” when both
pose angles have absolute values not higher than 10°. While
pure pose estimation literature is outside the scope of this
survey, this paper demonstrated that pose estimation can be
used in isolation for FIQA.

Subasic et al. [37] used 17 FIQAAs based on ICAO Doc
9303 [158] requirements. This includes measures that are less
common among the literature, such as background uniformity
and color balance. The 17 FIQAAs were integrated as part
of a combined FIQA system, reusing background/skin/eye-
segmentation for multiple measures, and hierarchically exe-
cuted, i.e. resolution and sharpness are examined first. The
combined FIQAA was used to determine whether an input
image is ICAO-compliant or not, and the evaluation tested this
binary prediction against 189 correspondingly labelled images
of an unnamed database, correctly classifying 88%. Tolerance
ranges were established based on a small subset of images
where no quantitative ICAO requirements were available, and
some existing ICAO tolerance ranges were relaxed.

In the approach of Kryszczuk and Drygajlo [36], 2 image-
based (“signal-level”) and 1 classification-score-based (“score-
level”) measure were used, and all 3 were combined by means
of 2 GMMs with 12 Gaussian components each for binary
assessments regarding “correct” and “erroneous” FR classifier
decisions. The authors also added another score-level measure
to the approach in [35]. But the inclusion of measures based on
FR classification scores means that the combined method can
only be used after a FR comparison has taken place, so this
component would have to be excluded to allow isolated single-
image FIQA using the remaining 2 image-based methods. Of
these, one measured sharpness as the mean of horizontal/
vertical pixel intensity differences (corresponding to high-
frequency features), and the other computed Pearson’s cross-
correlation coefficient between the face image and an average
face image (corresponding to low-frequency features). The
average face image was formed from the average of the first 8
PCA (Principal Component Analysis) eigenfaces for a given
training image set.

Hsu et al. [34] used 27 FIQA factors, which mostly relate
to ISO/IEC 19794-5:2005 [159] requirements. While only
very brief descriptions of the underlying FIQA approaches
were provided, the work proposed quality score normaliza-
tion and fusion with more details. The normalization per
metric was based on the classification error against binary
human quality labels (“good”/“poor”). Raw quality metric
values were mapped to [0, 1] via 5 raw value thresholds,
interpolated via sigmoid functions. The 5 raw threshold values
were taken from 5 specific points of the false-accept/reject
classification error curves, and corresponded to the quality
scores 0, 0.4, 0.5, 0.7, 1.0. For FIQAA fusion, 3 models were
trained, and the evaluation showed that a non-linear neural
network obtained the best results in terms of correlation with
FR performance.

Abdel-Mottaleb and Mahoor [33] proposed FIQAAs to
assess blur, lighting, pose, and facial expression. Blur was
measured as the kurtosis in the frequency domain. The lighting
QS was formed by a weighted sum of the mean intensity
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values for 16 weight-defined regions, to focus more on the
center of the image. Pose was estimated as the yaw angle
(see Figure 3), derived by comparing the amount of skin
tone pixels between the left/right-side triangle, which in turn
were defined by the 3 center points of the eyes and the
mouth. Fisher Discriminant Analysis (FDA) was employed to
differentiate skin pixels from other regions. To assess whether
the expression is good or bad in terms of quality, a GMM
was trained based on the correct/incorrect decisions of an FR
algorithm for a labeled facial expression dataset.

Gao et al. [32] proposed FIQAAs for asymmetry, inter-
eye distance, illumination strength, contrast, and blur. Light-
ing/pose asymmetry was computed as the sum of the rec-
tilinear distances between the histogram pairs for multiple
LBP (Local Binary Pattern) features at designated locations
in the face image halves. Illumination strength was proposed
to be computed as the difference between a histogram for
the input image and a fixed standard illumination histogram,
contrast as the pixel value standard deviation, and sharpness
as the gradient magnitude sum. The asymmetry metric was
tested in terms of classification accuracy with a small labeled
dataset. The methods have been incorporated into ISO/IEC TR
29794-5:2010 [66] (but the work is only cited directly for the
lighting/pose symmetry part).

Fourney and Laganiere [31] defined a pose QS as linearly
degrading from 0° to 45°, anything above 45° resulting in a
score of 0, a clear contrast to the binary decision in [38]. The
pose estimation in [31] also worked in a different manner,
namely by locating the eye positions in a gradient image,
which was noted to be ineffective for faces with glasses or
non-upright orientation. Based on this pose estimation data, il-
lumination symmetry FIQA was also conducted by comparing
normalized histograms of the left/right side of the face, which
was done in addition to an assessment of the overall utilization
of the available (e.g. 8-bit grayscale) illumination range within
the face image. The remaining factors in [31] were unrelated
to the pose estimation: A normalized blur/sharpness QS was
derived from the frequency domain; the face image resolution/
pixel count was transformed into a normalized QS, with
anything at or above 60 × 60 pixels corresponding to the
maximum (a QS of 1); and a “skin content” measure detected
whether human skin appears to be present in the image, which
was done by determining the percentage of pixels with a hue of
[−30◦,+30◦] and saturation of [5%, 95%]. The final combined
QS of the 6 factors consisted of the number of satisfied per-
factor thresholds, plus a weighted sum of the factor scores to
break ties between video frames.

For the works [30] and [21] from Nasrollahi and Moeslund,
it is important to note that both derived a QS for each of their
factors, except resolution, relative to minimum or maximum
values for a sequence of face images - so the described
approaches are not directly usable for single-image FIQA. We
can remedy this obstacle using simple tricks, for example by
choosing constant minima/maxima, hence why these works are
still included here. The first of the two papers, [30], i.a. cited
[31] and directly adapted the face image resolution factor, but
presented different approaches to measure the other shared
factors: The FIQAA started with information gathered as part

of the face detection stage, which determined potential facial
regions per-pixel by skin tone, applying a cascading classifier
thereon to obtain the face image(s) for further steps. Skin tone
pixel count percentages were however not used directly for a
QS, in contrast to [31] and [17]. Instead, i.a. the facial center
of mass was derived from this per-pixel segmentation. The
paper noted that estimating the pose cannot be reliable when
using facial features (such as the eyes in [31]), since they may
not be visible for sufficiently large angles of rotation, or can
be occluded by e.g. glasses. Therefore the difference between
the facial center of mass and the center of the face image
was used, a method diverging from previously mentioned
approaches that estimated specific angles. Illumination was
measured as the average pixel brightness over the face image
(against the maximum value for a face image sequence; but
here a simple normalization could be applied instead for
single-image FIQA). Sharpness/blur was assessed using the
approach presented in [155], i.e. by first subtracting a low-
pass (3 × 3 mean filtered) version of the face image from
the original per-pixel, then averaging the absolute values of
all these pixel differences. The FIQAA in [21] can be seen
as a continuation of [30], with the sharpness, brightness, and
resolution measures being almost identical. Brightness had
now been more clearly defined as the Y component of the
YCbCr color space and the resolution QS bound was removed
(i.e. it became completely relative to an image sequence). The
pose estimation was changed, stating that the prior center of
mass approach in [30] tended to be sensitive to environmental
conditions. The new approach estimated actual angles and is
adapted from [160], using one auto-associative memory (an
ANN without hidden layers) per detectable pose.

Rúa et al. [29] proposed three FIQA methods in the context
of face video frame selection. One method measured symmetry
by comparing the image against a horizontally flipped version
of itself, calculating the per-pixel difference, meaning that this
measure assumed a centered frontal pose. The other two FIQA
methods assessed blur by computing the average value for
either the Sobel or the Laplace operator over the entire input
image.

Beveridge et al. examined the impact of a number of factors
on FR verification performance in [28] and [25] using GLMMs
(Generalized Linear Mixed Models). Taking the examined
preexisting labels such as age or gender out of consideration,
three described measurements were considered for automatic
image-only quality assessment, one of which is the image reso-
lution/eye distance. Two more complex measurements remain,
with [28] introducing an edge density metric consisting of the
averaged Sobel filter pixel magnitude, and [25] adding a region
density metric that segments the face and counts the distinct
regions. Both of these metrics were applied on grayscale
images, with the face area being masked by an ellipse to
reduce the metrics’ sensitivity to environmental factors in
the rest of the image. The authors continued in [24] by
comparing their edge density metric to two newly introduced
FIQAAs. One was the Strong Edge and Motion Compensated
focus measure (SEMC focus), a successor to the edge density
metric that was computed based on the strongest edges in the
face region (instead of all), which was intended to correlate
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more clearly to focus/blur in images (instead of also being
affected by other factors such as illumination). The second
new FIQAA estimated to which degree a face is lit from the
front (positive number output) or the side (negative number).
Experiments in [24] used GLMMs and FRVT 2006 test data/
FR algorithms similar to [28] and [25], and found that the
illumination measure subsumed both the edge density and the
SEMC focus measure regarding FR performance prediction.
These measures were studied further in [16], as described
below.

Zhang and Wang [27] proposed three symmetry measure
variations based on SIFT [156] (Scale Invariant Feature Trans-
form). The first variation counted the number of SIFT points in
the left and right half of the image, and divided the minimum
of the two numbers by their maximum to obtain the QS. Using
the fixed left/right image halves entails that this measure is
intended for frontal face images. The second QS variation
was formed by the amount of SIFT points that have a mated
point in the other half based on their location. And the third
variation further added a Euclidean distance comparison of the
SIFT feature vectors to define corresponding points, using a
horizontally flipped version of the image to establish target
points with directly comparable SIFT features. As part of the
evaluation, the first and simplest variant was shown to have
the highest correlation with Eigenface- and LBP-based FR
comparison scores.

Sang et al. [26] proposed a Gabor-filter-based asymme-
try FIQAA to assess the illumination/pose, and a sharpness
FIQAA using DCT+IDCT (Discrete Cosine Transform + In-
verse DCT). The asymmetry FIQAA used the left/right halves
of the input image, expecting an aligned frontal image. It was
computed as the sum of the absolute difference between the
left/right pixels for multiple filtered versions of the image
halves, mirroring the right half for the comparison. The
imaginary parts of Gabor filters were used with 5 orientations,
also mirrored on the right half. To assess sharpness, DCT
followed by IDCT was applied to the input image to obtain
a reconstructed version without high-frequency information,
and the difference between both image variants was used to
establish the sharpness value. The asymmetry FIQAA was
examined via score plots for images with different lighting
and pose conditions (of the same subjects), and the sharpness
FIQAA similarly for either unmodified or synthetically blurred
images, demonstrating classification potential for both. The
asymmetry FIQAA approach from [32] was included in the
tests and produced similar output compared to the proposed
FIQAA.

Rizo-Rodriguez et al. [23] presented a frontal illumination
assessment method. First, a triangular mesh was fitted to
the face in the input image. Then the mean luminance was
computed for each of the triangle regions, forming a histogram
of mean luminance values per face, which was observed
to approximate a normal distribution in face images with
homogeneous frontal illumination. This was used to derive
a binary QS using an experimentally obtained threshold. To
additionally account for differences in importance between the
regions, a three layer perceptron was trained for important
regions only - i.e. input neurons for 24 triangles in the vicinity

of the nose. A binary QS was obtained from this ANN as well,
and both of the QS decisions were optionally combined.

De Marsico et al. [22] proposed landmark-based measures
for pose, illumination, and symmetry. For pose, the yaw/
pitch/roll angles were assessed using landmarks for the eye
centers, the tip and root of the nose, and the chin. A weighted
sum of the three [0, 1] angle QSs formed the pose QS,
whereby the weights for yaw (0.6), pitch (0.3), and roll (0.1)
were derived experimentally. Illumination was measured by
applying a sigmoid function to the variance of the mass centers
for 8 gray level histograms, which were computed for areas
around 8 landmarks (3 on the nasal ridge, 2 on each cheek,
1 on the chin). Symmetry was measured by comparing the
grayscale values of point pairs sampled along 8 lines defined
by landmark pairs on each side of the face. All three measures
provided [0, 1] scalar QS results. They were not fused, but it
was noted that the symmetry measure inherently takes both
pose and illumination into account. The evaluations demon-
strated i.a. that the FR performance improvement capabilities
of the measures differed depending on the used FR algorithm.

Liao et al. [20] trained an SVM (Support Vector Machine)
cascade to predict subjective QS labels using Gabor filter
magnitude values as features. The SVM cascade had four
stages, each being a binary classifier, so that the approach
predicted integer QS levels from 1 to 5 (e.g. the first SVM
decides whether the QS is 1, or whether it might be higher).
Two of these SVM cascades were used for two different image
crop sizes, and their output QSs were fused by taking the
mean. Training and evaluation used partitions of a dataset
with 22,720 grayscale images, all with subjective ground truth
QS labels (1 to 5; 1 being the best quality). The evaluation
showed that the fusion approach provided the best predictive
performance overall.

Multiple IQA methods were examined for FIQA by Abaza
et al. in [19], and later [12], i.a. incorporating synthetic image
degradations regarding contrast, brightness, and blurriness
for the evaluations. Of the 12 tested individual measures
in [19], 7 were retained to represent 5 input factors for a
combined single-image FIQAA, using Gaussian models for
normalization and the geometric mean for fusion. Contrast was
measured as the RMS (Root Mean Square) of image intensity,
brightness as the average HSB (i.e. HSV, Hue Saturation
Value/Brightness) color space brightness (computable as the
maximum of the normalized red/green/blue channel value per
pixel [12]), focus as the mean of the image gradient’s L1-norm
and the Laplacian energy [161], sharpness as the mean of the
two average gradient measures [35] and [32], and illumination
using the weighted sum technique proposed by [33]. The
5 measures that were not used for the combined FIQAA
comprise the Michelson contrast measure [162], the brightness
measure from [163], the Tenengrad sharpness measure plus
an adaptive variant from [164], and the luminance distortion
[165] measure previously seen in [65] (but without the face
average as the “reference”). Note that according to both [19]
and [12] the selected brightness measurement was chosen
due to its reduced computational workload in comparison
to the other tested method (which achieved better predictive
performance). Continuing with [12], the same 5 factors based
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on the chosen 7 (of 12) measures were presented as in [19],
but now an ANN was trained to combine the 5 factors without
any prior normalization to produce a binary QS classification.
A single-layer ANN with six neurons was found to provide
the best classification results among 10 different ANNs with
either 1 or 2 layers (and 4 to 20 neurons per layer), logistic
regression, SVR (Support Vector Regression), as well as 10
combination approaches formed from a normalization (×2,
linear or Gaussian model) and a fusion (×5) part, including
the previous method from [19]. However, the tested methods/
ANNs’ 5-factor input vector apparently was the per-element
minimum of the vectors for both a probe and a gallery image,
so here the probe image was not used in isolation.

To measure blur in face images, Hua et al. [18] proposed
using the Modulation Transfer Function (MTF), and evaluated
this approach together with various other blur related mea-
sures: A measure based on the radial spatial frequencies of 2D
DCT coefficients, a Squared Gradient (SG in Table III) metric
that consisted of the gradient image (edge) magnitudes, and a
Laplacian of Gaussian (LoG) method. There also was an Edge
Density (ED) measure, which was formed by first subtracting
the 3 × 3 mean filtered image from the original, then taking
the average of the result’s absolute pixel values [155]. This
measure also occurred in [30], but is not to be confused
with the previously mentioned Sobel filter edge density from
[28] and [25]. The correlation of these measures (applied to
a face image) to a ground truth MTF applied to an optical
chart was assessed, with the face image MTF showing the
highest, and edge density the lowest average correlation, the
other mentioned measures having high correlation closer to
the MTF result.

Ferrara et al. [17] introduced the “BioLab-ICAO” frame-
work for ISO/ICAO-compliance assessment, comprising a
database, a testing protocol, and a set of 30 FIQAAs for
requirements derived from ISO/IEC 19794-5:2005 [159] (plus
corrigenda/amendments). The 30 FIQA measures included
factors that were less common in the surveyed literature,
such as the detection of ink marks or creases. The evaluation
individually tested 23 of the 30 measures, together with 2
unnamed COTS (Commercial Off-The-Shelf) FIQAAs, mostly
in terms of compliance prediction accuracy (range [0, 100])
against ground truth labels. Most of the proposed BioLab-
ICAO methods either outperformed both COTS systems or
lacked a testable COTS counterpart, although the assessment
of various requirements was still deemed to be difficult.
BioLab-ICAO methods were later used in the training data
preparation for FaceQnet v0 [53] and v1 [48].

Phillips et al. [16] examined 13 quality measures, including
the edge density metric from [28] and [25], plus the SEMC fo-
cus measure from [24] (all four of these papers share authors).
There also was an “illumination direction” measure that might
correspond to [24] as well, but this was not clarified. Similar
to the two prior papers [28] and [25], the 13 quality measures
in [16] contained preexisting labels from EXIF (Exchangeable
Image File) metadata, e.g. exposure time, leaving 9 measures
that can clearly consist of FIQA approaches which use the
actual image (pixel) data: Edge density [28], SEMC focus
[24], illumination direction (possibly [24]), left-right side illu-

mination histogram comparison, eye distance, face saturation
(the number of face pixels holding the maximum intensity
value), pixel standard deviation, mean ratio (mean pixel value
of the face region compared to the entire image), and pose
(yaw angle, 0 being frontal). The 13th quality measure was an
SVM that summarized the other 12 measures. Pruning based
on the 13 measures was compared against a Greedy Pruned
Order (GPO) oracle that discarded images in an approximately
optimal fashion to improve FR performance, thus representing
an upper bound for FR performance improvements enabled by
some FIQAA. Experimental results indicated a substantial gap
between the oracle and the 13 quality measures, with various
measures such as the illumination direction additionally lead-
ing to worse FMR (False Match Rate) results. Another FIQAA
using PCA followed by LDA (Linear Discriminant Analysis)
was trained, but it was observed to generalize poorly to the
test set.

In the single-image FIQAA of Nikitin et al. [15] the
resolution and illumination measurement, as well as the fusion
to combine the factor-QSs, did not differ much from what
has been mentioned previously (resolution QS relative to
constants, illumination dynamic range usage QS, fusion via
weighted sum). However, here facial landmarks were detected
to measure symmetry by comparing the left/right landmark-
local gradient histograms, and to measure sharpness via aver-
aged Laplace operator values only within the landmark-defined
facial area.

A two stage approach was proposed for - and evaluated with
- an ABC (Automatic Border Control) system by Raghavendra
et al. [14], with the first stage consisting of a yaw/roll angle
pose estimation based on the eye and nose position. The
final QS was represented by three bins, poor/fair/good, and
if the pose was not detected as frontal, the overall FIQAA
stopped, assigning the image to the poor QS bin. If the pose
was detected as frontal, the second stage decided between
the fair/good QS bin assignment. It consisted of 12 GLCM
(Gray Level Co-occurrence Matrix) features [154], which
were further processed by a GMM (Gaussian Mixture Model)
trained on public non-ABC datasets, and the output thereof
was used to obtain the final binary QS bin decision via a
threshold.

The approach of Kim et al. [13] began by employing
(frontal) face reconstruction to assess pose/alignment quality
as the difference between the original and the reconstructed
face image; then in stage two blur was measured as the kurtosis
of the CDF (Cumulative Distribution Function) of the DFT
(Discrete Fourier Transform) magnitude; and the last stage
assessed brightness by comparing the histogram for the face
image against a given reference histogram, whereby the latter
simply was chosen to be the uniform histogram. Each of
these three stages ended by comparing the error value result
against a predefined threshold, aborting the overall FIQAA if
the threshold was exceeded. This cascaded approach in [13]
was primarily meant to reduce the computational complexity
for video processing. In the follow-up paper [10] the same
three measures were utilized, but without the cascaded ap-
proach. Instead, the output of the three so called “objective”
measures formed a QS vector. An additional “relative” quality
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measurement was conducted to assess the dissimilarity of the
input image (e.g. from the test dataset) to the training dataset
images. This was done via a multivariate Gaussian distribution
for a 6-dimensional vector, consisting of the averaged red/
green/blue color channel values, and the three aforementioned
“objective” measure values. To finally predict a binary QS
label, an unspecified number of weak classifiers were learned
via AdaBoost to form a combined FIQAA, the input thereof
being a 9-dimensional vector made up of the 3-dimensional
“objective” and 6-dimensional “relative” measure output. Note
that the “relative” measure is entirely optional, but it did
improve the quality assessment according to the evaluation in
[10]. In these evaluations both variants of the proposed FIQAA
appeared superior to the also tested RQS [60], which seemed
to actually degrade FR performance.

The work [11] by Damer et al. included three face frame
selection methods, of which two could be considered for
single-image FIQA. One method measured the entropy of
the color channels, higher entropy being preferred. The other
method calculated the confidence for a Viola-Jones [153] face
detector as the sub-image classifier detection count, which can
correspond i.a. to pose and illumination.

Zhang et al. [9] created FIIQD, a “Face Image Illumination
Quality Database” with subjective illumination quality scores
for 224, 733 images with 200 different illumination patterns
(established patterns were transferred to images from various
other databases, together with their associated ground truth QS
labels). Then a model based on ResNet50 [166] was trained
with that data to estimate the illumination quality. A strong
correlation was shown between the predicted illumination QSs
and the labels, but the impact on FR performance was not
evaluated.

Wasnik et al. [8] examined FIQA in the context of
smartphone-based FR, evaluating 8 FIQAAs based on ISO/IEC
TR 29794-5:2010 [66] specifications, and proposing a verti-
cal edge density FIQAA for pose/lighting symmetry, plus a
combined random forest FIQAA. The vertical edge density
FIQAA computed the input image gradient, only keeping the
magnitude for (vertical edge) pixels in a certain gradient phase
range, and used the mean of all magnitude pixel values to
form a scalar result. The random forest FIQAA combined
the 8 ISO metrics, and a second variant replaced the ISO
symmetry assessment part with the proposed vertical edge den-
sity FIQAA. To train the random forest algorithm, a database
was first separated into good and bad quality images using
a COTS system (VeriLook 5.4 [167]) plus subsequent manual
checks by three trained experts. All 9 individual FIQAAs, the 2
random forest FIQAAs, and the COTS FIQAA were evaluated
by computing ERCs using a FR implementation from the same
COTS suite [167]. The COTS FIQAA and the random forest
algorithm incorporating the vertical edge metric provided the
best results in terms of partial (20%) ERC AUC. The work by
Khodabakhsh et al. [5] can be considered as a continuation
of [8] which examined the 8 ISO FIQAAs in comparison to
subjective quality assessments made by 26 human participants
for smartphone images. It concluded i.a. that the human FIQA
highly correlated with FR performance, but not with the tested
FIQAAs, indicating that the tested FIQAAs show limitations.

Correlation between the metrics were also shown.
Wang [7] presented a hybrid approach to estimate subjective

QSs using features consisting of 7 factor-specific scores.
The factors comprised brightness, dynamic range, illuminance
uniformity, sharpness, pose (yaw/pitch angles), as well as the
landmark-based similarity to a “typical” face formed from the
average of various training images. A random forest regressor
was trained using these factors to estimate subjective ground
truth QSs from 1 to 5. The single-image part of the evaluation
compared the predictive performance of this approach against
the cascaded SVM method of [20], with the results favoring
the proposed approach for QSs 2 to 3.

Yu et al. [6] proposed using a CNN architecture with
MFM [151] (Max-Feature-Map) and NIN [152] (Network In
Network) layers for FIQA. Training used 16 classes: One
represented the original unmodified training images, while the
other 15 represented 5 types of synthetic degradation thereof,
with 3 configurations of increasing severity each. These 5
degradation types comprised nearest-neighbor downscaling,
Gaussian blur, AWGN (Additive White Gaussian Noise), salt-
and-pepper noise, and Poisson noise. This was sufficient to
train a network to classify these degradations. To also estimate
a scalar QS, a FR accuracy score was precomputed for each
of the 16 classes, and the sum of the multiplication of
those scores with the 16 classification probabilities formed
the combined QS. The proposed CNN architecture was also
used for the FR part (as a separately trained model), using
the cosine distance as the similarity measure. Three variants
of the network were evaluated for FIQA: One trained from
scratch for FIQA, one first trained for FR before training for
FIQA, and one that used ReLU instead of MFM layers. The
evaluation i.a. compared the variants regarding their degrada-
tion classification performance, showing superior accuracy for
the two MFM variants in contrast to the ReLU architecture,
whereby the best overall results stemmed from the FR transfer
learning variant. Regarding the 5 degradation types, the FR
performance appeared to be predominantly affected by AWGN
as well as salt-and-pepper noise, while the other types were
less impactful even for their more severe configurations.

Rose and Bourlai evaluated DL and non-DL methods to
determine three binary facial attributes in [2] and [4] (which
was a continuation of [2] despite the publication date order):
Whether the eyes are open or closed, whether there are
glasses or not, and whether the face pose is mostly frontal
or not. The two DL methods in both papers consisted of
AlexNet [149] and GoogLeNet [150] (an incarnation of the
Inception architecture), pretrained on ImageNet [103] data.
Their architectures were modified to classify 2 labels per
attribute (i.e. 6 classes). And there were 23 non-DL models
tested in [2], including SVMs, K-Nearest Neighbors, Decision
Trees, and Ensemble classifiers. LBP and HOG features were
evaluated for these non-DL methods, and HOG was found to
consistently outperform LBP. A score-level fusion of a SVM
and either AlexNet or GoogLeNet led to the best results in
[2]. The evaluations in [4] employed a smartphone (iPhone
5S) dataset in addition to the non-smartphone data used in [2],
the latter of which was only used for training. Of the non-DL
methods, result values in [4] were only shown for the cubic
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kernel SVM approach, because the other methods performed
worse. Whether the performance of the SVM or one of the two
DL methods was better varied between the experiments of [4],
which proposed to use the SVM trained on a combination of
all used datasets (score-level fusion of the SVM and one of
the DL networks was not tested).

Lijun et al. [3] proposed a multi-branch FIQA network,
called MFQA, consisting of a feature extraction and a quality
score part. The former was a CNN to derive image features.
The latter fed these features into four fully connected branches
for different quality properties, and fused the output thereof
into a final QS via another fully connected layer. These four
branches corresponded to scores for alignment, visibility (i.e.
occlusion), frontal pose, and clarity (i.e. blur). For training,
3,000 images were manually annotated with ground truth
labels for the four factor scores and the overall QS.

Henniger et al. [1] examined 17 hand-crafted FIQA
measures drawn from ISO/IEC TR 29794-5:2010 [66].
Of these, 7 measured symmetry of the left-right face
image halves, whereof 1 measure summed the normal-
ized pixel luminance differences, and the other 6 calcu-
lated the cross-entropy, Kullback-Leibler divergence, or his-
togram intersection for either the normalized or LBP-filtered
pixel luminance values. The remaining 10 measures were
capture-related methods found in ISO/IEC TR 29794-5:2010
[66], namely general image contrast, global contrast factor,
mean/variance/skewness/kurtosis of pixel luminance, expo-
sure, sharpness, inter-eye distance, and blur. In the evaluation,
the face image utility was first derived via FR comparisons
using 2 unnamed black-box COTS FR systems, labeling
images per system either as high-quality if their minimum
mated comparison score was greater than a threshold for 60%
FNMR [70], as low-quality if their maximum mated score was
below a threshold for 30% FNMR, or leaving them unlabelled
otherwise. The 17 measures were then examined in terms of
their correlation with the FR-system-derived utility, and by
means of FNMR ERC plots. Based thereon, 11 measures were
selected to create random forest models, namely the 3 his-
togram symmetry measures and all capture-related measures
except variance and skewness. Random forest training used
the utility labels for the 2 individual systems, in addition to
the union and intersection thereof.

C. Monolithic - Commonalities

The monolithic approaches do not have factor-specific sub-
categories by definition, but the dominant commonalities and
differences can be highlighted via the data aspect instead:

• Utility-agnostic training (Duat): The most recent ap-
proach [42] evaluated a general IQA CNN from [169] for
the purposes of FIQA primarily on different facial areas.
Besides [42], all of the works that exclusively proposed
monolithic Duat approaches [65][64][62] happened to
rely on model data derived from a fixed set of training
images, and were non-DL. Both [62] and [65] directly
compared the input against an averaged image, while [64]
compared against Gaussian distributions derived from the
training images.

A few other works proposed both factor-specific and
monolithic (Duat) FIQAAs, namely [36][35], which con-
tained a monolithic average face image correlation mea-
sure, and [11], which proposed to use the Viola-Jones
face detection confidence as a monolithic FIQAA. To
avoid duplicates, this literature is only listed in the factor-
specific Table III and introduced in subsection IV-B.

• Human ground truth training (Dhgt): These FIQA ap-
proaches were trained to estimate ground truth QS labels
that stemmed from human assessments [60][55][54][51].
Some of these works automatically transferred the hu-
man QSs to additional unlabeled images to extend the
available training data [54][51].

• FR-based ground truth training (Dfrt): These ap-
proaches obtained training data from FR models
[61][59][58][57][56][53][48][47][45][43]. The majority
of the monolithic approaches belong to this category.

• FR-based inference (Dfri): FIQAAs with FR-based infer-
ence utilize FR models as part of the quality assessment
process even outside the training stage, but do not alter
the FR model training [63][52][50][46]. A notably early
non-DL variant in this category is [63], which directly
compared the input image against a comparatively large
fixed set of 1000 images from different subjects with a
FR system to assess the quality. The later approaches are
DL-centric and estimate uncertainty for a FR model.

• FR-integration (Dint): FR-integrated FIQA methods not
only use the FR model during inference, but are fully
integrated into the FR model, meaning that FR and
FIQA training are intertwined [49][44]. This concept has
emerged more recently than the others.

D. Monolithic - Literature introductions
Sellahewa and Jassim [65] used the luminance distortion

component from the “universal image quality index” [165] to
compare a face input image against a fixed average reference
image generated from a training set (not to be confused with
full-reference IQA, where a high-quality variant of the input
image itself is known). This method worked by sliding a 8×8
window simultaneously over the input and reference image,
computing 2LinputLreference/(L

2
input+L2

reference) therein with
L being the mean luminance, and using the mean of all
window results as the final [0, 1] QS.

Wong et al. [64] presented a FIQAA for frontal face images.
Low-frequency 2D DCT (Discrete Cosine Transform) compo-
nents were extracted for overlapping blocks of a normalized
grayscale face image. Per block, these were compared against
Gaussian distributions derived from a set of training images
with frontal illumination, and a final QS was formed by fusing
the resulting probabilities.

Klare and Jain [63] presented the impostor-based uniqueness
measure (IUM), an approach inherently adaptive to any used
FR system. It was computed for a face image by comparing it
against a given set of “impostor” face images/feature vectors
via the FR system itself. Based on experiments, [63] proposed
to use 1,000 feature vectors from different subjects to form this
set. Note that the paper appeared to only utilize frontal face
images (from an operational police dataset).
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TABLE IV
MONOLITHIC FIQA LITERATURE IN REVERSE CHRONOLOGICAL ORDER.

Reference Aspects Method(s) Datasets
2021 [40] DlDint Evaluation of 6 monolithic FIQAAs, 10 IQAAs, and 9 factor-specific hand-crafted methods. LFW, VGGFace2, BioSecure
2021 [41] DlDint Evaluation of monolithic FIQAAs [60][50][48][44] on face images without masks, with

real face masks, and images with synthesized masks.
In-house [168]

2021 [42] DlDuat
Fe

CNN IQA [169] on various facial areas (eyes, nose, mouth, averaged fusion) and on
cropped or aligned images. Compared against monolithic FIQAAs [60][53][50][44].

LFW, VGGFace2

2021 [43] DlDfrt Identification quality (IDQ) loss focused on the FR comparison threshold, used to train a
FIQA branch in a frozen FR network, in turn used for knowledge distillation to train a
separate lightweight FIQA network. Open source.

MS1MV2, LFW, CFP, CPLFW, IJB-B,
Adience

2021 [44] DlDint Extends ArcFace [127] training loss with FR feature embedding magnitude-aware angular
margin and regularization, so that magnitude corresponds to quality. Open source.

MS1MV2, LFW, CFP, AgeDB,
CALFW, CPLFW, IJB-B, IJB-C

2021 [45] DlDfrt The Wasserstein distance between FR comparison score sets for randomly selected mated
and non-mated pairs is used to form ground truth QSs for FIQA network training with
Huber loss. Open source.

MS1MV2, CASIA-WebFace, LFW,
Adience, UTKFace, IJB-C

2021 [46] DlDfri Reduces the [52] concept to a single uncertainty scalar, adding regularization relative to
mini-batch uncertainty average, plus two uncertainty-aware identification loss variants, and
the network uses multi-layer fusion. Open source.

MS1MV2, LFW, CFP, CALFW,
CPLFW, AgeDB, IJB-B, VGGFace2

2020 [47] DlDfrt ResNet18 [166] FIQA model trained on ResNet34 [166] FR model ground truth scores,
computing loss for the predicted QS minimum of each image pair.

VGGFace2, IJB-C

2020 [48] DlDfrt Same as [53], but with dropout before the first fully connected layer, and multiple FR
feature extractors to obtain the ground truth QSs. Continuation of [53]. Open source.
Benchmarked in NIST FRVT QA [67].

VGGFace2, LFW, CyberExtruder,
BioSecure

2020 [49] DlDint Learns both uncertainty and FR features: Either 1. KL divergence loss to train an entire
network, or 2. fixed FR network extension with loss relative to subject feature centers.
Builds upon the uncertainty vector concept of [52].

MS-Celeb-1M, LFW, MegaFace, CFP,
YTF, IJB-C

2020 [50] DlDfri QS based on comparing embeddings from 100 random subnetworks; Works on FR
networks trained with dropout, or by adding a network on top. Open source.

MS-Celeb-1M, FERET, Adience, LFW

2019 [51] DlDhgt CNN trained on binary labels derived automatically based on fewer manual labels and
non-DL methods. Predicts scalar QSs after binary training.

In-house, CASIA-WebFace

2019 [52] DlDfri Based on a pretrained FR network, trains separate two-layer perceptron network to measure
per-feature-dimension uncertainty, compares via MLS (Mutual Likelihood Score). Open
source.

CASIA-WebFace, MS-Celeb-1M, LFW,
YTF, MegaFace, CFP, IJB-A, IJB-C,
IJB-S

2019 [53] DlDfrt Frozen FR-pretrained ResNet-50 [166], training two new final layer replacements on QSs
derived from FR features vs. BioLab-ICAO[17]-selected references. Open source.
Benchmarked in NIST FRVT QA [67].

VGGFace2, BioSecure

2019 [54] DlDhgt “DFQA”, a SqueezeNet[170]-based two-branch CNN; training with SVR loss; ground truth
QSs generated by another CNN, in turn trained using 3000 rule-guided human QS labels.
Direct SqueezeNet successor: SqueezeNext [171].

ImageNet, IJB-A, MS-Celeb-1M,
CASIA-WebFace, VGGFace2, LFW

2018 [55] DlDhgt 14 methods: 2 FIQA CNNs, 5 non-FIQA CNNs, 3 non-FIQA mobile CNNs, 3
Hand-crafted, 1 COTS; Binary training labels (good/bad). Considers FIQA in the context of
smartphone FR in addition to non-smartphone data.

In-house, CAS-PEAL, Extended Yale,
AR, FRGC, NCKU face, ChokePoint,
SCface

2018 [56] DlDfrtV CNN with inception module, trained using gallery FR comparison score minima for
detected faces.

In-house, PaSC, ChokePoint, CMU-FIA

2017 [57] DlDfrt
Ft

5 methods, using either human or FR-based labels, DL or L2R [60] features, and SVR or
L2R models. Another paper version is [172].

LFW, IJB-A, CASIA-WebFace

2016 [58] Dfrt Kernel Partial Least Squares Regression using mean luminance and Laplacian of 10×10
image sub-blocks.

CAS-PEAL, FERET, MIT, FEI, AT&T

2015 [59] DlDfrtV CNN, PCA whitened input, QS labels via MSM. ChokePoint
2015 [60] DlDhgt

Ft
2-stage learning to rank for five feature extractors: CNN (Landmarks), HOG, Gist [173],
Gabor, LBP (per-feature-vector QS formed by weighted sum). Can be considered non-DL
by removing the CNN extractor. Open source.

In-house/Unknown, FERET, FRGC,
LFW, AFLW, SCface

2013 [61] Dfrt 4-class SVM on Gist[173] or HOG. SCface, CAS-PEAL
2012 [62] Duat Gaussian low-pass filter vs. fixed 38-image-average reference. Extended Yale
2012 [63] Dfri “Impostor-based Uniqueness Measure”, i.e. FR vs. fixed image set as FIQA. In-house (Police)
2011 [64] Duat Per block low-frequency 2D DCT components compared to “ideal” frontal face. FERET, CMU-PIE, ChokePoint
2010 [65] Duat Luminance distortion from [165] against an averaged frontal face image. Extended Yale, AT&T

Qu et al. [62] proposed a FIQAA based on Gaussian
blur face model similarity. The Gaussian blur was applied to
the input image, which was then compared, in terms of the
normalized correlation, against a fixed reference image formed
by the average of 38 training images. The paper evaluated
a range of sizes for the Gaussian blur. FR performance was
not evaluated, but an evaluation can be found as part of the
illumination methods considered in [58].

Bharadwaj et al. [61] trained a one-vs-all SVM for 4 qual-
ity bins using either sparsely pooled Histogram of Oriented

Gradient (HOG) or Gist [173] input features. The quality
bin training labels were obtained using 2 COTS FR systems
on training images that had a single designated good/studio
quality image in addition to several probe images per subject.

Chen et al. [60] proposed the learning to rank approach
with two stages. In stage one a number of preexisting feature
extractors were used on the input image, and for each feature
output vector thereof a RQS (Rank based Quality Score) was
derived as the features’ weighted sum. Stage two applied a
polynomial kernel to the RQS output vector of stage one, and
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again used the weighted sum of the resulting vector elements
to obtain the final scalar RQS (normalized to [0, 100]). “Learn-
ing to rank” refers to learning the various weights for the
aforementioned weighted sums so that each RQS differentiates
between images from a number of training datasets with a
given assumed quality ordering (e.g. some training dataset A is
defined to be of higher quality than dataset B, which in turn is
defined to be of higher quality than dataset C). Conceptually,
this approach does not have to use any deep learning, but
the evaluated FIQAA implementation incorporated a CNN for
facial landmark detection as one of five feature extractors. The
other four (non-DL) feature extractors comprised Gist [173],
HOG, Gabor, and LBP.

In [59] by Vignesh et al. a CNN was utilized to directly
output a final FR-performance-focused QS for a 64× 64 face
image input. The network had 4 convolutional layers and
the face image input was preprocessed using PCA whitening.
Training this approach required a ground truth QS correspond-
ing to each training image, which the paper notably computed
by comparing each given probe frame against a sequence of
gallery frames via the MSM (Mutual Subspace Method) based
on either LBP or HOG features. Since the CNN itself only
uses single-image input, this ground truth QS generation could
naturally be replaced by some single-image approach as well.

Hu et al. [58] proposed to train a KPLSR (Kernel Partial
Least Squares Regression) model for FIQA. Two features
were derived for 10 × 10 sub-blocks of an image, forming
a 200-dimensional feature vector as input for the KPLSR
model. These features were the mean luminance and Lapla-
cian gradient per sub-block. The training ground truth QSs
were LBP-based FR comparison scores, whereby each image
pair consisted of one image with “standard” (i.e. presumably
good and unaltered) illumination, and one image variant with
reduced luminance/contrast. A strong correlation between the
FIQAA and the FR performance was demonstrated in the
evaluation.

In [57] and [172], Best-Rowden and Jain presented multiple
FIQAA variants partially based on DL. Five FIQAAs were
evaluated, including the RQS approach of [60]. Of the four
newly proposed FIQAAs, three used training ground truth
QSs derived from pairwise relative human assessments, and
one derived the ground truth QSs from FR-method-dependent
comparison scores with manually selected gallery images. Two
of the methods used the 320-dimensional feature vector of a
FR CNN [174] to train a SVR model for the QS prediction,
one method targeting the FR scores (Matcher Quality Values,
“MQV”), the other targeting the human assessment ground
truth (Human Quality Values, “HQV-0”). The CNN features
were also used in another variant of the human ground truth
methods, which replaced the SVR with the L2R (learning to
rank) approach of [60] (“HQV-1”). The fourth method trained
the L2R approach of [60] with the features described therein,
but for the human ground truth instead of the RQS dataset
constraints [60] (“HQV-2”). In the evaluation, the CNN of
[174] was also used as one of the FR algorithms, in addition to
two unnamed COTS systems. The methods HQV-2 and MQV
showed the lowest improvements regarding FR performance.
The best FR improvements were achieved using HQV-1 for

the CNN [174], and RQS [60] for one of the COTS systems.
Qi et al. [56] used a CNN architecture with an inception

module for FIQA. Ground truth QS labels were established
in form of gallery DL FR comparison dissimilarity score (i.e.
cosine distance) minima for detected faces in training video
data. In other words, each training probe image was compared
to all training gallery images, and the best score was selected
as the ground truth QS to train the FIQA network. A pretrained
VGG-16 [175] and Inception-v3 [176] network was used for
the FR part. The video frame FR performance improvement
evaluation i.a. compared against the CNN approach of Vignesh
et al. [59] and the learning to rank approach of Chen et al.
[60], with the proposed CNN showing the best results.

Wasnik et al. [55] compared 14 methods for FIQA using
7 publicly available datasets (plus in-house datasets) in the
context of smartphone FR. Of the 14 methods, 10 were
CNNs, 3 were hand-crafted, and 1 was a COTS system
(VeriLook 5.4 [167]). Among the 3 hand-crafted methods, 2
were general IQAAs (BLIINDS-II [177], BRISQUE [79]), and
1 was Wasnik et al. [8]. Among the 10 pretrained CNNs, 2
were meant specifically for FIQA (the illumination-focused
FIQA [9], and the general FIQA [56]), 3 were mobile networks
(MobileNetV2 [178], DenseNet-169 [179], NASNet [180]),
and the other 5 were AlexNet [149], VGG-16/VGG-19 [175],
Inception [150], and Xception [181]. Of the 2 FIQA-specific
CNNs, for [9] a pretrained network provided by the authors
was used, and for [56] the network described therein was
recreated while using the training dataset of [55]. To adapt
the non-FIQA CNNs for the FIQA task, the last three layers
were replaced by fully connected layers of size 1024, 512
and 2, 2 being the number of training data classes. So training
images were either labeled good or bad regarding quality, with
the latter referring to presumed flaws for e.g. illumination or
pose. Note that this means that the training did not directly
target some ground truth QS produced via e.g. an FR system.
Nevertheless, the best FR performance improvements in the
evaluation were achieved by the two larger FIQA-adapted
CNNs AlexNet and Inception. This evaluation used 5 separate
datasets, and the VeriLook SDK 5.4 [167] for FR comparisons.

Yang et al. [54] presented “DFQA”, a FIQA CNN based
on SqueezeNet [170], which itself was notably meant to
provide performance comparable to AlexNet with 50× fewer
parameters (also note that by this point in time a direct
successor exists, namely SqueezeNext [171]). However, it was
not proven whether this performance equivalence is true for
the biometric FIQA task here, since [54] did not compare
against any AlexNet-based FIQA variant, e.g. one analogous
to their SqueezeNet-based approach, or the one used in [55].
Most of the SqueezeNet architecture parts in the DFQA [54]
network were represented in two functionally identical weight-
sharing branches (also called “streams” in [54]), each of which
was followed by a (no longer weight-sharing) 1 × 1 kernel
convolutional layer with 9 × 9 output. Then the mean of the
two outputs was fed to an average pooling layer, resulting in
the output feature vector. The paper compared both Euclidean
and SVR loss, showing better results for the latter. Different
branch counts, 1 to 4, were evaluated as well. For training,
3,000 images were first manually annotated with ground truth
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QS values, using a defined set of rules to increase the QS
objectivity/subject-independence. These images were used to
train another CNN, based on a pretrained SqueezeNet, to
predict ground truth QSs for the MS-Celeb-1M [123] dataset,
which were then used to train the actual DFQA.

Hernandez-Ortega et al. created the open source FIQAA
“FaceQnet” v0 [53] and v1 [48]. As part of the training data
preparation for both FaceQnet versions, the BioLab-ICAO
framework from [17] was employed to select suitable high-
quality images per subject, which were used to compute the
ground truth QSs for the subjects’ remaining training images.
This ground truth QS computation consisted of the normalized
Euclidean distances of embeddings produced by a number of
FR feature extractors (three for v1; and only one, FaceNet
[182], for v0). Both FaceQnet versions were based on a
ResNet50 [166] model pretrained for FR using the VGGFace2
[119] dataset, replacing the final output layer with two fully
connected layers. Only these two new layers were trained,
the rest of the network weights were frozen. FaceQnet v1
extended the training architecture by adding dropout before
the first fully connected layer. I.e. the architecture of FaceQnet
v1 and v0 after training are identical, but FaceQnet v1 was
trained with dropout and using ground truth QSs derived from
multiple feature extractors. Both versions used a 300-subject
subset of the VGGFace2 [119] for training. At the time of
writing, FaceQnet v0 and v1 are the only surveyed approaches
that have been included in the report of the new NIST FRVT
Quality Assessment campaign [67].

Shi and Jain [52] proposed PFE (Probabilistic Face Em-
beddings), an approach to compute an uncertainty vector that
directly corresponds to the FR feature vector for a single face
image. In other words, the two output vectors represent the
Gaussian variance and mean, respectively. The work focused
on using the uncertainty to improve the FR comparisons, so
producing a single scalar QS was not the primary goal. It was
nevertheless noted that the uncertainty could be used for FIQA
purposes, and a part of the evaluations showed that filtering
images by the inverse harmonic mean of the uncertainty vector
elements can be more effective to improve FR performance
than filtering using face detection scores. So the uncertainty
can certainly be considered as a kind of QS, and a scalar QS
can be derived from such a vector. The implementation of
[52] used a fixed pretrained FR network as basis to compute
the FR feature vector (i.e. Gaussian mean), and trained an
additional module for the uncertainty vector (i.e. variance),
on the same training dataset used for the FR network. The
uncertainty module was a two-layer perceptron network, using
the same input as the FR layer that outputs the original
feature vector. To incorporate the uncertainty vector in the FR
comparison, a MLS (Mutual Likelihood Score) was proposed
by [52], which weighed and penalized feature dimensions
depending on the uncertainty. The uncertainty module training
attempted to maximize this MLS for all genuine image pairs.
In addition, [52] explained how the uncertainty can be used
to fuse embeddings for multiple images.

Zhao et al. [51] trained a CNN for FIQA in a semi-
supervised fashion. First, binary labels (good/bad) were man-
ually assigned to a number of images to train a preliminary

version of the DL model. This preliminary network then pre-
dicted labels for a different (larger) dataset in the second stage.
The third stage updated these labels utilizing various additional
binary constraints derived from the inter-eye distance, the
pitch and yaw rotation, the contrast, and further factors not
listed in [51] due to paper length limitations. For all “good”
labels predicted by the preliminary network, the label were
be changed to “bad” if any of these binary constraints were
“bad”, but existing “bad” label predictions were not altered.
This newly labeled dataset was then used in the fourth and
final stage to fine-tune the model. Hinge loss was used during
training for the binary classification task, but after training the
network was modified to output a [0, 1] scalar QS prediction
instead. It was noted that the CNN had better computational
performance than the CNN proposed by [6].

Terhörst et al. [50] proposed the open source “SER-FIQ”
method in two variants, measuring FR-model-specific quality
by comparing the output embeddings of a number of randomly
chosen subnetworks, i.e. without requiring any ground truth
QS training labels. A QS was computed as the sigmoid of
the negative mean of the Euclidean distances between all ran-
dom subnetwork embeddings, meaning that the computational
complexity grows quadratically with respect to the number
of subnetworks (100 were used in [50]). The “same model”
variant of SER-FIQ can be used on FR networks trained
using dropout, without additional training. For this variant’s
implementation in [50], the random subnetwork passes used
the last two FR layers. The other variant was the “on-
top model”, meaning that a small additional network was
trained with dropout on top of the FR model to transform
its FR embeddings. Five layers with dropout were used in
the implementation, which included the identity classification
layer for training. Removing that, the first and last layer of
the network had the same dimensions as the FR embedding.
Evaluations used FaceNet [182] and ArcFace [127] for FR,
and selected images using QSs from both SER-FIQ variants,
FaceQnet v0 [53], an approach proposed by Best-Rowden
in [172], three general IQAAs (BRISQUE [79], NIQE [80],
PIQE [81]), as well as a COTS system (Neurotec Biometric
SDK 11.1 [167]). The SER-FIQ “on-top model” was noted
to mostly outperform all baseline approaches, and to always
deliver close to top performance. The “same model” approach
mostly outperformed the baseline methods by a larger margin,
showing especially strong FNMR (False Non-Match Rate)
performance improvements for a fixed FMR (False Match
Rate) of 0.001.

Extending the PFE concept of Shi and Jain [52], Chang
et al. [49] proposed two methods to learn both uncertainty
(variance) and feature (mean) at the same time, without a
separate module. This means that the uncertainty can improve
the overall training by reducing the influence of low quality
images, which implies that the FR performance may improve
even if the uncertainty is not used after training, although
it is noted that this kind of quality attention can reduce
performance when only low quality cases are considered
after training. By omitting a separate uncertainty vector for
comparisons, the MLS of [52] does not have to be used, thus
avoiding increased computational complexity as evaluated in
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[49]. One of the two methods in [49] was “classification-
based” and learned an entire FR network with both regular
feature and uncertainty output, together forming a sampling
representation for training, using the reparameterization trick
[183] to enable backpropagation. Instead of using the MLS, the
cost function consisted of a softmax classification loss, plus a
regularization term to control the uncertainty aspect. The latter
was the Kullback-Leibler divergence scaled by a scalar hyper-
parameter, comparing the mean and variance output relative to
a normal distribution. The other learning method of [49] was
“regression-based” and more akin to the separate uncertainty
module training concept of [52]: Similar to [52] it began
by using a FR feature network trained in isolation, then the
weights were frozen and uncertainty output was added. But in
contrast to [52] the FR features (mean) were not frozen with
the rest of the pretrained layers, and the method continued
training them simultaneously with the uncertainty, using loss
based on the per-subject feature vector center derived from
the isolated FR network stage. As part of the evaluations on
multiple FR base models in [49], the two methods of [49]
(using cosine similarity for comparisons) and the method of
[52] (using MLS for comparisons, including fusion where
applicable) were compared. The “classification-based” method
[49] was found to mostly result in better performance increases
than the PFE method from [52], while the “regression-based”
method [49] appeared either worse or better depending on the
scenario (and further examination in the future was considered
due to some observed performance regression with respect to
the FR baseline).

Xie et al. [47] proposed the “PCNet” (Predictive Confidence
Network) FIQAA, and evaluated it i.a. against the conceptually
similar FaceQnet v0 [53]. In contrast to FaceQnet, the network
was trained from scratch, a more lightweight ResNet18 [166]
was employed, and a different training scheme was used.
To obtain comparison scores for FIQA training, a separate
ResNet34 was first trained for FR, using cosine similarity for
the comparisons. This was done twice, separately for both
halves of a dataset, so that FR comparison scores were not
computed on FR training data. Only mated image pairs were
used in the process. The FIQA model, PCNet, was then trained
to predict a QS for each image of a pair, the loss being the
squared difference between the pair’s QS prediction minimum
and the pair’s previously computed FR comparison score. PC-
Net (using ResNet18) consistently outperformed FaceQnet v0
[53] and MNet [184] (both using ResNet50) in the evaluations,
which i.a. tested image-to-image verification improvements via
ERC plots, and set-to-set verification, with set feature fusion
weighted by the per-image quality. In the tests, three open
source FR models and VGGFace2 [119] were used.

Chen et al. [46] proposed “ProbFace” based on the PFE
(Probabilistic Face Embeddings) concept from Shi and Jain
[52]. The FR base model was fixed during training, similar
to [52]. But instead of an uncertainty vector with the same
dimension as the FR feature vector, ProbFace uses a single
uncertainty scalar. As a result the required storage space was
reduced and the MLS (Mutual Likelihood Score) comparison
metric from [52] was simplified to an uncertainty-scalar-
adjusted cosine FR embedding comparison. In addition, the

uncertainty training was regularized relative to the average
uncertainty of each mini-batch, and two uncertainty-aware
identification loss variants were introduced to consider both
mated and non-mated pairs during training. Of the latter, only
one was used for the final ProbFace method configuration,
namely uncertainty-aware triplet loss. Furthermore, ProbFace
derived the uncertainty from multiple fused FR base network
layers, to more directly incorporate both low-level local tex-
ture information and high-level global semantic information.
The uncertainty (i.e. quality) assessment aspect was studied
mainly in terms of FR comparison improvements against other
FR models, so no comparisons against pure FIQAAs were
included. ProbFace was however also evaluated against the
PFE approach from [52] in terms of “risk-controlled face
recognition”, including an evaluation method akin to ERC,
showing that both ProbFace and PFE can be effective in a
more general FIQA context.

Ou et al. [45] proposed SDD-FIQA (Similarity Distribution
Distance for FIQA), an approach to generate ground truth QS
training data by computing the Wasserstein distance between
FR comparison score sets that include both mated and non-
mated pairs. For this purpose an equal number of mated and
non-mated comparison pairs were selected randomly, and the
average of multiple computation rounds was used to obtain
the final ground truth QS for each image. A FIQA network
was then trained with Huber loss using such QS ground truth
data. Similar to FaceQnet [53][48], a pretrained FR network
was taken to form the base of the FIQA network, replacing the
embedding and classification layer with a fully connected layer
for the quality score output, and applying 50% dropout, except
here the base network part was not frozen during training.
The SDD-FIQA network was evaluated on various datasets
against FaceQnet v0 [53] and v1 [48], PFE [52], SER-FIQ
[50], PCNet [47], as well as three IQAAs (BLIINDS-II [177],
BRISQUE [79], PQR [185]). The SDD-FIQA model showed
superior performance in most cases. An ERC “Area Over
Curve” (AOC) measure was also introduced as part of the
evaluation, and the influence of the incorporation of non-mated
pairs was demonstrated in an ablation study.

The “MagFace” approach from Meng et al. [44] expanded
on the idea of FR with integrated FIQA. In contrast to pre-
vious approaches such as ProbFace [46], the data uncertainty
learning approach from [49], or PFE [52], MagFace does not
have separate quality or uncertainty output at all. Instead the
quality is directly indicated by the magnitude of the FR feature
vector. The approach works by extending the ArcFace [127]
training loss, changing the angular margin to a magnitude-
aware variant, and adding magnitude regularization. On one
hand the magnitude-aware angular margin increases the mar-
gin for larger magnitudes, penalizing higher magnitudes for
lower quality samples, and on the other hand the regularization
rewards higher magnitudes scaled by a hyperparameter. As a
result FR feature vectors for higher quality images are pulled
closer to the class center with larger magnitudes, and vice
versa for lower quality samples. The magnitude is bounded
during training, so deriving a normalized quality score only
requires linear scaling. Furthermore, the design also implies
that the FR comparison function after training can be left
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unchanged from ArcFace [127], while other approaches like
ProbFace [46] and PFE [52] have to specifically include
quality in the comparison function to introduce an effect. The
magnitude quality aspect itself can be separately used e.g. to
facilitate weighted feature fusion, or for FIQA. MagFace was
evaluated both in a FR context and in a FIQA context. The
FIQA evaluation included ERC results on multiple datasets
against FaceQnet v0 [53], SER-FIQ [50], the data uncertainty
learning approach from [49], and the three general IQAAs that
were also used in the SER-FIQ [50] evaluation (BRISQUE
[79], NIQE [80], PIQE [81]), showing that MagFace can
achieve superior or similar FIQA results compared the other
methods.

Chen et al. [43] proposed the identification quality (IDQ)
training loss and the use of knowledge distillation to train
a lightweight FIQA network called “LightQNet”. The core
idea of the IDQ training loss was to concentrate on the FR
comparison threshold boundary. Thus, for a mini-batch with
comparison pairs of the same identity, the IDQ loss incor-
porated a FR threshold hyperparameter to compute pairwise
ground truth labels, and the pairwise predicted QS was the
minimum of each pair’s predicted image QSs (compare with
PCNet [47]). The pairwise ground truth labels could be “hard”
binary labels, i.e. either above or below the FR threshold
hyperparameter, but better performance was achieved with a
“soft” exponential-based label variant that used the threshold
as an offset, in addition to a scaling hyperparameter. A FIQA
branch in a frozen FR network (similar to FaceQnet [53][48])
and a separate lightweight FIQA network (LightQNet) were
trained using IDQ loss. Additionally using the FIQA branch as
a teacher for the lightweight network was shown to improve
the lightweight network’s predictive performance over pure
IDQ loss training. The proposed approach was evaluated
against FaceQnet v1 [48], SER-FIQ [50], PFE [52], and PCNet
[47] with better or competitive results on various datasets, and
substantial (approximately threefold at the lowest) computa-
tional performance improvements for the lightweight network
were observed.

Fu et al. [42] evaluated a no-reference general IQA CNN
[169] for the purposes of FIQA in terms of FR utility. The
IQA CNN was applied to various rectangular facial areas
in particular, namely the eyes, nose, and mouth, to examine
the areas’ individual usefulness for FIQA. These area-specific
QSs were also fused by averaging them. In addition to the
facial area assessments, the IQA CNN was tested with tightly
cropped image variants and image variants aligned for FR
input. A clear correlation of the IQA CNN output with FR
utility for multiple FR models was demonstrated especially for
the eyes area on the VGGFace2 [119] dataset, although results
could not compete with the tested specialized monolithic
FIQAAs (learning to rank [60], FaceQnet v0 [53], SER-FIQ
[50], and MagFace [44]).

Fu et al. [41] investigated the effect of face masks on a
number of monolithic FIQAAs, namely the learning to rank
approach [60], FaceQnet v1 [48], SER-FIQ [50], and MagFace
[44]. The FIQAA performance was tested on regular face
images without masks, on images with real masks of varying
types, and on images with synthesized masks. Synthetic masks

were automatically drawn based on detected facial landmarks
in a variety of solid colors, i.e. without realistic shading,
on top of images without masks. Results showed a drop in
predicted QSs for images with masks for all tested FIQAAs,
corresponding to reduced FR performance of both automatic
systems and human experts, and the QS distributions for
images with/without masks were especially distinct for Mag-
Face [44] and the learning to rank approach [60]. Differences
between results for the real and the synthetic masks were
observed as well, indicating that improved synthesis realism
may be desirable for this kind of evaluation in the future.
Additionally, network attention visualizations were examined
for FaceQnet v1 [48] and MagFace [44]. Note that this work
was purely about the evaluation of existing FIQAAs, thus its
categorization is based on the included FIQAAs instead of
proposed FIQAAs.

Fu et al. [40] further evaluated the FR utility prediction per-
formance of 6 monolithic FIQAAs [60][52][50][48][45][44],
10 general IQAAs (i.a. the IQA CNN from [169], BRISQUE
[79], NIQE [80], PIQE [81]), and 9 factor-specific hand-
crafted measures (i.a. for blur, symmetry, inter-eye distance).
Most of the general IQAAs did improve FR performance in
ERC tests, but overall they were outperformed by the best
monolithic FIQAAs. The factor-specific hand-crafted measure
results were inconsistent across datasets, indicating that these
individual measures do not generalize sufficiently. Assess-
ments from the hand-crafted measures also did not correlate
strongly with the other IQAA/FIQAA assessments, while
various IQAAs and FIQAAs did exhibit higher assessment
overlaps. Network attention visualizations for some of the
DL IQAAs and FIQAAs illustrated that the tested IQAAs
incorporated more image background information than the
FIQAAs, which concentrated more on the face region. Sim-
ilarly to [41], note that this work focused on the evaluation
of existing FIQAAs, thus its categorization is based on the
included FIQAAs instead of proposed FIQAAs.

V. EVALUATION

The first subsection hereunder introduces a common
methodology to evaluate FIQAAs (or other biometric quality
assessment algorithms) with respect to their ability to assess
the biometric utility of samples for a given FR system and
dataset. In the second subsection we present a concrete evalu-
ation for 14 FIQAAs and discuss the evaluation configuration,
results and limitations.

A. Error-versus-Reject-Characteristic

An Error-versus-Reject-Characteristic (ERC) can be plotted
to evaluate the predictive performance of quality assessment
algorithms, as proposed by Grother and Tabassi [186]. In the
FIQA literature the “C” in ERC is occasionally also referred
to as “Curve”. It is currently intended to standardize the ERC
concept in the next (third) edition of ISO/IEC 29794-1 [187]
under a different name that replaces the “reject” term to avoid
confusion with the meaning of “reject” in ISO/IEC 2382-37
[70].
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In the context of FIQA, a FR system and a face dataset with
subject identity labels is required in addition to the FIQAA
to compute the ERC. The FR system compares face image
pairs with a fixed comparison threshold [70] to decide between
match [70] or non-match [70] (depending on the ERC error
type) for each pair. QSs produced by the FIQAA per image are
combined for the image pairs (e.g. by taking the minimum). A
progressively increasing quality threshold is applied to these
image pair QSs, and a FR error measure is calculated for
the resulting QS subsets. In [186], it is suggested that the
FNMR (False Non-Match Rate) [70] error measure should be
used as the primary performance indicator. If desired, the FR
threshold can then be derived for a fixed FMR (False Match
Rate) [70] on the unfiltered image pairs - or vice versa if the
FMR was plotted as the error measure. The error is typically
plotted on the vertical axis. The rejected fraction, plotted on
the horizontal axis, denotes the relative amount of images
(0 to 100%) rejected based on the QS. Plotting this fraction
instead of the increasing QS threshold normalizes the axis
independently of the given FIQAA. This also means that QSs
do not have to be constrained to a certain range, only their
order is important.

Note that ERCs should usually represent the rejection of
samples/images, not individual comparisons, so that all com-
parisons with quality below the currently considered quality
threshold have to be discarded simultaneously. This means
that the horizontal axis actually denotes the maximum of the
fraction of images rejected via the quality threshold, not the
precise fraction of rejected images. This in turn means that
ERC plots should prefer stepwise interpolation by continuing
the error value from the last real ERC data point at which
a batch of comparisons was rejected. Linear interpolation, as
used by some works, can be misleading for rejection fraction
ranges with low quality granularity, which may occur for
realistic evaluation configurations.

Olsen et al. [188] further proposed to compute the scalar
Area-Under-Curve (AUC) for some rejection fraction range of
an ERC: ∫ b

a

ERC − area under theoretical best

More concretely, [188] proposed to compute the AUC for
the full [0, 100%] range, and a partial AUC (pAUC) to focus
only on the [0, 20%] range. The “area under theoretical best”
term refers to the (unrealistic) best case where the error value
decrease equals the rejected fraction percentage. Also note
that the “area under theoretical best” is a constant value for a
specific AUC range, so subtracting it from the FIQAAs’ ERC
curve areas will not alter their relative performance within
that specific AUC range. Consequently, the subtraction can
be omitted for AUC computations when only the per-AUC-
range FIQAA ranking is analyzed (which is the case for
subsection V-B).

A more realistic approximation of an optimal FIQAA may
be achieved by means of an oracle, the concept of which was
described by Phillips et al. [16]. Since more recent FIQA
literature did not continue to explore this, future work could
do so in an attempt to improve ERC evaluations. Conversely,

the error at 0% rejection can be considered as the practical
worst-case, because the average of many/infinite ERC curves
for random QSs will approximately result in no error change
for FNMR or FMR, and no real FIQAA should be worse than
random QS assignment.

The FIQAA literature listed in this survey did not always
provide ERC or AUC evaluation results. For example, some
works evaluated the FIQAA in terms of quality label prediction
performance, and did not evaluate the FIQAA in terms of FR
performance improvements. Even if all of the literature had
utilized a common evaluation result format, e.g. ERC plots
with the same error measures, there would still be differences
in the used FR systems and datasets. This issue makes a
precise performance comparison based solely on reported
results impossible. Refer to section VI for further discussions
regarding this and other issues.

The ongoing NIST Face Recognition Vendor Test (FRVT)
for face image quality assessment [67] evaluates FIQAAs
combined with a number of FR algorithms and dataset types,
showing results i.a. in the form of ERC plots. Some note-
worthy modifications to the usual ERC methodology were
applied according to the current draft report [67]: To compute
the FNMR at some rejection fraction, the evaluation divided
by the count of comparisons at that rejection fraction (i.e.
comparisons not removed by the quality threshold), instead of
dividing by the total comparison count constant independently
of the rejection fraction. QSs were perturbed with random
uniformly distributed noise as a result tie breaker, and a loga-
rithmic rejection axis was plotted to emphasize the results for
smaller rejection fractions. The report furthermore introduced
the “Incorrect Sample Rejection Rate” (ISRR) and “Incorrect
Sample Acceptance Rate” (ISAR), which are defined to incor-
porate both FR comparisons and QS rejections. A future goal
of the project is to investigate (non-linear) calibration methods
to map QSs of different FIQAAs to a common [0, 100] range
with approximately equalized distribution.

B. Selective Evaluation

We conducted a FNMR ERC evaluation with 14 FIQA ap-
proaches, including both recent methods and general IQAAs,
and at least one method for each data aspect category (de-
scribed in subsection III-B), except for human quality ground
truth training:

• Hand-crafted (Dhc):
– Pose symmetry, Light symmetry, Blur, Sharpness,

Exposure, GCF (Global Contrast Factor): As de-
scribed by Wasnik et al. [8] and ISO/IEC TR 29794-
5:2010 [66].

– PIQE [81]: Publicly available Python implementa-
tion.

• Utility-agnostic training (Duat):
– BRISQUE [79]: Publicly available model (pybrisque

implementation).
– NIQE [80]: Publicly available model (scikit-video

implementation).
• FR-based ground truth training (Dfrt):
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– FaceQnet v0 [53] & v1 [48]: Publicly available
models.

– PCNet [47]: Model provided by the authors.
• FR-based inference (Dfri):

– SER-FIQ [50]: Publicly available model (“same
model” variant on ArcFace, which is also used for
FR).

• FR-integration (Dint):
– MagFace [44]: Publicly available model (“iRes-

Net100” backbone, trained on MS1MV2 [127]).
The error at 0% rejection is set to 4% FNMR. ArcFace [127]

was used for FR (cosine similarity), and RetinaFace [189] was
used for face/facial landmark detection, employing the pub-
licly available models for both (InsightFace’s “LResNet100E-
IR,ArcFace@ms1m-refine-v2” & “RetinaFace-R50”).

We used LFW (Labeled Faces in the Wild) [117] as the eval-
uation dataset and consider all possible mated pairs therein.
As shown by Table II, LFW [117] is the dataset that has been
employed by the greatest number of FIQA works, including
recent ones. The FR performance on LFW [117] appears to
already be almost saturated by the state-of-the-art systems,
and the quality distribution correspondingly seems to be more
narrow than in e.g. IJB-C [125], as demonstrated most recently
for MagFace [44]. This conversely means that LFW [117] is
more challenging for FIQA ERC evaluations, since FIQAAs
have to more effectively rank images in terms of biometric
utility to decrease the error rate, especially for lower rejection
fractions.

Figure 7 shows the ERC plot, but only with a subset of the
FIQAAs for the sake of legibility, since multiple curves for the
less well performing methods would approximately overlap
graphically. Table V however lists ranked ERC pAUC results
for all 14 FIQAAs, which is a more useful representation for
the analysis of many methods.

LFW [117] images depict a substantial amount of back-
ground information besides the actual face, so the type of
preprocessing is relevant. For this evaluation, the ERC was
computed for all FIQAA methods using both the full images
(marked as “Full”) and preprocessed variants (marked as
“Crop”). The preprocessing variant used RetinaFace [189] to
crop the images to the face, and to subsequently align the
images to the detected facial landmarks (there are no edge
cases without a detected face or landmarks). Only the best per-
forming variants per FIQAA at 1% pAUC are shown, to avoid
cluttered results. All Dfrt/Dfri/Dint approaches performed
better with the preprocessed images, as to be expected due
to their incorporation of FR during training and/or inference.
A few of the Dhc/Duat approaches did however yield better
results using the full images even for the considered 1%
pAUC. This applies to more Dhc/Duat approaches for higher
pAUC maxima (e.g. for “Light symmetry” at 20% pAUC), but
the difference is never substantial enough to compete with the
top ranking FIQAAs regardless, so we do not include more
detailed results regarding this.

As apparent in Table V and Figure 7, MagFace [44] has
distinctly achieved the best results throughout this particular
evaluation. The ranking of the other FIQAAs depends on the

considered pAUC range: For 5% and 20% pAUC, the five
Dfrt/Dfri/Dint approaches outperformed all Dhc/Duat meth-
ods, but for 1% pAUC only three Dfrt/Dfri/Dint held the top
rankings, BRISQUE [79] being able to compete most closely
with them. Note that we do not include results for higher
ERC rejection fractions, since these are less interesting from
an operational perspective. In practice one would not want to
reject e.g. every second image (50% rejection fraction), if the
images mostly have high FR utility - as is the case for LFW
[117], according to the aforementioned high state-of-the-art
FR performance.

While issues and challenges in general are discussed in the
subsequent section, it is also important to highlight limitations
of this particular evaluation, which can be used to show what
future work may want to consider:

• Only a low amount of FIQA/FR/dataset/preprocessing/
hyperparameter configurations was tested in contrast to
the available options. A more comprehensive literature
evaluation will require re-implementation efforts for the
many listed works that did not provide open reference im-
plementations, and automated configuration exploration
may have to be employed to overcome a combinatorial
explosion. Static ERC plots can quickly become too
cluttered, as was already the case here with only 14
FIQAAs, but reduced or interactive plots can still useful,
and derived metrics such as pAUC can be used to analyze
arbitrary configuration counts.

• No non-mated pairs were considered, since only the
FNMR was used as ERC error. It could be interesting
to test FMR, or possibly other metrics, as the error -
especially because recent FIQA approaches have started
to incorporate both mated and non-mated pairs during
training.

• While the use of publicly available models is beneficial
in terms of reproducibility, the comparisons are not as
fair as they could be due to differing training data. For
Dfrt/Dfri/Dint, the different training data does imply
that the results may not fairly reflect the potential of
the underlying FIQA concepts or network architectures.
Different preprocessing during training or different train-
ing time could likewise affect the performance. Note that
this means that black-box FIQAAs (e.g. COTS systems)
cannot be fairly compared by definition. Comparisons
between Dfrt/Dfri/Dint and Dhc/Duat approaches in this
evaluation are however rather unproblematic, since Duat
approaches typically require different training data by
design (e.g. general IQA training data instead of face
images), and Dhc requires no training.

• The computational performance of FIQAAs could be
relevant in practice too, thus evaluations could be helpful.
For anything except Dfri/Dint approaches, the compu-
tational performance should by definition be indepen-
dent of the FR system choice, and dataset/preprocessing
configuration may also be unimportant in this context.
However, hardware configurations (i.a. CPU versus GPU)
can matter instead, and implementations details have to be
considered as well (i.e. concrete implementations may not
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Fig. 7. ERC plot for a subset of the evaluated FIQAAs. EDC pAUC results for all evaluated FIQAAs are provided in Table V.

TABLE V
ERC EVALUATION RESULTS IN TERMS OF THE PARTIAL AREA-UNDER-CURVE (PAUC) VALUES FOR REJECT FRACTION RANGES FROM 0% TO

1%/5%/20%. FOR EACH ENTRY, E.G. “1: 0.00% (0.037%)”, THE FIRST NUMBER DENOTES THE RANKING OF THE FIQAA (“1:” BEING THE BEST, “14:”
THE WORST), THE SECOND NUMBER SHOWS THE RELATIVE PERFORMANCE (“0.00%” BEING THE BEST, “100.00%” THE WORST), AND THE BRACKETED
THIRD NUMBER IS THE ACTUAL ABSOLUTE PAUC VALUE (HIGHER BEING WORSE). ERC RESULTS ARE ALSO PLOTTED FOR A SUBSET OF THE FIQAAS

IN FIGURE 7.

FIQAA 1% pAUC 5% pAUC 20% pAUC
MagFace (Crop) 1: 0.00% (0.037%) 1: 0.00% (0.144%) 1: 0.00% (0.356%)
SER-FIQ (Crop) 2: 30.69% (0.038%) 3: 56.54% (0.176%) 5: 61.00% (0.625%)

FaceQnet v0 (Crop) 3: 51.52% (0.038%) 2: 54.85% (0.175%) 4: 57.92% (0.612%)
BRISQUE (Crop) 4: 59.35% (0.039%) 6: 66.27% (0.181%) 6: 69.18% (0.662%)

PCNet (Crop) 5: 61.10% (0.039%) 4: 60.35% (0.178%) 2: 40.46% (0.535%)
PIQE (Full) 6: 69.29% (0.039%) 8: 75.74% (0.186%) 8: 78.23% (0.702%)

Pose symmetry (Crop) 7: 71.78% (0.039%) 10: 87.60% (0.193%) 11: 92.63% (0.765%)
Blur (Crop) 8: 74.32% (0.039%) 7: 70.36% (0.183%) 7: 75.66% (0.690%)

Sharpness (Crop) 9: 82.52% (0.039%) 9: 78.77% (0.188%) 9: 86.17% (0.737%)
FaceQnet v1 (Crop) 10: 94.37% (0.040%) 5: 65.15% (0.180%) 3: 43.40% (0.548%)

Exposure (Crop) 11: 95.55% (0.040%) 13: 99.81% (0.200%) 14: 100.00% (0.798%)
NIQE (Full) 12: 95.74% (0.040%) 11: 96.42% (0.198%) 12: 96.40% (0.782%)

Light symmetry (Crop) 13: 97.94% (0.040%) 12: 97.78% (0.198%) 13: 97.94% (0.789%)
GCF (Full) 14: 100.00% (0.040%) 14: 100.00% (0.200%) 10: 91.82% (0.762%)

utilize the given hardware as effectively as the underlying
concepts would allow).

VI. OPEN ISSUES AND CHALLENGES

An obvious challenge consists of the further improvement of
FIQA methods in terms of predictive and computational per-
formance. For deep learning FIQA approaches, finding better
network architectures and training methods is interwoven with
general deep learning research progress, for example in the
field of automated machine learning [190]. Naturally, FIQA
with the goal of generating quality scores that predict FR
utility [68] also depends on FR research.

The following subsections describe further issues and chal-
lenges, as well as potential avenues for future work, and the
summary section VII highlights the identified key challenges.

A. Comparability and Reproducibility
As previously noted in section V, it would be challenging

to comprehensively compare the performance of the surveyed

FIQA approaches, since the evaluations presented in the liter-
ature differ in multiple aspects that would need to be aligned
to facilitate fair direct comparisons:

• Datasets: As shown in Table II, a variety of datasets were
used for the evaluations among the literature. Besides
these named datasets, some of the literature only utilized
private or unspecified data for evaluation. In addition,
some literature used only a subset of a dataset (see e.g.
[48] or [54] regarding the VGGFace2 dataset [119]),
or modified the data e.g. by synthetically degrading
images via increased blur or contrast (see e.g. [12]).
Where training data is required for the FIQAA, the
chosen subdivision of the datasets into training and test
data also influences the evaluation results. Furthermore,
various works assigned ground truth quality scores or
labels to the dataset for FIQAA training and/or for the
evaluation. When FIQA is evaluated in terms of FR
performance improvements, the selection of image pairs
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that are considered initially for FR comparisons [70] (i.e.
before filtering them via FIQA decisions) may alter the
results as well. Another potentially interesting question is
the degree of existing overlap between datasets regarding
FR, which could be studied both in a general FR context
and in the context of FIQA.

• Evaluation methods: Different evaluation methods and
ways to report results are used among the literature. Some
FIQA approaches are only tested by comparing predicted
quality scores or labels against a given ground truth (e.g.
assigned by humans), i.e. not all of the literature evaluates
FIQA in terms of FR utility [68][69] in the first place.
Instead of evaluating the FIQA on its own, some literature
that included image enhancement steps in the evaluation.
For FR performance improvement evaluations via an
ERC as described in subsection V-A, the FR comparison
score threshold [70] and the error type configuration can
differ between evaluations, which also applies to ERC-
derived AUC results. Some of the works evaluated FIQA
performance exclusively by means other than the ERC -
for example, FR performance was evaluated for 4 FIQA-
derived quality bins in [61].

• FR algorithms: Evaluating FIQA in terms of FR per-
formance improvement is desirable to examine how well
quality scores of a FIQAA reflect FR utility [68], but
this also introduces the FR algorithm choice for feature
extraction [70] and comparison [70] as another evaluation
factor. Furthermore, there are FIQA approaches among
the literature which are conceptually based on FR models
to begin with (see e.g. [50]), and FR algorithms are used
by various works to establish ground truth quality scores/
labels (see e.g. [48] for scores, or [61] for labels in the
form of 4 quality bins). Lastly, some literature exclusively
used anonymous and/or closed-source FR systems, which
can limit reproducibility and expandability (see e.g. [61]).

Due to the amount of existing and possible FIQA evaluation
configurations, the comparison of FIQAAs can be considered
as a key challenge. This open issue could be limited in scope
e.g. by only considering FIQA approaches that can concep-
tually adapt to deep learning FR systems (instead of relying
on hand-crafted algorithms, settings, or ground truth quality
scores). One solution for future work is to submit the presented
FIQAAs to an evaluation campaign where all algorithms are
assessed under the same benchmark, such as the previously
mentioned NIST FRVT Quality Assessment evaluation [67].
Open evaluation protocols could be established as well.

Another solution is to publicly provide the FIQAA imple-
mentations, allowing other researchers to integrate them in
different evaluation environments without re-implementation.
Besides being redundant effort, a re-implementation can di-
verge from the original algorithm to some degree even without
introducing errors, since e.g. deep learning model weight
initialization can be random (which however might only be a
minor issue). Since evaluations of machine learning FIQA in
particular depend on the used training data, publishing source
code is preferable to pure black box releases. So for the sake
of both comparability and reproducibility, future work should

provide source code and trained models where applicable.
This may also serve as a basis for new FIQA approaches in
later work by other researchers. Effective reuse of prior work
implementations can i.a. be observed in the surveyed literature
by the utilization of pretrained FR models. Providing source
code is not necessarily important for approaches that can easily
be described in complete detail within a paper, e.g. simpler
hand-crafted methods without any machine learning and few
parameters, but approaches in the recent literature tend to be
more complex. While most of the older surveyed literature did
not appear to publish accompanying source code (irrespective
of the implementation complexity), more recent deep learning
FIQA works tend to do so, with code being publicly available
for e.g. FaceQnet [53][48], PFE (Probabilistic Face Embed-
dings) [52], SER-FIQ [50], and MagFace [44].

Likewise, public datasets should preferably be used, and
precise evaluation configurations could be published alongside
the implementation. It may also be helpful to publish the raw
evaluation result as supplementary data, e.g. the computed
comparison scores and quality scores, although this may be
unnecessary if the results are reproducible already. This result
data could e.g. be used to directly create new visualizations
that combine results from multiple works.

Outside of evaluating the predictive performance of
FIQAAs, evaluating the computational performance may be
of relevance as well. This is rarely considered in the surveyed
FIQA literature. Computational performance tests usually fo-
cus on measuring the duration required to process input images
with a certain format (e.g. grayscale) and resolution, since
they are typically not influenced by other factors that are un-
avoidable in utility prediction performance evaluations. Other
factors do however become relevant, namely the computational
optimization of the FIQAA, as well as the used hardware and
the robustness of the time measurements. Besides measuring
inference time, a different kind of computational performance
tests could assess the efficiency of FIQA model training as
well, although this is less relevant in an operational context as
long as no frequent (re-)training is required.

B. Explainability and Interpretability

While the more recent monolithic deep learning FIQA
approaches are trained specifically to output quality scores
in terms of FR utility [70][69], they are not as interpretable/
explainable as e.g. hand-crafted approaches that estimate spe-
cific human-understandable factors such as blur. This can
be considered as another key challenge. Optimally, FIQA
models should be able to predict FR utility [70] while also
providing useful feedback regarding quality-degrading causes.
Future work could thus attempt to improve upon this area,
perhaps by adding visualizations based on a disentangled
latent space that corresponds to different kinds of quality
degradations. In this line of explainable Artificial Intelligence
(AI) and, in particular, in fairness and bias control in AI
systems [191][192], we expect growing interest in analyzing
the behavior of FIQA methods for different population groups
and the development of FIQA methods more transparent [193]
and agnostic to selected covariates [194].
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C. Use of Synthetic Data

For FIQA in general, preferably large amounts of realistic
data including different quality levels with different quality-
degrading causes should be used for evaluation (and training
where applicable), such that the robustness can be verified
for various cases with a high certainty. Existing images can
also be degraded synthetically - this was done in a few works
(e.g. [12]). That is, both known techniques from prior work,
such as Gaussian blurring, and more sophisticated techniques,
such as deep learning style transfer, could be employed in
the future. It is also possible to generate fully synthetic face
images (see e.g. StyleALAE [195]), which is a strategy that
has not been used in the surveyed FIQA literature. While
fully synthetic data might be less realistic, it could allow
for larger datasets with better control (in terms of training/
evaluation sample bias) than what e.g. filtering a real dataset
might provide. As a side effect, using fully synthetic data may
potentially also alleviate licensing or privacy concerns (see e.g.
the controversy surrounding MS-Celeb-1M [123], which has
been used in some of the FIQA literature as well). This latter
point is however not entirely clear, since deep learning face
synthesis itself is typically trained on real face images.

D. Interoperability

Examining and improving interoperability in terms of FIQA
FR utility prediction generality could be another goal for future
work. While this may partially stand in conflict with the goal
of maximizing FR-system-specific utility prediction perfor-
mance, interoperability can be relevant to avoid vendor lock-in
and may coincide with increased robustness. An example in
the literature is the FaceQnet approach, which went from using
only one FR system as part of the training process in v0 [53]
to using three in v1 [48].

E. Vulnerabilities

Specific attacks on FIQA may be investigated in future
works. For instance, the surveyed machine learning FIQA
literature did not study adversarial attacks, i.e. attacks that
specifically modify the input (physical [196] or digital after
being captured and processed [197]) to confuse the FIQA
model.

F. Standardization

ISO/IEC 29794-1:2016 [68] defines the notion of biometric
sample quality, and a new edition is currently under devel-
opment [187]. At the time of this writing, this new edition
will i.a. standardize ERC (section V-A) for FIQAA evaluation.
ISO/IEC TR 29794-5:2010 [66] describes various actionable
FIQA measures, and the next edition is under development
as an International Standard [198]. Current portrait quality
specifications are established in ISO/IEC 39794-5:2019 [76],
which contains content from the ICAO Portrait Quality TR
[84], which in turn was based on parts of ISO/IEC 19794-
5:2011 [86], ISO/IEC 19794-5:2005 [159] and ICAO Doc
9303 [158]. ISO/IEC 24358 (“Face-aware capture subsystem
specifications”) [199] is another relevant standard that is

under development at the moment. An important future goal
for FIQA is the standardization of some particular FIQA
algorithm/model, analogous to the normative standardization
of the open source NIST Fingerprint Image Quality (NFIQ) 2
as part of ISO/IEC 29794-4:2017 [200].

G. Further Applications

As described in subsection II-E, there are further application
areas that were barely or not at all examined in the surveyed
literature. For example, lossy compression control was not
considered at all, although compression artifacts are mentioned
as a quality degrading factor by various works. FIQA for
other areas besides face recognition can also be explored
further, including FIQA in the context of gender or other soft
biometrics recognition [73], attention level estimation [72],
emotion analysis [71], etc.

Almost all of the found FIQA literature focused the visible
spectrum. The exception is the work by Long et al. [201],
which studied quality assessment for near-infrared face video
sequences. They combined measures for sharpness, brightness,
resolution, landmark-based head pose, and expression in terms
of eyes/mouth being open/closed, but the evaluation was
limited to comparisons against human rankings. Future work
could thus quickly expand on FIQA for near-infrared images,
or for other spectra [202].

Furthermore, FIQA may also be relevant for face “depth”
or “range” images, i.e. 2D images depicting 3D positions in
terms of depth. But, similar to non-visible-spectrum FIQA, few
works appear to exist that consider depth FIQA in a biometric
context. The work by Lin and Chen [203] is one instance
that included depth FIQA using a deformable shape model
to identify excessive expression variations, and the FIQA part
was used to improve 3D FR performance via sample rejection
with a fixed quality threshold. Future work could further
explore depth FIQA, or 3D face quality assessment for other
3D representations. Combinations of e.g. visible spectrum and
depth images for FIQA, as well as FIQA for other application
areas such as biometric depth image enhancement [204], could
be investigated as well.

Another related field that future FIQA research may want to
consider is face sketch recognition/synthesis, where literature
published so far appears to be focused on perceptual measures
instead of biometric utility prediction [205], a concrete recent
example being the work by Fan et al. [206].

VII. SUMMARY

Face image quality assessment is an active research area,
and can be used for a variety of application scenarios such as
filtering and feedback during the acquisition process, or for
database maintenance and monitoring. The literature surveyed
in this work predominantly focused on evaluating the proposed
FIQA approaches either in terms of predictive performance
with respect to given ground truth quality score labels, or
in terms of utility [70][69] for the purpose of aiding face
recognition by discarding images based on the assessed quality
or some kind of quality-based processing or fusion [94].
Automatic face quality assessment is especially relevant for FR
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as part of large-scale systems, e.g. the European Schengen In-
formation System (SIS), the VISA Information System (VIS),
the Entry Exit System (EES), or the US ESTA (Electronic
System for Travel Authorization), due to the amount of data
and the multitude of different acquisition locations/devices.

A progression over time towards monolithic deep learn-
ing approaches was observed in the FIQA literature. Older
methods were predominantly factor-specific and independent
of concrete FR systems, while more recent methods tended
to train on ground truth quality scores derived from FR
comparisons. Some of the most recently emerging monolithic
methods expanded on the FR focus, either by relying on FR
systems during inference, or by integrating FIQA into FR
models.

One key challenge is to facilitate comparability of the
FIQA evaluations, since many differing evaluation configu-
rations were employed in the literature. Thus, future work
should preferably provide the implementations of the proposed
FIQAAs publicly, especially in the form of source code,
enabling evaluations in later works to more easily include these
FIQA approaches. The more recent works have begun to do so,
but re-implementation efforts will be required if many of the
older approaches are to be evaluated comprehensively. There
also is the ongoing NIST FRVT Quality Assessment evaluation
[67], to which FIQAAs can be submitted. Besides evaluating
the predictive capabilities of FIQAAs, more attention could be
paid to computational performance evaluations in the future.

Another key challenge is to improve the interpretability of
deep learning based FIQA, which so far mostly fell into the
monolithic category of this survey, meaning that these modern
approaches did not focus on providing extensive feedback for
human operators to adjust acquisition conditions for increased
biometric utility.

Of course there also is the key challenge of further improv-
ing performance in terms of both utility and computational
workload (e.g. with new deep learning network architectures),
as well as improving robustness/decreasing bias [191][192]
(e.g. via the selection or synthetic extension of datasets for
different quality degradation cases), which naturally is depen-
dent on suitable evaluation methodologies.

In the long term, an important objective is the standardiza-
tion of a specific FIQA approach, analogous to the normative
standardization of the open source NIST Fingerprint Image
Quality (NFIQ) 2 as part of ISO/IEC 29794-4:2017 [200], and
advances regarding the aforementioned challenges can help
to achieve this. Various other application scenarios can be
explored further as well, e.g. FIQA-guided image enhancement
or compression.
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