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Abstract—In functional classification problems the data avail-
able for learning are characterized by functions, rather than
vectors of attributes. In consequence, multivariate classifiers need
to be adapted, and new types of classifiers designed to take
into account the special characteristics of these types of data.
In this work, an empirical evaluation of different classification
methods is carried out using a variety of functional classification
problems from different areas of application. The classifiers
considered include nearest centroids with functional means as
class prototypes and functional distances, standard multivariate
classifiers used in combination with a variable selection method,
classifiers based on the notion of functional depth, a functional
version of k-nearest neighbors (k-NN), and random forest. From
the results of this comparative study one concludes that random
forest is among the best off-the-shelf classifiers not only for
multivariate but also for functional classification problems. The
variable selection method used in combination with a quadratic
discriminant has fairly good overall accuracy using only a small
set of impact points. This dimensionality reduction leads to
improvements both in efficiency and interpretability. Finally,
a functional version of k-NN that uses the α-Mahalanobis
distance exhibits consistently good predictive performance in all
the problems considered. This robustness makes k-NN a good
benchmark for functional classification.

Index Terms—functional data analysis, classification, Maha-
lanobis distance, functional k-NN

I. INTRODUCTION

In many machine learning problems, the data available for
induction are characterized by continuous functions. Examples
include learning from time signals (e.g., the diagnosis of
heart disease from electrocardiograms [1]), spatial data (e.g.,
the estimation of ore concentration in mineral deposits [2]),
or spatio-temporal data (e.g., causal discovery in climate
science [3]). For the purpose of learning, the curves that
characterize the training instances can be modeled as random
functions, which are the object of study of a branch of
statistics known as Functional Data Analysis (FDA). Given
that these functions depend on a continuous parameter, they
are infinite-dimensional and possess statistical properties that
are markedly different from random vectors [4], [5]. As a re-
sult, standard multivariate methods such as logistic regression
or discriminant analysis cannot be applied directly [4], [5].
Furthermore, some classification problems are singular, which
means that one can, in principle, achieve zero Bayes error [6].

A functional dataset consists of a collection of N instances
D = {(xn(t), yn) ;n = 1, . . . , N}, where xn(t), with t ∈
T ⊂ R, is the real-valued function that characterizes the n
example, and yn ∈ {1, . . . ,K} is the corresponding class
label. Typically, the functions are available as measurements
of the process at a grid of M discrete times t = (t1, . . . , tM )

x(t) = (x(t1), . . . , x(tM )) (1)

The goal of this study is to compare the predictive perfor-
mance of different classifiers for these types of data. Most
off-the-shelf methods, such as the ones implemented in the
Python library scikit-learn [7], assume that the instances to be
classified are characterized by vectors of attributes. The direct
application of these methods to functional data in discretized
form does not take advantage of their continuous structure, and
can be problematic from a theoretical and practical perspec-
tive. A possible approach is to use a dimensionality reduction
method and then apply a standard multivariate classifier [8].
Alternatively, the classification method can be adapted to the
functional setting. For instance, a nearest-centroid classifier
can be built using the per-class functional means as prototypes
and a functional metric to compute distances [6]. It is also pos-
sible to utilize functional measures of centrality in a sample to
design depth-based classifiers [9], [10]. In k-NN, a functional
distance can be used to identify the nearest neighbors [11].
Random forest [12] can be directly employed with functional
data by using the values of the functions as attributes.

The performance of these different types of classifiers has
been tested using a wide range of functional classification
problems from different areas of application. A total of 5
multiclass datasets (arrowheads, fish, phoneme, plane and
symbols) and 13 binary classification problems are used in
this comparison. A summary of the characteristics of these
datasets is presented in Table I. In this table, N is the sample
size, M the size of the grid, and K the number of classes. For
the Phoneme dataset the data has been smoothed by applying
a Nadaraya-Watson smoother to the original curves. A binary
version of this dataset truncated to the first 50 features has also
been included in the study [6]. We also include the second
derivatives of Tecator, as for this dataset they contain most of
the information [13]. To compute the derivatives, the original
curves have been approximated using B-splines.



TABLE I
CHARACTERISTICS OF THE DATASETS CONSIDERED.

N M K Majority
class (%) Reference

ArrowHead 211 251 3 38.39 [14]
Australian 190 365 2 77.37 [15]
Cell 90 18 2 51.11 [16]
Coffee 56 286 2 51.79 [14]
ECG 2026 85 2 74.33 [11]
Fish 350 463 7 14.29 [14]
Growth 93 31 2 58.06 [11]
GunPoint 200 150 2 50.00 [14]
MCO 89 360 2 50.56 [11]
Medflies 534 30 2 52.06 [11]
NOx 115 24 2 66.09 [17]
Phoneme 4509 256 5 25.79 [11]
Phoneme (bin) 1717 50 2 59.52 [11]
Plane 210 144 7 14.29 [14]
Symbols 1020 398 6 17.75 [14]
Tecator 215 100 2 64.19 [13]
Tecator (2nd der) 215 100 2 64.19 [13]
Yoga 3300 426 2 53.64 [14]

II. EMPIRICAL EVALUATION

In this study, four different families of classifiers are con-
sidered: nearest centroid classifiers [6], a functional variable
selection method [8] used in combination with different mul-
tivariate classifiers, classifiers based on the notion of depth
[9], [10], and k-NN classifiers that employ different functional
distances [11]. In what follows, we first compare classifiers
within each of these families. From each of these families
the classifier that has the best overall predictive performance
in the problems considered is selected. Finally, the selected
predictors are compared among each other and with random
forest, which is one of the best off-the-shelf classifiers [18].

The infrastructure for the empirical evaluation is provided
by the scikit-datasets Python package [19]. The classifiers are
built using scikit-fda [20], a Python package that offers a
comprehensive set of tools for statistical analysis and machine
learning for functional data, in combination with scikit-learn
[7]. For each of the classification problems, stratified sampling
is used to partition the data into a training set, which includes
70% of the instances available for learning, and a test set with
the remaining ones. When necessary, 5-fold cross-validation
within the training set is used to determine the values of the
hyperparameters of the different classifiers.

The results reported consist of the mean accuracy and
standard deviation over 100 random partitions for each par-
ticular classifier-dataset combination. To account for sample
variability, the classifiers are trained and tested using the same
partitions. For each dataset, the scores of the best and second
best predictors are highlighted in boldface and underlined,
respectively. An asterisk is used to indicate statistically sig-
nificant differences at the 5% level using a paired t-test.

An overall comparison of the different classification meth-
ods is made in terms of their average accuracy and rank.
A Friedman test is used to determine whether the overall
differences among average ranks are statistically significant.

If significant differences are detected by this test a pairwise
post-hoc Nemenyi test is used [21]. The results of these tests
are summarized in critical distance (CD) diagrams generated
with the autorank Python package [22].

A. Nearest centroid classifiers

Nearest centroid classifiers (NC) are simple methods that
assign to a given observation x(t) the label of the class whose
centroid (the mean) ck, k = 1, . . . ,K is closest to it:

ŷ = argmin
k=1,...,K

d(x(t), ck), (2)

where d (·) is a functional distance. In spite of their simplic-
ity, they can achieve optimal results for some classification
problems [6]. Four different metrics are considered:

• NC-L1 uses the L1-distance.
• NC-L2 with the L2-distance.
• NC-Mah uses a kind of Mahalanobis distance. Since the

covariance operator is non-invertible in the functional
setting, this distance cannot be directly translated. Here
we use the α-Mahalanobis distance proposed in [23],
an adaptation of the original measure, in which the
covariance operator is regularized so that it becomes
invertible. The regularization parameter α is fixed by
cross validation in the range {10−i, i = 0, . . . , 6}.

• NC-Ang utilizes the angular distance defined as

dangular(x1, x2) =
1

π
arccos

(
〈x1, x2〉
‖x1‖‖x2‖

)
. (3)

The results of these experiments are presented in Table II
and summarized in a CD diagram (Figure 1). NC with the
α-Mahalanobis distance clearly outperforms the other com-
petitors. The average rank of NC-Mah is significantly better
than NC-L1 and NC-L2. It also obtains significant victories in
a number of datasets.
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Fig. 1. CD diagram of the nearest centroid classifiers. Classifiers are grouped
with a thick dark line if the differences among their average ranks are not
statistically significant.

B. Functional variable selection

An usual strategy to deal with functional data consists in
applying a dimensionality reduction method to transform the
original trajectories into vectors. Then, any standard multi-
variate classifier can be used. Variable selection methodology
provides interpretable reductions by replacing the original
functions by their values at several well chosen points. In this
work, we have chosen the Reproducing Kernel-based Variable
Selection (RKVS) method proposed by one of us in [8] as a
representative of this family of techniques. The name RKVS
refers to the role of the reproducing kernel Hilbert spaces



TABLE II
COMPARISON AMONG NEAREST CENTROIDS CLASSIFIERS.

NC-L1 NC-L2 NC-Mah NC-Ang

ArrowHead 0.734 ± 0.045 (4) 0.765 ± 0.054 (3) 0.782 ± 0.043 (1)* 0.765 ± 0.054 (2)
Australian 0.864 ± 0.038 (3) 0.852 ± 0.041 (4) 0.903 ± 0.040 (2) 0.906 ± 0.034 (1)
Cell 0.861 ± 0.069 (3) 0.861 ± 0.065 (2) 0.869 ± 0.063 (1) 0.818 ± 0.067 (4)
Coffee 0.955 ± 0.049 (4) 0.959 ± 0.048 (2) 1.000 ± 0.000 (1)* 0.959 ± 0.048 (2)
ECG 0.780 ± 0.025 (4) 0.840 ± 0.016 (2) 0.971 ± 0.006 (1)* 0.790 ± 0.028 (3)
Fish 0.616 ± 0.041 (4) 0.635 ± 0.045 (3) 0.716 ± 0.041 (1)* 0.640 ± 0.044 (2)
Growth 0.742 ± 0.102 (4) 0.777 ± 0.093 (3) 0.958 ± 0.032 (1)* 0.934 ± 0.039 (2)
GunPoint 0.712 ± 0.060 (2) 0.706 ± 0.058 (3) 0.770 ± 0.051 (1)* 0.684 ± 0.055 (4)
MCO 0.635 ± 0.079 (4) 0.637 ± 0.078 (3) 0.986 ± 0.026 (1)* 0.839 ± 0.068 (2)
Medflies 0.551 ± 0.031 (3) 0.556 ± 0.030 (1) 0.548 ± 0.034 (4) 0.553 ± 0.032 (2)
NOx 0.726 ± 0.077 (4) 0.782 ± 0.079 (3) 0.898 ± 0.052 (1)* 0.851 ± 0.057 (2)
Phoneme 0.851 ± 0.008 (4) 0.867 ± 0.007 (3) 0.910 ± 0.006 (1)* 0.869 ± 0.008 (2)
Phoneme (binary) 0.750 ± 0.017 (4) 0.762 ± 0.016 (3) 0.812 ± 0.015 (1)* 0.798 ± 0.015 (2)
Plane 0.954 ± 0.028 (2) 0.953 ± 0.027 (3) 0.969 ± 0.020 (1)* 0.949 ± 0.028 (4)
Symbols 0.887 ± 0.015 (3) 0.891 ± 0.015 (2) 0.920 ± 0.016 (1)* 0.878 ± 0.015 (4)
Tecator 0.681 ± 0.046 (4) 0.685 ± 0.045 (3) 0.953 ± 0.021 (1)* 0.860 ± 0.036 (2)
Tecator (2nd derivative) 0.961 ± 0.020 (2) 0.960 ± 0.022 (3) 0.959 ± 0.021 (4) 0.971 ± 0.017 (1)*
Yoga 0.519 ± 0.035 (4) 0.528 ± 0.038 (2) 0.578 ± 0.016 (1)* 0.527 ± 0.032 (3)

Average accuracy 0.766 0.779 0.861 0.811
Average rank 3.444 2.667 1.389 2.444

theory in deriving properties of the method, such as optimality
results for some Gaussian models. RKVS aims at selecting the
variables to maximize the (multivariate) Mahalanobis distance
between the class means in the reduced space.

Here, we use the greedy implementation of RKVS available
in scikit-fda with four standard multivariate classifiers included
in scikit-learn: linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA), k-nearest neighbors with the Eu-
clidean distance (k-NN) and random forest (RF). The number
of variables selected and the k of k-NN are chosen by cross-
validation between 1 and 10. The number of trees in RF y fixed
to 100. Finally, as RKVS is defined for binary problems, we
follow a one-versus-rest strategy for the multiclass datasets.

Accuracy results and ranking for each dataset are shown in
Table III. In general terms, there are no such big differences
as in the previous section. This is illustrated in the associated
CD diagram shown in Figure 2. However, RKVS+QDA and
RKVS+k-NN obtain better results with significant victories
in three datasets each. In particular, the application of QDA
exhibit better global results as indicated by the average rank.
This difference it is not appreciated in the average accuracy
by the effect of the Yoga problem where the performance of
RKVS+QDA is bad, maybe because of a lack of Gaussianity.
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Fig. 2. Critical distance diagram of the multivariate classifiers applied after
RKVS variable selection.

C. Depth-based classifiers

Another classification strategy is labelling observations ac-
cording with their centrality in the populations: the more
central an observation is in a sample, the more probable it

is to belong to that sample. The notion of centrality is quite
natural in one-dimensional data, but it becomes fuzzy in higher
dimensions. This effect is particularly critical in the infinite
dimensional spaces of function where nothing similar to a
natural order exists. Fortunately, there is a bunch of statistical
depth functions that allow us to quantify this centrality in order
to define the median, detect outliers or classify.

In this context, the simpler proposals for classifying are the
so called maximum depth methods (MD) [9]. They assign a
new observation into the class in which it is deeper. That is,
the class label assigned to x(t) is

ŷ = argmax
k=1,...,K

Dk(x(t)), (4)

where Dk denotes the depth measure in the k-th class.
A different approach to depth-based classification is fol-

lowed by the generalized depth-depth classifier (DDG) [10].
This methodology consists in projecting the functional data
into a lower-dimensional space of depths and then, use any
multivariate classification rule. The features in this reduced
space are the depth values of the trajectories in each class,
for one or more depth measures. In other words, given a
functional observation x(t) and a set of depth functions
D1, . . . , DG, the DDG classifier performs the transformation
x(t) → (Di

k(x(t))), i = 1, . . . , G, k = 1, . . . ,K, before
classifying. Here, we consider the simplest case of G = 1.

We have tested these two techniques with two different
depth measures: Modified Band Depth (MBD) [24], and
a depth measure based on the previously commented α-
Mahalanobis distance (Mah) [23]. DDG is combined with
a simple k-NN with the Euclidean distance. The number
of neighbors is set by cross-validation between 1 and 10.
Accuracy and rank positions by dataset are shown in Table IV.
The associated CD diagram is shown in Figure 3.

These results are quite straightforward. On the one hand,
DDG methods clearly beat their same depth MD counterparts.



TABLE III
COMPARISON AMONG RKVS-BASED CLASSIFIERS.

RKVS+LDA RKVS+QDA RKVS+k-NN RKVS+RF

ArrowHead 0.787 ± 0.044 (4) 0.832 ± 0.043 (3) 0.855 ± 0.045 (1)* 0.834 ± 0.043 (2)
Australian 0.889 ± 0.035 (4) 0.890 ± 0.039 (3) 0.936 ± 0.029 (2) 0.937 ± 0.030 (1)
Cell 0.842 ± 0.059 (3) 0.841 ± 0.062 (4) 0.883 ± 0.062 (2) 0.891 ± 0.061 (1)
Coffee 0.974 ± 0.044 (1) 0.970 ± 0.045 (2) 0.968 ± 0.048 (3) 0.951 ± 0.052 (4)
ECG 0.982 ± 0.005 (4) 0.987 ± 0.006 (3) 0.997 ± 0.002 (1)* 0.993 ± 0.005 (2)
Fish 0.804 ± 0.039 (2) 0.824 ± 0.037 (1)* 0.786 ± 0.038 (3) 0.770 ± 0.041 (4)
Growth 0.951 ± 0.034 (2) 0.952 ± 0.038 (1) 0.944 ± 0.040 (3) 0.916 ± 0.054 (4)
GunPoint 0.881 ± 0.038 (4) 0.909 ± 0.042 (2) 0.892 ± 0.041 (3) 0.928 ± 0.039 (1)*
MCO 0.961 ± 0.044 (1) 0.959 ± 0.040 (2) 0.881 ± 0.060 (3) 0.855 ± 0.072 (4)
Medflies 0.591 ± 0.033 (2) 0.589 ± 0.033 (3) 0.568 ± 0.033 (4) 0.599 ± 0.032 (1)
NOx 0.914 ± 0.048 (2) 0.919 ± 0.037 (1) 0.890 ± 0.050 (3) 0.877 ± 0.049 (4)
Phoneme 0.922 ± 0.006 (4) 0.927 ± 0.005 (1)* 0.923 ± 0.005 (3) 0.924 ± 0.006 (2)
Phoneme (binary) 0.820 ± 0.015 (1)* 0.815 ± 0.015 (2) 0.806 ± 0.013 (3) 0.806 ± 0.014 (4)
Plane 0.971 ± 0.019 (2) 0.974 ± 0.020 (1) 0.960 ± 0.020 (4) 0.971 ± 0.021 (3)
Symbols 0.870 ± 0.015 (4) 0.950 ± 0.016 (3) 0.959 ± 0.010 (2) 0.961 ± 0.010 (1)
Tecator 0.938 ± 0.026 (2) 0.974 ± 0.019 (1)* 0.879 ± 0.035 (3) 0.833 ± 0.045 (4)
Tecator (2nd derivative) 0.936 ± 0.026 (4) 0.978 ± 0.015 (2) 0.980 ± 0.015 (1) 0.978 ± 0.017 (2)
Yoga 0.686 ± 0.019 (4) 0.752 ± 0.027 (3) 0.902 ± 0.011 (1)* 0.899 ± 0.010 (2)

Average accuracy 0.873 0.891 0.889 0.884
Average rank 2.778 2.111 2.500 2.556

On the other hand, given a classifier, the α-Mahalanobis depth
versions outperform those using MBD. In summary, DDG-Mah
is the undoubted winner in this family with better performance
in average and significant victories in most datasets.
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Fig. 3. Critical distance diagram of the depth based classifiers.

D. Functional k-NN classifiers

The k-nearest neighbors classifier (k-NN) can be extended
to the functional case by using a distance between functions
to find the neighbors. It can be considered a sort of reference
method for supervised classification in FDA [11]. Some of the
reasons for it are its simplicity, ease of motivation and the fact
that it typically does not lead to gross classification errors.

We have tested the k-NN classifier implemented in scikit-
fda with the same metrics used for the NC-Classifiers (Subsec-
tion II-A): L1, L2, α-Mahalanobis and Angular. Parameters k
and α are selected by cross-validation as before. The results by
classifier-dataset can be seen in Table V, and the corresponding
critical distance diagram is shown in Figure 4.

Rank results show a certain equality between all the propos-
als, with no significant differences (see Figure 4). However,
versions with Mahalanobis and angular distances obtain better
results in terms of accuracy. These differences are mostly
motivated by the bad performances of L1 and L2 proposals
in MCO and Tecator datasets, which probably need a more
global approach. Finally, choose k-NN-Mah over k-NN-Ang
because of the number of significant victories.
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Fig. 4. Critical distance diagram of the functional k-NN classifiers.

E. Final comparison

In this section, a final comparison is made among the best
classifiers of each family and a random forest composed of 100
trees. The results are summarized in Table VI and in Figure 5.

A first conclusion of this study is that the α-Mahalanobis
distance, recently proposed in [23], has very good properties
for classification when used by a distance-based functional
classifier, such as nearest centroids or k-NN. Furthermore, it
has also proven to be useful to design depth-based classifiers.

From the results, it is apparent that the best overall accuracy
is achieved by the functional version of k-NN that employs
the α-Mahalanobis distance, random forest, and the classifier
that uses RKVS-variable selection followed by QDA.

The depth-based classifier has the poorest performance
among the methods considered. This means that depth, while
being a useful statistical concept, does not capture all the
information necessary for classification. It should therefore be
used in combination with additional features.

The performance of the nearest centroid classifier is affected
by the poor accuracy obtained when the mean is not a good
prototype of the curves of a given class; for example, if the
distribution of the curves is asymmetric, multimodal or the
curves are not aligned, as in ArrowHead, GunPoint and Yoga.

Random forest (RF) achieves the highest average rank in
the problems considered. This means that it is one of the best
classifiers not only for multivariate, but also for functional
classification problems. A possible explanation is that RF takes
advantage of the high dimensionality of the data to build



TABLE IV
COMPARISON AMONG DEPTH-BASED CLASSIFIERS.

MD-MBD MD-Mah DDG-MBD DDG-Mah

ArrowHead 0.722 ± 0.051 (4) 0.813 ± 0.048 (2) 0.739 ± 0.045 (3) 0.825 ± 0.043 (1)*
Australian 0.747 ± 0.055 (4) 0.870 ± 0.047 (3) 0.875 ± 0.040 (2) 0.898 ± 0.043 (1)*
Cell 0.764 ± 0.081 (4) 0.869 ± 0.063 (3) 0.878 ± 0.054 (1) 0.875 ± 0.058 (2)
Coffee 0.895 ± 0.068 (3) 0.978 ± 0.039 (1) 0.893 ± 0.065 (4) 0.972 ± 0.049 (2)
ECG 0.740 ± 0.024 (4) 0.909 ± 0.021 (2) 0.874 ± 0.010 (3) 0.942 ± 0.013 (1)*
Fish 0.453 ± 0.057 (4) 0.619 ± 0.042 (3) 0.633 ± 0.041 (2) 0.687 ± 0.044 (1)*
Growth 0.739 ± 0.100 (3) 0.941 ± 0.040 (1)* 0.718 ± 0.080 (4) 0.927 ± 0.044 (2)
GunPoint 0.536 ± 0.026 (4) 0.793 ± 0.058 (3) 0.829 ± 0.049 (2) 0.835 ± 0.053 (1)
MCO 0.634 ± 0.077 (4) 0.877 ± 0.070 (2) 0.636 ± 0.088 (3) 0.904 ± 0.053 (1)*
Medflies 0.529 ± 0.025 (2) 0.489 ± 0.037 (4) 0.552 ± 0.039 (1)* 0.515 ± 0.038 (3)
NOx 0.700 ± 0.072 (4) 0.809 ± 0.055 (2) 0.778 ± 0.052 (3) 0.863 ± 0.053 (1)*
Phoneme 0.813 ± 0.009 (4) 0.901 ± 0.006 (2) 0.847 ± 0.008 (3) 0.905 ± 0.006 (1)*
Phoneme (binary) 0.745 ± 0.018 (3) 0.797 ± 0.015 (2) 0.721 ± 0.022 (4) 0.804 ± 0.016 (1)*
Plane 0.901 ± 0.044 (4) 0.948 ± 0.027 (2) 0.963 ± 0.028 (1)* 0.937 ± 0.029 (3)
Symbols 0.722 ± 0.022 (4) 0.926 ± 0.016 (2) 0.922 ± 0.013 (3) 0.957 ± 0.011 (1)*
Tecator 0.684 ± 0.043 (3) 0.947 ± 0.028 (2) 0.621 ± 0.047 (4) 0.967 ± 0.024 (1)*
Tecator (2nd derivative) 0.964 ± 0.023 (4) 0.970 ± 0.018 (2) 0.967 ± 0.017 (3) 0.978 ± 0.017 (1)*
Yoga 0.588 ± 0.020 (4) 0.640 ± 0.016 (3) 0.659 ± 0.014 (2) 0.698 ± 0.015 (1)*

Average accuracy 0.715 0.839 0.784 0.860
Average rank 3.667 2.278 2.667 1.389

TABLE V
COMPARISON AMONG FUNCTIONAL k-NN CLASSIFIERS.

k-NN-L1 k-NN-L2 k-NN-Mah k-NN-Ang

ArrowHead 0.883 ± 0.038 (4) 0.892 ± 0.034 (3) 0.903 ± 0.031 (1)* 0.896 ± 0.034 (2)
Australian 0.945 ± 0.029 (3) 0.944 ± 0.024 (4) 0.951 ± 0.026 (2) 0.958 ± 0.028 (1)*
Cell 0.918 ± 0.050 (3) 0.935 ± 0.047 (1)* 0.924 ± 0.051 (2) 0.877 ± 0.055 (4)
Coffee 0.971 ± 0.041 (3) 0.978 ± 0.033 (2) 0.962 ± 0.049 (4) 0.979 ± 0.033 (1)
ECG 0.996 ± 0.002 (4) 0.998 ± 0.002 (2) 0.998 ± 0.002 (3) 0.999 ± 0.002 (1)*
Fish 0.796 ± 0.037 (3) 0.816 ± 0.032 (2) 0.776 ± 0.033 (4) 0.818 ± 0.032 (1)
Growth 0.957 ± 0.033 (1) 0.956 ± 0.036 (2) 0.921 ± 0.052 (3) 0.918 ± 0.042 (4)
GunPoint 0.951 ± 0.028 (1)* 0.938 ± 0.026 (3) 0.916 ± 0.031 (4) 0.938 ± 0.026 (2)
MCO 0.774 ± 0.079 (4) 0.801 ± 0.072 (3) 0.986 ± 0.025 (1)* 0.941 ± 0.036 (2)
Medflies 0.541 ± 0.036 (3) 0.540 ± 0.034 (4) 0.544 ± 0.035 (2) 0.550 ± 0.035 (1)
NOx 0.894 ± 0.046 (1)* 0.877 ± 0.046 (2) 0.871 ± 0.054 (3) 0.858 ± 0.049 (4)
Phoneme 0.909 ± 0.007 (2) 0.908 ± 0.006 (3) 0.911 ± 0.006 (1)* 0.894 ± 0.007 (4)
Phoneme (binary) 0.809 ± 0.014 (1) 0.808 ± 0.015 (2) 0.803 ± 0.015 (4) 0.806 ± 0.015 (3)
Plane 0.968 ± 0.021 (2) 0.964 ± 0.022 (4) 0.983 ± 0.014 (1)* 0.964 ± 0.021 (3)
Symbols 0.966 ± 0.008 (1) 0.962 ± 0.009 (4) 0.966 ± 0.009 (2) 0.962 ± 0.009 (3)
Tecator 0.798 ± 0.051 (4) 0.825 ± 0.048 (3) 0.952 ± 0.024 (1)* 0.939 ± 0.028 (2)
Tecator (2nd derivative) 0.980 ± 0.018 (1) 0.973 ± 0.019 (4) 0.980 ± 0.019 (3) 0.980 ± 0.017 (2)
Yoga 0.932 ± 0.008 (3) 0.933 ± 0.008 (1) 0.916 ± 0.009 (4) 0.933 ± 0.008 (2)

Average accuracy 0.888 0.892 0.903 0.901
Average rank 2.444 2.722 2.500 2.333

decision trees whose predictions are complementary, in the
sense that their individual errors tend to be independent and
are therefore averaged out in the final forest prediction. An
interesting avenue of exploration is to enhance the design of
RF to take advantage of the functional nature of the data.

The multivariate classifiers LDA, QDA, k-NN, and RF have
an excellent overall performance when used in combination
with RKVS. This is probably a consequence of the functional
nature of this variable selection procedure. A further advantage
is that the data, in principle infinite dimensional, is represented
in a low dimensional space. This dimensionality reduction
entails significant gains in efficiency, simplifies the analysis,
and improves the interpretability of the classifiers learned.

The functional k-NN classifier is robust and performs
consistently well in the classification problems considered, as

evidenced by the fact that it has the highest average accuracy.
This provides further empirical support to the proposal made
in [11] for k-NN to be used as a benchmark method for
comparison in functional classification problems.
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Fig. 5. Critical distance diagram of the classifiers.



TABLE VI
FINAL COMPARISON AMONG THE CLASSIFIERS.

NC-Mah RKVS+QDA DDG-Mah k-NN-Mah RF

ArrowHead 0.782 ± 0.043 (5) 0.832 ± 0.043 (3) 0.825 ± 0.043 (4) 0.903 ± 0.031 (1)* 0.852 ± 0.041 (2)
Australian 0.903 ± 0.040 (3) 0.890 ± 0.039 (5) 0.898 ± 0.043 (4) 0.951 ± 0.026 (2) 0.961 ± 0.026 (1)*
Cell 0.869 ± 0.063 (4) 0.841 ± 0.062 (5) 0.875 ± 0.058 (3) 0.924 ± 0.051 (1)* 0.911 ± 0.048 (2)
Coffee 1.000 ± 0.000 (1)* 0.970 ± 0.045 (4) 0.972 ± 0.049 (3) 0.962 ± 0.049 (5) 0.979 ± 0.029 (2)
ECG 0.971 ± 0.006 (4) 0.987 ± 0.006 (3) 0.942 ± 0.013 (5) 0.998 ± 0.002 (1)* 0.992 ± 0.003 (2)
Fish 0.716 ± 0.041 (4) 0.824 ± 0.037 (1)* 0.687 ± 0.044 (5) 0.776 ± 0.033 (3) 0.806 ± 0.037 (2)
Growth 0.958 ± 0.032 (1) 0.952 ± 0.038 (2) 0.927 ± 0.044 (3) 0.921 ± 0.052 (4) 0.917 ± 0.059 (5)
GunPoint 0.770 ± 0.051 (5) 0.909 ± 0.042 (3) 0.835 ± 0.053 (4) 0.916 ± 0.031 (2) 0.964 ± 0.022 (1)*
MCO 0.986 ± 0.026 (1) 0.959 ± 0.040 (3) 0.904 ± 0.053 (4) 0.986 ± 0.025 (2) 0.783 ± 0.081 (5)
Medflies 0.548 ± 0.034 (3) 0.589 ± 0.033 (2) 0.515 ± 0.038 (5) 0.544 ± 0.035 (4) 0.621 ± 0.027 (1)*
NOx 0.898 ± 0.052 (2) 0.919 ± 0.037 (1)* 0.863 ± 0.053 (5) 0.871 ± 0.054 (3) 0.869 ± 0.054 (4)
Phoneme 0.910 ± 0.006 (4) 0.927 ± 0.005 (1)* 0.905 ± 0.006 (5) 0.911 ± 0.006 (3) 0.924 ± 0.006 (2)
Phoneme (binary) 0.812 ± 0.015 (2) 0.815 ± 0.015 (1)* 0.804 ± 0.016 (4) 0.803 ± 0.015 (5) 0.810 ± 0.015 (3)
Plane 0.969 ± 0.020 (4) 0.974 ± 0.020 (3) 0.937 ± 0.029 (5) 0.983 ± 0.014 (1) 0.983 ± 0.017 (1)
Symbols 0.920 ± 0.016 (5) 0.950 ± 0.016 (4) 0.957 ± 0.011 (3) 0.966 ± 0.009 (2) 0.967 ± 0.011 (1)
Tecator 0.953 ± 0.021 (3) 0.974 ± 0.019 (1)* 0.967 ± 0.024 (2) 0.952 ± 0.024 (4) 0.810 ± 0.048 (5)
Tecator (2nd derivative) 0.959 ± 0.021 (5) 0.978 ± 0.015 (3) 0.978 ± 0.017 (4) 0.980 ± 0.019 (2) 0.990 ± 0.012 (1)*
Yoga 0.578 ± 0.016 (5) 0.752 ± 0.027 (3) 0.698 ± 0.015 (4) 0.916 ± 0.009 (2) 0.932 ± 0.008 (1)*

Average accuracy 0.861 0.891 0.860 0.903 0.893
Average rank 3.389 2.667 4.000 2.611 2.278
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