
2620 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 70, NO. 7, JULY 2023

Enhancing Conditional Stalling to Boost
Performance of Stream-Processing Logic

With RAW Dependencies
Tobías Alonso , Gustavo Sutter , Member, IEEE, Sergio López-Buedo , Member, IEEE,

and Jorge E. López de Vergara , Senior Member, IEEE

Abstract—Ambiguous read-after-Write (RAW) dependencies
are omnipresent in multiple streaming applications, establishing
hard to optimize bottlenecks. Considering actual input data, these
may rarely be true dependencies. However, the increasingly used
High-Level Synthesis (HLS) compilers must assume the worst-
case scenario, as they rely on static optimizations. Conditional
stalling is a simple yet impactful technique, useful even when con-
flicts are common. At the cost of a small area penalty, it allows
improving (in some cases, by several times) the mean throughput
of these systems. In this brief, we describe a high-frequency HLS
implementation of the technique and examine its behavior as a
function of input and architecture characteristics, with the goal
of understanding when to use it and how to optimize throughput.

Index Terms—Hardware design, high-level synthesis, read-
after-write dependency, runtime optimization, latency masking.

I. INTRODUCTION

DATA dependencies are omnipresent in very diverse appli-
cations. As these can be major obstacles towards obtain-

ing a high-throughput implementation, their detection and
optimization has been a subject of study for decades [1], [2].
Addresses may be computed at runtime, so it might not be
clear whether a memory operation is dependent on another.
Static analysis (at compile time) may confirm the presence or
not of a conflict, that is, when the addresses of these operations
are equal, so there is a dependency, limiting parallelism. Based
on this evaluation, appropriate optimizations can be applied.
Additionally, the analysis may reveal conflicts in specific loop
iterations. Here, several optimizations have been proposed [3],
[4], [5], [6], e.g., varying the processing rate as a function of
the induction variable.

However, some dependencies are ambiguous at compile-
time, so if only relying on static analysis, operations must
be scheduled assuming the worst-case scenario. Thus, if the
dependency distance (DD) is the maximum number of cycles

Manuscript received 30 November 2022; revised 9 January 2023; accepted
10 January 2023. Date of publication 18 January 2023; date of current
version 30 June 2023. This work was supported in part by the Spanish
Research Agency through the Project AgileMon under Grant AEI PID2019-
104451RB-C21. This brief was recommended by Associate Editor H. Yu.
(Corresponding author: Tobías Alonso.)

The authors are with the High Performance Computing and Networking
Research Group, Escuela Politécnica Superior, Universidad Autónoma de
Madrid, 28049 Madrid, Spain (e-mail: tobias.alonso@uam.es; gustavo.sutter@
uam.es; sergio.lopez-buedo@uam.es; jorge.lopez_vergara@uam.es).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSII.2023.3237736.

Digital Object Identifier 10.1109/TCSII.2023.3237736

separating the pair of dependent operations that still violates
the dependency in case of a conflict, then the initiation interval
(II) —number of clock cycles the logic needs to be ready
to process a new input or iteration— will be DD + 1. We
refer to this II as IIbase. Often, these ambiguous dependencies
do not occur frequently, and thus, the hardware will have a
considerable amount of unnecessary idle cycles.

For half a century, different compile-time, runtime, and
hybrid optimizations have been proposed [2], [7], [8], [9]. Yet,
most of these techniques have not been incorporated in cur-
rent High-Level Synthesis (HLS) compilers [10], [11], [12],
so, recently, many works have focused on applying them to
HLS design and tools. Bypasses from write to read operations
were proposed in [13] to improve scheduling when Read-after-
Write (RAW) dependencies were present. As a result, II can
be reduced down to the processing logic latency, eliminat-
ing the memory latencies from the equation. Although useful
for simple logic, it is not very effective for deeper pipelines.
Moreover, it adds a multiplexer to the data path, which can
have a noticeable frequency penalty, particularly for wide paths
and high-frequency designs.

In [14], a conditional stalling (CS) scheme was imple-
mented in a source-to-source compiler to improve loop pipelin-
ing, which was later used in [15]. This technique, inspired by
µP architecture, consists of running a pipeline at full rate when
no conflicts are detected, while stalling the appropriate stages
until those that appear are solved. In this way, IIsys ≤ IIbase,
where IIsys is the average II of the optimized system.

Squash and replay on top of bypassing was proposed in [16]
to deal with data dependencies. This technique, used in super-
scalar µP, consists of speculatively executing an operation and
if a conflict is later detected, the dependent operations are
suppressed and the pipeline is restored to the stage it was when
the violation occurred to replay all operations. When there is
a conflict, this technique incurs in penalty cycles, which is not
the case for CS, and also, it increases the complexity of the
logic, which favors frequency penalties.

We also notice that CS is very suitable for stream pro-
cessing applications (e.g., network packet processing, data
compression, data analytics). For these, high throughput is typ-
ically sought, and RAW dependencies are common. Yet, in the
work in [14] (previously mentioned) only a modest throughput
improvement (approx. 7.5% on average) was observed for the
chosen applications over long input sequences, even show-
ing a performance decrease in some cases. Although these
results are input dependent, they are in part explained by a
23% (on average) increase in the clock period caused by the

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-8632-9146
https://orcid.org/0000-0001-8820-5956
https://orcid.org/0000-0002-0815-7921
https://orcid.org/0000-0002-4057-4688

ALONSO et al.: ENHANCING CS TO BOOST PERFORMANCE OF STREAM-PROCESSING LOGIC 2621

Fig. 1. Stalling stage HLS code.

stalling control logic, as noticed in that work. Also, processing
logic is pipelined ignoring the input characteristics, resulting
(as we will show) in lower throughput.

In this brief, focusing on stream processing applications
and with the aim to generate results that can be extrapo-
lated to other applications and implementations, we analyze
the technique as a function of the data and logic characteris-
tics, rather than for particular cases. In addition, we describe
how to implement CS with no or negligible frequency penalties
and low area overhead. Finally, we provide models that could
be employed by compilers to take design decisions. Example
systems, as well as the developed simulation and mathematical
models, are available through a public repository [17].

II. IMPLEMENTATION OF CONDITIONAL STALLING

If the address generation logic is not dependent on the pro-
cessing logic intermediate or final outputs, the dependency
control logic can be implemented as a preceding stage. Fig. 1
shows a C++ HLS description of such a stage. In the fol-
lowing, we assume to be optimizing a RAW dependency.
WaitList stores in list the write addresses of the data
units to process—namely, packets—sent to the output in the
last DD cycles. For each packet, to determine whether there is
a conflict, the stage checks if the read address matches any of
the addresses in list. If there is conflict, instead of sending
it to the processing stage, the packet is kept until no con-
flict is detected. During these cycles, bubble packets (flagging
they must not be processed) are sent to the output, ensuring
proper synchronization with the processing stage even if there
is intermediate storage between them. Alternatively, if there is
a tight coupling between these stages, the first stage may not
produce any output (the second one must use non-blocking
reads). Given that the stalling stage creates a dependency-free
input pattern, the processing module (logic to optimize) can

TABLE I
STALL STAGE HLS IMPLEMENTATION PERFORMANCE COMPARISON

be pipelined as if no dependencies exist, achieving a better II
for a given pipeline depth, which we call IIp, ideally equal to 1
to maximize throughput. For HLS implementations, this only
involves adding a compiler directive (or pragma), indicating
that there are no dependencies associated with the memory
accesses within DD cycles.

To verify the performance of the stall stage, a group-wise
float64 accumulation example was developed using Vitis-HLS
2021.1 targeting Xilinx Z7020-1 and ZU7EV-2 chips for dif-
ferent DD and address bit widths (AW). This example was
chosen because it allows us to test the technique for a deep,
high-performance pipeline. Two versions of the system were
implemented, one with the conflict detection logic merged
within the processing logic, as in [14], and the other with
the logic in a separated stage. As DD and AW grow, so does
the depth of the conflict detection logic, which may end up
becoming the critical path. Note that, in the former version, the
processing loop operations (e.g., the exit condition) get entan-
gled with the conflict detection logic (e.g., to determine if a
new packet needs to be consumed, we need to verify both the
loop exit condition and whether the current iteration presents a
conflict), and thus, the critical path is worsened. Conversely, if
a preceding stage evaluates the conflicts, the processing stage
only needs to check for a new valid input.

As a result, the latter reaches a higher clock frequency
(+30% and +40% higher for Z7020 and ZU7EV resp), as
shown by Table I. Note that the frequency improvement will
be a function of the complexity of the loop control opera-
tions. In this case, we have evaluated the simple and very
common case where a fixed number of samples is processed.
As a reference, the maximum clock frequency for the on-chip
memories (BRAMs) is also shown in the table. In the case
of the Z7020, we attribute the larger frequency gap to the
slower FPGA fabric of this low-end device. Considering the
achieved frequencies, we think most systems would experience
a low or negligible frequency impact when adding the stalling
stage in the pipeline. Also, the stage requires few resources
(function of DD and AW). For DD = 8 and AW = 8, approx.
300 LUTs and 600 flip-flops were consumed, which represents
0.55% of the available resources in the low-end Z7020 device.
This increases to 0.75% (400 LUTs and 800 flip-flops), for
DD = 16 and AW = 16. Of course, area overhead is expected
from pipelining the address generation and/or processing logic.

As done in super-scalar µP, to mitigate or eliminate the
frequency penalties observed for wide addresses, they may
be hashed and then compared to detect conflicts. High-
performance hardware hashes exist, so their utilization should
not have frequency penalties. Of course, a lower number of
operation identifiers (cardinality, C) decreases performance,
but it might not be noticeable for high C (see Section IV).

2622 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 70, NO. 7, JULY 2023

Although these results are compiler-dependent, they do pro-
vide useful information about how to maximize throughput
when implementing this technique within either a source-to-
source or HLS compiler. Additionally, regarding designing
with current HLS compilers, it shows that providing hints in
the code about the architecture we aim for is still useful.

III. MODELING CONDITIONAL STALLING

The IIsys of a system using CS is a function of the address
distribution (data dependent) and DD (architecture dependent),
rather than the algorithm itself. For example, consider image-
processing applications using pixels as addresses. Scanning
8-bit artificial images has (in general) a much higher proba-
bility of obtaining single-pixel-value bursts, producing lots of
conflicts, compared to 16-bit raw photographic images.

The analysis is focused on two addresses distributions: the
uniform and the Zipfian. The former may emerge naturally,
while in other cases it results by design, e.g., in context-based
data compression, contexts are sought to be equally proba-
ble to improve compression [18]. Zipf-like distributions also
have been observed to characterize classes in different appli-
cations [19], e.g., Web requests [20], and serves as a skewed
probabilities example. To limit the extension of the analysis,
we restrict it to in situ updates (read address = write address),
more common in stream processing. Results also apply to i.i.d.
stateless address distributions.

A. IIsys Distribution for DD = 1

Given a block of W packets with addresses coming from
a uniformly distributed source with cardinality C, we want to
get P(IIsys). When DD = 1 and the pipeline is full, there are
two packet acceptance sequences: the new packet is accepted
in the next cycle (S0), or it waits one cycle and it is accepted
in the following one (S1). It is easy to see that the number
of S1 (N1) ∼ B(n = W, p = 1

C). Given that the block takes
W−N1+N1 ·2 cycles to be processed, P(IIsys = cycles/W) =
P(N1 = cycles−W). From this, it follows that IIsys = 1+p =
1+ 1

C .
For the Zipf and other stateless distributions, an approxi-

mated model can be obtained setting the binomial parameter
p = Pc = ∑a∈A P(a)2, where A is the address set and Pc is
the mean collision probability between two addresses.

B. Hidden Markov Model for DD ≥ 1

A Hidden Markov model (HMM) can capture the behavior
for general DD. It is only presented for the uniform case,
given that it allows a simplification that makes the size of the
model manageable. In general, without this simplification, we
consider it simpler to rely on simulations or approximations.

1) Model: As observed in Fig. 2, each state captures the
occupation pattern of the pipeline —in a binary manner, bubble
(0) or packet (1)— after having accepted a packet. Then, states
are named ignoring the first stage occupation (always full) and
the size of the state set is 2DD−1. For each new packet, there
is a state transition that depends on whether there is a conflict
or not and, if there is one, with which stage. Additionally,
associated with each transition, there is an observed property,
which is the number of cycles required to accept the new
packet (instantaneous IIsys). The model is characterized by the
transition (TM) and emission (EM) matrices, which contain

Fig. 2. Hidden Markov model example for DD = 3 and C ≥ 3.

the probabilities of a state transition and of emitting an II,
given the current state.

2) Automatic Model Generation: Each state has as many
conflict transitions as it has packets in the pipeline, plus one
non-conflict transition. If the new address conflicts with the
one in the stage x ∈ [0..DD−1], then the emission will be
II = DD+ 1− x and state← (state+ 2DD−1)/2II . The proba-
bility of that conflict to occur is Pc = 1

C . If there are multiple
transitions between a pair of stages, the transition probability
is the sum of all the individual probabilities. If there are no
conflicts, then II = 1 and the new state is computed as before.
Finally, notice that depending on C, there are forbidden states
and transitions given that there might not be enough different
addresses to fill the pipeline. A complete implementation can
be found in the public repository. As an example, equation (1),
shows TM and EM matrices for DD = 3 and C ≥ 3.

TM =
00 01 10 11

from←−− / ↓ to
⎛

⎝

⎞

⎠

Pc Pc 2.Pc 2.Pc 00
0 Pc 0 Pc 01

1−Pc 1−2.Pc 0 0 10
0 0 1−2.Pc 1−3.Pc 11

EM =
00 01 10 11 II

⎛

⎝

⎞

⎠

1−Pc 1−2.Pc 1−2.Pc 1−3.Pc 1
0 Pc 0 Pc 2
0 0 Pc Pc 3
Pc Pc Pc Pc 4

(1)

Using the HMM matrices, we can compute, for example,
IIsys = [1 . . . (DD + 1)] · EM · π , where the first row vector
contains the value of the II emissions and π is the steady
state distribution column vector (obtained from TM). Notice
that EM · π is the steady distribution of IIsys.

3) Approximation of the IIsys Distribution for General Block
Size: The distribution of IIsys for any block size W and DD,
is not trivial. However, we can obtain a good approximation
modeling the system as a stateless one with only two pos-
sible packet acceptance sequences: S0 (No conflict) and S1
(the average conflict sequence). It is not hard to see that
P(S0) = ∑2DD−1

i=2DD−2+1 π i and S0 emits II0 = 1. S1 emits
the mean conflict cycles, II1 = (IIsys−P(S0))/P(S1), where
P(S1) = 1−P(S0) and IIsys is given by the HMM. In this way,
the number of S1 in the W block (N1) follows a binomial dis-
tribution and P(IIsys = cycles/W) = P(N1 = cycles−W

II1−1) (notice
that cycles = W − N1 + N1 · II1 ∈ R).

C. A Simple IIsys Approximation

Although exact for the uniform distribution, the HMM
requires somewhat compute-intensive operations. There are
occasions where faster methods are preferred, despite not
being exact, and we also would like to have estimations for
other distributions. We obtain a simple formula (exact for

ALONSO et al.: ENHANCING CS TO BOOST PERFORMANCE OF STREAM-PROCESSING LOGIC 2623

Fig. 3. Relative error of Eq. (2) with IIlim = 1.35 for random distributions.

Fig. 4. IIsys violin plots (99th percentile delimited) for blocks of 1000 packets
for uniformly and Zipf with s = 1.8 distributed addresses.

DD = 1) by assuming that the probability of having a full
pipeline (no bubbles) is equal to 1. As a result, we get:
IIsys ≤ F2(DD, Pc) = 1+ (DD2+DD) · Pc/2. This is an upper
bound because the full state has the highest conflict probabil-
ity. The bound will be tighter as Pc ·DD grows smaller, given
that the probability of this state gets closer to 1.

As IIsys increases, a linear approximation, F1(DD, Pc), fits
very well the data (see Fig. 4). Then, we may set an IIsys above
which F1(·) is used instead of F2(·). Finally, using F2(·) to
estimate F1(·) coefficients, we obtain:

DDlim = DD|F2(·)=IIlim
=

(√

(8 · (IIlim−1)/Pc + 1)−1
)/

2

b = ∂F2/∂DD(DDlim, Pc) = (2 · DDlim + 1) · Pc/2

IIsys ≈
{

DD < DDlim, 1+ (DD2 + DD) · Pc/2
DD ≥ DDlim, IIlim + b · (DD−DDlim)

(2)

In general, an IIlim = 1.35 results in good approxima-
tions (see Fig. 3). For a more conservative approach (higher,
pessimistic IIsys estimations), higher IIlim may be used.

IV. PERFORMANCE ANALYSIS

A. IIsys Improvement for a Given Processing Latency

Fig. 4 compares IIbase with IIsys when CS is applied and
the processing module is pipelined to achieve IIp = 1 with-
out changing the frequency or DD (the processing latency
remains constant). This is shown for both distributions and
different cardinalities (C). The Zipf parameter s is set to 1.8
to evaluate a very skewed distribution (P(1) = 0.6 for an 8-
symbol source), in contrast to the uniform. Notice that, even
for low C and very skewed distributions, IIsys improves sig-
nificantly. Naturally, as Pc decreases (larger C and/or smaller
s), the throughput improvement increases.

In general, e.g., due to the nature of the problem or the avail-
able buffer size, we need to understand the IIsys behavior for
packet blocks of a given size. The worst-case performance for
non-deterministic address sequences is IIbase, which occurs for
single-address bursts. Of course, as the block size increases,

Fig. 5. Throughput estimation as the number of pipeline stages of the pro-
cessing module increases for uniformly and Zipf distributed addresses. For
comparison, FF curve shows the feed-forward circuit behavior.

this sequence becomes rarer. To illustrate this, Fig. 4 also
shows, using violin plots, the PDF of IIsys for blocks of 1000
operations, where the 99th percentile (delimited in the fig. by
a horizontal line) is noticeably better than IIbase.

B. Evolution of Throughput With Increasing Pipeline Depth

For feed-forward circuits (there are no feedback paths), we
can increase throughput using a deeper pipeline to reduce the
clock period. However, there are many technology-dependent
inefficiencies associated with this process (work imbalance,
increased clock skew, additional routing delays, etc.) [21] [22,
Ch. 2]. A simple model to estimate the resulting clock period
for S > 1 stages would be: P = Tcomb/S+Tpp, where Tcomb is
the period for the single-stage logic and Tpp the sum of pipelin-
ing penalizations, assumed approximately constant. In Fig. 5,
the FF curve shows the normalized throughput estimation for
a feed-forward circuit with Tcomb = 8ns and Tpp = 0.9ns as
a function of logic stages. These constants fit the behavior of
the example system in Section II.

A dependency creates a feedback loop in a module. If
the dependency loop logic is deepened to increase frequency
(using only static optimizations), the II increase will more than
compensate the period reduction, worsening throughput. The
baseline curve shows this effect, where, to ease the comparison
with FF, the same Tcomb and Tpp are used and the write and
read latencies are set to 0 and 1, resp, then DD = stages−1.

Conversely, when CS is applied, increasing the depen-
dency loop pipelining has the potential to improve throughput
because IIsys increases slower. The rest of the curves in Fig. 5
are confined between FF and baseline curves, drawing near
to the former as the conflict probability decreases. Although
increasing pipelining eventually decreases performance (con-
flict penalty increases faster than frequency), the curves show
that most systems can be improved optimizing the pipeline
depth.

C. Trade-Off Between IIsys and Area

We have only considered using a processing module with
IIp = 1, but it might not be achievable, e.g., due to resource
contention. For the simpler case where the processing logic
consumes both packets and bubbles at a IIp rate, the system
behaves as if DD′ =
DD/IIp� scaled by IIp. Then, the logic

may only track DD′ addresses and IIsys = II
1
sys(DD′) · IIp,

where II
1
sys(·) gives IIsys for a given DD and IIp = 1.

2624 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 70, NO. 7, JULY 2023

Moreover, controlling IIp enables different throughput-area
trade-offs. Particularly for deeply pipelined modules and
skewed distributions, increasing IIp can have a small impact
on IIsys, while the area reduction may be significant as it
increases the possibility of sharing resources and simpli-
fies the control logic. Additionally, it may reduce pipelining
penalties.

V. DISCUSSION AND CONCLUSION

For systems with 1-cycle-latency memories and single-
stage processing, bypassing (data-forwarding) will generally
be more suitable as it assures an II = 1, although it may
have some frequency penalties. However, as the dependency
distance DD (function of the logic and memory latencies)
increases, bypassing gets less and less effective. It is precisely
here where conditional stalling, CS, has a clear application.
As illustrated by Fig. 4, the larger DD, the greater the poten-
tial performance increase CS can offer. This improvement
is also a function of the address distribution, but II will
never be worse than the baseline. In addition, these tech-
niques can be used together, using bypassing to mask the write
latency (reducing DD) and CS to partially mask the remaining
latencies.1

Additionally, CS enables throughput improvements by tun-
ing the processing pipeline depth. However, notice that CS
can be a double edge sword (see Fig. 5), since this tech-
nique magnifies the diminishing returns of pipelining. Thus,
we may end up with a higher area and a slower system. To
actually increase throughput, knowledge of the application and
of how frequency varies with the number of stages is neces-
sary. Nowadays, obtaining the latter is easier than it was in the
past, given that an HLS compiler can automatically iterate over
increasingly deeper pipelines and gather timing data (pre- or
post-RTL-synthesis estimations, or post-RTL-implementation).

Then, when the address distribution, the mean collision
probability (Pc), or a representative input vector is available,
mathematical and/or simulation models can be employed to
optimize the logic depth and compute the required buffers for
a given confidence level. Of course, the distribution might not
be stable or very little information about it might be avail-
able. In these cases, taking a pessimistic approach, assuming
a very skewed distribution might be a viable option. A naïve
attempt to limit pipelining would be that if DD >= C, the
logic depth should not be increased. However, this is not very
useful as, even with zero pipelining penalties, the through-
put increase after this point is almost null. As future work,
we would like to study the implementation of an adaptive
system with multiple processing units of varying depth (and
clock frequency), choosing at runtime the higher throughput
alternative according to the collected conflict statistics.

Finally, CS enhances portability and functional robustness.
A design may ignore a dependency because it is not true given
known input data properties, but if these properties change or
the design is reused in another system, it might fail. CS ensures
that designs will always be functionally correct.

To summarize, in this brief, we have studied the conditional
stalling technique, showing that, even in adverse cases, it can
significantly enhance performance, particularly when unavoid-
able latencies are present in the dependency path. Moreover,

1For CS to effective, slow memories have to queue enough requests without
significantly increasing the latency (which also has to be bounded to use CS).

depending on conflict rates, it can allow improving mean
throughput using deeper pipelines. Finally, this optimization
could be integrated within HLS compilers, which can use the
models here provided to make design decisions, resulting in
better quality of results and increased designers’ productivity.

REFERENCES

[1] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler transformations
for high-performance computing,” ACM Comput. Surveys, vol. 26, no. 4,
pp. 345–420, Dec. 1994.

[2] P. P. Chang, W. Y. Chen, S. A. Mahlke, and W.-M. W. Hwu, “Comparing
static and dynamic code scheduling for multiple-instruction-issue
processors,” in Proc. 24th Annu. Int. Symp. Microarchitect., 1991,
pp. 25–33.

[3] M. Griebl, P. Feautrier, and C. Lengauer, “Index set splitting,” Int. J.
Parallel Program., vol. 28, no. 6, pp. 607–631, 2000.

[4] A. Morvan, S. Derrien, and P. Quinton, “Efficient nested loop pipelining
in high level synthesis using polyhedral bubble insertion,” in Proc. Int.
Conf. Field-Programmable Technol., 2011, pp. 1–10.

[5] J. Liu, S. Bayliss, and G. A. Constantinides, “Offline synthesis of online
dependence testing: Parametric loop pipelining for HLS,” in Proc. IEEE
23rd Annu. Int. Symp. Field-Programmable Custom Comput. Mach.,
2015, pp. 159–162.

[6] J. Liu, J. Wickerson, S. Bayliss, and G. A. Constantinides, “Polyhedral-
based dynamic loop pipelining for high-level synthesis,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 9,
pp. 1802–1815, Sep. 2018.

[7] R. M. Tomasulo, “An efficient algorithm for exploiting multiple arith-
metic units,” IBM J. Res. Develop., vol. 11, no. 1, pp. 25–33, 1967.

[8] A. Nicolau, “Run-time disambiguation: Coping with statically unpre-
dictable dependencies,” IEEE Trans. Comput., vol. 38, no. 5,
pp. 663–678, May 1989.

[9] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and
W.-M. W. Hwu, “Dynamic memory disambiguation using the memory
conflict buffer,” in Proc. 6th Int. Conf. Archit. Support Program. Lang.
Oper. Syst., 1994, pp. 183–193.

[10] “Catapult HLS.” Accessed: Dec. 5, 2021. [Online]. Available: https://
eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/

[11] (Intel, Mountain View, CA, USA). Intel High Level Synthesis
Compiler Pro Edition: Reference Manual. Accessed: Dec. 2,
2021. [Online]. Available: https://www.intel.com/content/www/us/en/
docs/programmable/683349/21-4/pro-edition-reference-manual.html

[12] Vitis High-Level Synthesis: User Guide Version V2021.1, Xilinx, San
Jose, CA, USA, 2021.

[13] J. Rohde, K. Müller, and C. Hochberger, “Improving HLS gener-
ated accelerators through relaxed memory access scheduling,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW), 2020,
pp. 74–81.

[14] M. Alle, A. Morvan, and S. Derrien, “Runtime dependency analysis for
loop pipelining in high-level synthesis,” in Proc. 50th ACM/EDAC/IEEE
Design Autom. Conf. (DAC), 2013, pp. 1–10.

[15] S. Derrien, T. Marty, S. Rokicki, and T. Yuki, “Toward speculative loop
pipelining for high-level synthesis,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 39, no. 11, pp. 4229–4239, Nov. 2020.

[16] S. Dai et al., “Dynamic hazard resolution for pipelining irregular
loops in high-level synthesis,” in Proc. ACM/SIGDA Int. Symp. Field-
Programmable Gate Arrays, 2017, pp. 189–194.

[17] “Publication repository.” Accessed: Nov. 28, 2022. [Online]. Available:
https://github.com/hpcn-uam/hls-conditional-stalling

[18] M. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image
compression algorithm: Principles and standardization into JPEG-LS,”
IEEE Trans. Image Processing, vol. 9, pp. 1309–1324, 2000.

[19] R. T. Fernholz and R. Fernholz, “The universality of Zipf’s law for
time-dependent rank-based random systems,” 2017, arXiv:1707.04285.

[20] M. A. Kader et al., “Leveraging big data analytics for cache-enabled
wireless networks,” in Proc. IEEE Globecom Workshops (GC Wkshps),
2015, pp. 1–6.

[21] S. L. Harris and D. M. Harris, “Microarchitecture,” in Digital Design
and Computer Architecture, S. L. Harris and D. M. Harris, Eds. Boston,
MA, USA: Morgan Kaufmann, 2016, ch. 7, pp. 384–484.

[22] K. Olukotun, L. Hammond, and J. Laudon, Chip Multiprocessor
Architecture: Techniques to Improve Throughput and Latency, vol. 2.
San Rafael, CA, USA: Morgan Claypool Publ., 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

