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Abstract. Auto-Adaptive Laplacian Pyramids (ALP) is an iterative
kernel-based regression model. It constructs a multi-scale representation
of the train data, where the multi-scale modes are average residuals. In
this work, we propose two extensions of the model. The first is a hybrid
approach that combines ALP with Empirical Mode Decomposition to pro-
vide localization in the frequency domain. The second modifies ALP to fit
datasets with non-uniform noise, which is achieved by computing the opti-
mal stopping criterion in a point-dependent manner. Experimental results
demonstrate these models for solar energy prediction and for forecasting
epidemiology infections.

1 Introduction

Kernel based regression is a powerful forecasting tool that is applied in var-
ied domains like the energy market and epidemiology forecasting. The Lapla-
cian pyramids algorithm, which was originally introduced for image coding by
Burt and Adelson [1], may be easily utilized to work as a multi-scale regression
model [2]. It convolves the data with Gaussian kernels of decreasing widths to
yield a multi-scale representation. In statistics, this approach is known as the
Nadaraya-Watson estimator [3]. The stopping scale can be determined by using
L2 boosting, as described in [4, 5], and we denote this scheme by Auto-Adaptive
Laplacian Pyramids (ALP).

In this work, we focus on two improvements of the ALP model. The first takes
a hybrid approach by combining ALP with the Empirical Mode Decomposition
(EMD) [6]. The second reviews and demonstrates the ALP-local model that was
recently introduced in [7]. The EMD-ALP hybrid model enhances performance
by localizing in frequency and the ALP-local model is constructed based on local,
rather than global information in the spatial (or time) domain. These extensions
are suited to address different types of challenges in time series forecasting tasks,
like dealing with noise that is distributed non-uniformly or present only in high-
frequencies of the data.

The hybrid EMD-ALP model first evokes EMD. EMD decomposes time se-
ries into intrinsic modes, named IMFs, and a residual. Its main advantage is its
ability to handle nonlinear and non-stationary time series, as well as the simplic-
ity of its construction. Over the last years, several hybrid models that combine
EMD with known forecasting techniques were proposed. In [8], a hybrid EMD
and Kernel-Ridge Regression (KRR) model was used for wind power prediction,
and in [12] EMD was combined with SVR for energy load forecasting. EMD was
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also shown to improve the performance of an ARIMA - Artificial Neural Network
(ANN) model in [9]. In this work we demonstrate the EMD-ALP model for the
prediction of solar energy. We compare our results to other hybrid EMD based
methods like EMD-KRR (Kernel Ridge Regression) and EMD-SVR (Support
Vector Regression) and highlight the performance of ALP. Since the iterative
mechanism of ALP may be used as an interpolating or as a regression model
[10], the application of ALP on the low-pass IMF modes, yields an approxima-
tion model that behaves close to an interpolation scheme, resulting with low
forecasting errors. Moreover, the Gaussian kernels extend the average regression
residuals in each scale, thus producing a relatively smooth prediction function.

The second challenge we address is modeling of time series with a non-uniform
noise distribution. Examples of such time series come from the field of epidemi-
ology, where it is desired to predict the number of future infected individuals.
When the disease reaches a wave, the numbers may fluctuate daily, resulting in
a noise time series. Once the wave is over, we observe a period with a very small
number of new infections, hence the time series is relatively smooth. The ALP
scheme that was proposed in [2, 5] stops the refinements based on the global L2

error, thus each data point is decomposed into an equal number of modes. In [7],
a modified local stopping scale was introduced. It selects the optimal stopping
scale for each point, with respect to the local noise level and the density. In
this work, we utilize this approach for forecasting the number of future infected
individuals from chickenpox in the city of Budapest, Hungary.

The rest of the paper is organized as follows. In Section 2 we describe the
ALP, ALP-local and the EMD methods. Section 3 presents an application for
solar energy prediction using the EMD-ALP hybrid model. In Section 4 predic-
tion of future chickenpox infection cases using the ALP-local model is described.
Conclusions are provided in Section 5.

2 Mathematical Background

ALP is a general method for function approximation and extension. Here, we
describe its setting in the way it was used in the experimental results. Given
a time series data y(t), where 1 ≤ t ≤ n, we wish to make a future prediction,
y(n+1) based on short-term trajectories from y(t). Denote the set of overlapping
short-term trajectories of length k by X = {x(t, :)}n−k+1

t=1 , that were constructed
using an overlapping sliding window over y(t). The training set is composed of
pairs {x(t, :), f(t)}, where f(t) = y(t+ k+1) is the target. Given a new sample
x(t̃, :), the task is to predict f(t̃). For simplicity, we denote x(t, :) by xt.

2.1 Auto-adaptive Laplacian Pyramids

ALP produces a multi-scale representation of the function f , based on modified
Gaussian kernels that are constructed on the pairwise distances of X. A series
of Gaussian kernels of decreasing scales, Gl = (gl(xt, xt∗)), are defined by

Gl = gl(xt, xt∗) = e
−∥xt−xt∗∥2

σl , (1)
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where xt, xt∗ ∈ X. The initial kernel scale σ0 is set to be large, for example,

σ0 = C ·max
t

[
min

t∗,t∗ ̸=t

(
∥xt − xt∗∥2

)]
, and σl =

σl−1

2 . In order to incorporate the

L2 boosting into the model and to automatically detect an appropriate global
stopping scale for the model, the kernels are modified as follows:

g̃l(xt, xt∗) =

{
gl(xt, xt∗) t ̸= t∗

0 t = t∗
.

We denote the associated row-normalized kernel of G̃l by Kl. Then, f is
smoothed in an iterative manner using the series of smoothing operators Kl and
a course representation is constructed by s0(xt) =

∑
t∗∈X k0(xt, xt∗)f(xt). The

difference d1 = f − s0 is averaged by a finer kernel, resulting with s1, and a finer
representation of f is f1 = s0 + s1.

In general, for l = 1, 2, 3 . . ., we have dl = f − fl−1, and fl = fl−1 + sl.
The stopping scale is set by computing the mean square error at each level and
choosing the scale l⋆ for which the minimum error value occurs.

2.2 The ALP-local model

The stopping scale in the ALP model relays on the mean square error at each
level, denoted by err(l), and results with one global stopping scale, l⋆, that is
associated with all of the data points. In [7], both the model construction and the
extension procedure were modified to provide the freedom for assigning a point-
wise stopping scale. A new parameter ν was added to the model. It defines the
size of the local neighborhood in X upon which the point-wise error is computed.

In other words, instead of computing a global error value, err
(l)
t , at each iteration,

a point-wise local error err
(l)
t is computed at each scale by considering the point’s

nearest neighbors. The vector that holds the final point-wise stopping scales is

defined by l⋆t = argminl{err(l)t }. When forecasting the function value for a new
time-trajectory point xt̃, we identify its nearest neighbor in X and set l⋆

t̃
to be

the stopping scale that is associated with its nearest neighbor.

2.3 Empirical Mode Decomposition

EMD models the time series x(t) as a linear and finite combination of compo-
nents termed Intrinsic Mode Functions (IMF). There are no a priori assumptions
regarding the nature of the data. For a given time series x(t), EMD finds a set
of L IMFs {Ci(t)}Li=1 and a residual signal r(t), so that

x(t) =
L∑

i=1

Ci(t) + r(t). (2)

The IMFs are computed by the following sifting process. First, all of the
local extremes of x(t) are identified. Then, two envelopes are created from the
minima and maxima extreme points by application of the Cubic Spline. The

365

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1. 
Available from http://www.i6doc.com/en/.  



KRR SVR ALP EMD-ALP EMDA-ALP
5363311.7 8082705.9 3066830.9 3115669.07 2775752.2

Table 1: Prediction Errors (RMSE) for the Solar Dataset

envelopes, denoted by emin(t) and emax(t) cover all the data between them.
The mean series of the envelopes, m(t), is computed, followed by a computation
of d1(t) = x(t) −m(t). The process is then iterated over di(t) until a stopping
criteria determines if di(t) is a legal IMF. If the criteria is fulfilled then di(t) is
set to be the first IMF. A residual defined by r(t) = x(t)− c(t) is computed and
the entire process is repeated. The process stops when the residual becomes a
monotonic function, and this last residual is set to r(t).

3 An EMD-ALP Model for Prediction of Solar Energy

Our hybrid model applies ALP over the EMD decomposition of the time series
data. In this process, the training set X is kept fixed, while the function f is
replaced with its EMD decomposition (see Eq. (2)). Traditionally, predictions
are made for each mode separately, including the residual, and then summed up.
Since we did not see a clear improvement with this straight-forward combination,
we suggest an alternative hybrid version. We calculated the average standard
deviation of overlapping windows in each IMF when considering window lengths
of size 5 and 15. For each window configuration, we split the IMFs (including the
residual) into two groups that share similar variability. The IMFs in each group
were aggregated, yielding two intrinsic modes. One holds higher frequencies
and the other holds lower frequencies. We used a validation set (taken from the
training samples) for selecting a grouping that enhanced the prediction accuracy.
Note that the default EMD configuration we used generates approximately 7
IMFs that can be fed as input to the regression models, while our approach
feeds the model with two aggregated IMFs. Denote this EMD model by EMDA.

The EMDA-ALP approach is demonstrated on the AMS 2013-2014 Solar
Energy Prediction Contest (Kaggle). The goal was to predict the total daily
incoming solar energy. The data represents the daily aggregated radiation from
98 stations in Oklahoma between 1994-2007. For this experiment, we selected
five batches of size 98×600, which were converted into an overlapping time series
of length 7, for each station. The models were created based on the first 300 time
trajectories, where a 200-100 split was used for setting the window length size
hyperparamter. The remaining 300 trajectories were test points. We compared
our model against Kernel Ridge Regression (KRR) with an RBF kernel, EMD-
KRR, Support Vector Regression (SVR) and EMD-SVR. EMD-KRR and EMD-
SVR were worse than the KRR and SVR models, thus we omitted these ones
from the results table. Table 1 presents the average results for the 5 batches in
terms of root mean square error. It can be seen that ALP produces accurate
results that are further improved with our EMDA decomposition.
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KNN SVR ALP ALP-local
RMSE 75.2096 69.3583 63.6401 63.2275
MAE 48.0600 42.9782 43.4024 41.5525

Table 2: Prediction Errors for Budapest Chickenpox

4 ALP-local for Predicting Chickenpox Cases

The chickenpox dataset [11] includes weekly chickenpox cases from 20 cities in
Hungary. We performed predictions for Budapest. The series was decomposed
into overlapping windows of length 5. The prediction of each test point was
done via building a model on the previous 100 train trajectories. ALP-local was
executed with ν = 25, after performing a grid search with ν ∈ {15, 25, 35, 45}
with a different part of the data.
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Fig. 1: Left: ALP (blue) and ALP-local (red) train models, Right: ALP (blue),
ALP-Local (red) and SVR (green) predictions.

Figure 1 (left) shows the 100 train function samples f(t) from Budapest. The
ALP train model is plotted in blue and the ALP-local train model is plotted in
red. It can be seen that ALP does not reach the smooth areas of f(t), this is due
to the high noise that affects the global stopping scale. Here, ALP stopped after
6 iterations while ALP-local model contained a maximal scale of 7 for points that
belong to the smooth regions, and scales between 5-6 for the noisy parts. Figure
1 (right) presents the predictions for 100 test points. In addition to the two ALP
models, we plot the SVR predictions in green and it can be seen that it produces
some spikes and that it predicts the smoother areas as well as ALP-local. The
numerical results for 100 test points, in terms of RMSE and MAE(L1 norm),
are shown in Table 2, where a KNN model (K = 5) has been also used. It can
be seen that ALP-local performs better than the other compared methods.
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5 Conclusions

We proposed two extensions for the ALP model that offer some advantages in
different contexts. The first EMD-ALP model uses the locality in the frequency
domain that is achieved by EMD for constructing more accurate ALP models.
Furthermore, we showed that the application of ALP on the aggregated EMDs,
which are grouped in a way that optimizes the training phase, is favorable.
The second extension re-visited the recently introduced ALP-local model and
demonstrated its advantage for the prediction of epidemiological time series, a
dataset with non-uniform noise.
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