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A B S T R A C T 

Using the data set of THE THREE HUNDRED project, i.e. 324 hydrodynamical resimulations of cluster-sized haloes and the 
regions of radius 15 h 

−1 Mpc around them, we study galaxy pairs in high-density environments. By projecting the galaxies’ 3D 

coordinates onto a 2D plane, we apply observational techniques to find galaxy pairs. Based on a previous theoretical study on 

galaxy groups in the same simulations, we are able to classify the observed pairs into ‘true’ or ‘false’, depending on whether 
they are gravitationally bound or not. We find that the fraction of true pairs (purity) crucially depends on the specific thresholds 
used to find the pairs, ranging from around 30 to more than 80 per cent in the most restrictive case. Nevertheless, in these very 

restrictive cases, we see that the completeness of the sample is low, failing to find a significant number of true pairs. Therefore, 
we train a machine learning algorithm to help us identify these true pairs based on the properties of the galaxies that constitute 
them. With the aid of the machine learning model trained with a set of properties of all the objects, we show that purity and 

completeness can be boosted significantly using the default observational thresholds. Furthermore, this machine learning model 
also reveals the properties that are most important when distinguishing true pairs, mainly the size and mass of the galaxies, their 
spin parameter, gas content, and shape of their stellar components. 

Key words: methods: numerical – galaxies: clusters: general – galaxies: general – galaxies: interactions. 
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 I N T RO D U C T I O N  

arly studies showed that most observed galaxies can be classified
nto different types according to their morphology (mainly ellipticals
r spirals, see Hubble’s ‘tuning fork’, Hubble 1936 ; Sandage 1961 ).
o we ver, not all of them fit this sequence perfectly. An early attempt

o study these galaxies was the Atlas of Peculiar Galaxies (Arp
966 ), which consists of images of more than 300 galaxies that
ho w dif ferent peculiarities such as perturbations and deformations.
nteractions and mergers between galaxies, which can affect them
n different ways, have been shown to be the main force causing
hese peculiarities. Numerical simulations performed in the following
ears have helped to clarify this situation (Toomre & Toomre 1972 ;
arnes & Hernquist 1992 ) and to acknowledge the crucial role

hat these interactions play in galaxy formation and evolution (see
.g. Conselice 2014 , for a re vie w). Today, the � cold dark matter
 E-mail: ana.contreras@uam.es 
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 � CDM) growth paradigm for the Universe describes a hierarchical
odel of structure formation, such that galaxies are the result of
any mergers of smaller objects (White & Rees 1978 ; Frenk &
hite 2012 ). 
In this context, identifying galaxy mergers in the sky is a funda-
ental task. This includes not only galaxies that have already merged,

ut also galaxies that will merge in the future, so that both pre-
nd post-merger phases can be investigated. From an observational
erspective, a common way to identify merger candidates is using
alaxies that are close to each other in the sky, which are generally
trongly related to pre-merger stages. Hence, se veral ef forts have
een devoted to studying close pairs of galaxies, based on certain se-
ection criteria, usually a maximum projected separation, maximum
elocity separation, and minimum mass ratio (e.g. Carlberg, Pritchet
 Infante 1994 ; Patton et al. 2000 ; Kartaltepe et al. 2007 ). Some

tudies try to additionally select pairs that are going to merge by
pplying some asymmetry conditions (Conselice, Rajgor & Myers
008 ; Lotz et al. 2008 ). Assuming a certain merger time-scale, the
erger rate of galaxies can be estimated from this selection of pairs

Patton et al. 2005 ; De Propris et al. 2007 ; L ́opez-Sanjuan et al. 2011 ;
© 2023 The Author(s) 
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tott et al. 2013 ; Casteels et al. 2014 ; L ́opez-Sanjuan et al. 2015 ).
f no additional selection of the pairs is made, the merger rate can
lso be estimated by assuming a different time-scale, which may not 
ave a physical meaning (e.g. Kitzbichler & White 2008 ; Xu et al.
012 ; Mundy et al. 2017 ; Duncan et al. 2019 ; Hu ̌sko, Lacey & Baugh
022 ). 
It has also been shown that galaxy pairs can actually affect the

hysical properties of the involved galaxies. In general, galaxies with 
lose companions exhibit enhanced star formation (Barton, Geller & 

enyon 2000 ; Li et al. 2008 ; Scudder et al. 2012 ; Patton et al. 2013 ;
an et al. 2018 ), diluted metallicities (K e wley et al. 2010 ; Rupke,
 e wley & Chien 2010 ; Bustamante et al. 2020 ) and, in some cases, an

nhancement of the active galactic nuclei (AGN) activity (Silverman 
t al. 2011 ; Cotini et al. 2013 ; Ellison et al. 2019 ). These tendencies
re believed to be kept even when the galaxies are in high-density
nvironments (Alonso et al. 2006, 2012 ; Perez et al. 2006 ). 

As with any other observation, when examining close pairs in 
he sky we have to be aware that we are actually observing a 2D
rojection of the 3D physical situation. Thus there can be projection 
ffects that, for instance, create spurious pairs that are not close in
eal space or not physically bound. A more theoretical approach to 
dentifying merger candidates is by looking for galaxies that are 
ravitationally bound to each other. Although being bound does 
ot guarantee that the galaxies will merge, as this also depends 
n other conditions concerning the galaxies’ orbit (see e.g. Barnes 
992 ), it is a necessary condition that can thus be rele v ant to check.
o we ver, this kind of analysis requires a great deal of theoretical

nformation. Hence, it is better performed with numerical simulations 
ather than observations of the sky. Cosmological simulations, where 
he galaxies evolve naturally in a gi ven environment, allo w for easy
dentification of bound galaxies, and analysis of their properties 
Aarseth & Fall 1980 ; Moreno et al. 2013 ; Haggar et al. 2021 ). 

We have already devoted a paper (Contreras-Santos et al. 2022b ) 
o using numerical simulations to study this distinction between what 
e named ‘good’ and ‘bad’ pairs, i.e. galaxy pairs with a physical

eparation within an allowed 2D range, and those with higher 3D 

eparations than allowed. In this previous paper, we studied how 

any of the galaxy pairs we observe in a cluster environment are
lose in the physical distance as well. We also analysed the properties
f the pairs, and how they differed for ‘good’ and ‘bad’ pairs. 
This procedure provided useful information regarding the iden- 

ification of pairs of galaxies in the sky, and the properties to be
xpected of them. Nevertheless, it was still an identification based 
nly on physical distance, with no information on the boundness 
entioned earlier. As such, two galaxies can be close in distance but
ith no strong attachment, generally referred to as a flyby. These 
inds of interactions have been shown to become more rele v ant as
he Univ erse e xpands, and therefore at later times, when mergers
ecome less frequent (van den Bergh et al. 1996 ; Murali et al. 2002 ;
inha & Holley-Bockelmann 2012 ). Although flybys can also affect 
alaxy morphology and properties to varying degrees (Berentzen 
t al. 2004 ; Duc & Renaud 2013 ; Lang, Holley-Bockelmann &
inha 2014 ; Choi & Yi 2017 ), it is important to distinguish them
rom mergers, where the two galaxies will end up as a single object.
or this reason, in this work, we will go one step further from our
revious work and identify galaxy pairs that are also gravitationally 
ound. For that we use the simulations provided by THE THREE

UNDRED project 1 (as we already described in Contreras-Santos et al. 
022b ). 
 ht tps://the300-project .org/

c  

a  

h  

4

THE THREE HUNDRED simulations consist of a set of 324 hydrody-
amical re-simulations of the most massive clusters in a dark-matter- 
nly cosmological simulation. These clusters reside in a high-density 
nvironment where the interactions between galaxies are more 
requent and can be especially important. Although on large scales 
lusters are dark matter – and hence gravity – dominated, on smaller 
cales the baryonic components also play an important role (see 
ravtsov & Borgani 2012 , for a re vie w on galaxy clusters). This leads

o se veral dif ferent phenomena that dri ve galaxy e volution, making
lusters very interesting environments to study galaxy interactions 
Gnedin 2003 ; Park & Hwang 2009 ; Boselli et al. 2014 ). 

Using THE THREE HUNDRED simulations, we are going to first 
dentify galaxy pairs in the sky using observational techniques. Then 
e will use the full information from the simulations to classify them

s bound or not. Finally, we will develop a method to improve the
erformance of the two previous steps. This approach to identifying 
alaxy pairs in the sky maximizes the fraction of them that are
ctually bound, without missing a very significant amount of the 
hysical pairs. In order to do this, we will train a machine learning
ML) model with the data from the simulations and see how it can
e used to classify observational data. 
Artificial intelligence is a field that has expanded and gained 

mportance very rapidly over the last decade. ML, in particular, is
 very valuable tool that can be used to address many problems
rom data analysis to image recognition. As with any other new
echnologies, many of the developments are now commonly applied 
n astrophysics (see e.g. Fluke & Jacobs 2020 , for a re vie w). The
eneral idea is to create models that are capable of learning complex
elationships between input and output variables, and that can then be
sed to make predictions on unseen data. For classification problems, 
L can help a v oid visual inspections, which can be both time-

onsuming and non-objecti ve. Dif ferent algorithms have been used 
o estimate galaxies’ morphology (Banerji et al. 2010 ; Huertas- 
ompany et al. 2015 ; Dom ́ınguez S ́anchez et al. 2018 ), as well
s identifying galaxy mergers (Ackermann et al. 2018 ; Bottrell et al.
019 ; Pearson et al. 2019 ; Ćiprijanovi ́c et al. 2020 ) or AGN hosts
Faisst et al. 2019 ; Chang et al. 2021 ). In this context, simulations
ave the advantage that they allow for comparison against ground 
ruth, and thus allow us to evaluate the performance of the model
hen trained on mock observations (see, e.g. Snyder et al. 2019 or
ose et al. 2023 ). 
In this paper, we combine observational techniques to identify 

alaxy pairs with ML techniques to classify them and e v aluate the
esults. The content is organized as follows. In Section 2 , we present
he details of the simulation and the halo catalogues used to identify
he haloes and their properties. In Section 3 , we present the method
sed to find close pairs of galaxies. For the pairs found this way, in
ection 4 we compare them against the theoretical work by Haggar
t al. ( 2021 ) and analyse the results. In Section 5 , we introduce the
L algorithm used to classify the pairs and describe how it is used

nd how it impro v es the previous performance. Finally, in Section 6 ,
e summarize and discuss our results. 

 T H E  DATA  

.1 THE THREE HUNDRED simulations 

he simulations used in this work are part of THE THREE HUNDRED

roject, which consists of a set of 324 theoretically modelled galaxy
lusters and the regions around them. This data set was presented in
n introductory paper by Cui et al. ( 2018 ), and several other papers
ave been published based on this data (see, e.g. Mostoghiu et al.
MNRAS 522, 1270–1287 (2023) 
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019 ; Kuchner et al. 2021 ; Cui et al. 2022 ; Contreras-Santos et al.
022a ). Here we will summarize the main aspects of the simulations,
ut we refer the reader to these works for further details about THE

HREE HUNDRED project. 
The 324 clusters in THE THREE HUNDRED sample were based

n the DM-only MDPL2 MultiDark Simulation 2 (Klypin et al.
016 ), which is a periodic cube of comoving length 1 h 

−1 Gpc
ontaining 3840 3 DM particles, each of mass 1.5 × 10 9 h 

−1 M �.
he Plummer equi v alent softening of this simulation is 6.5 h 

−1 kpc
nd its cosmological parameters are based on the Planck 2015
osmology (Planck Collaboration XIII 2016 ). The 324 objects with
he largest halo virial mass 3 at z = 0 ( M vir � 8 × 10 14 h 

−1 M �) were
elected from this simulation, together with spherical regions of
adius 15 h 

−1 Mpc around them. Within these regions, the initial
M particles were traced back to their initial conditions and then

plit into dark matter and gas particles according to the cosmological
aryon fraction. The resulting mass resolution for these particles is
 DM 

= 1.27 × 10 9 h 

−1 M � for dark matter and m gas = 2.36 × 10 8 

 

−1 M � for gas particles. Moreo v er, to reduce the computational cost
hile keeping large-scale tidal effects, dark matter particles outside

hese regions were degraded to a lower resolution. Then, each cluster
egion was re-simulated from the initial conditions but including full
ydrodynamics using the Smoothed particle hydrodynamics (SPH)
ode GADGET-X . The output produced consists of 129 snapshots
etween z = 16.98 and z = 0 for each of the 324 regions. 

GADGET-X , the code used for the re-simulations, is a modified
ersion of the non-public GADGET3 code (Murante et al. 2010 ;
asia et al. 2015 ; Biffi et al. 2017 ; Planelles et al. 2017 ). This
ses the GADGET3 Tree-PM gravity solver (an advanced version
f the GADGET2 code; Springel 2005 ) to evolve dark matter as
ell as baryons. It also includes an impro v ed SPH scheme with

rtificial thermal diffusion, time-dependent artificial viscosity, high-
rder Wendland C4 interpolating kernel, and wake-up scheme (see
eck et al. 2016 and Sembolini et al. 2016 for a presentation of

he performance of this SPH algorithm). Star formation follows the
lassical Springel & Hernquist ( 2003 ) prescription and is imple-
ented in a stochastic way, which leads to varying star particle
asses of order m ∗ ∼ 4 × 10 7 h 

−1 M �. Stellar evolution and metal
nrichment is originally described in Tornatore et al. ( 2007 ), with
urther updates described in Murante et al. ( 2010 ) and Rasia et al.
 2015 ). SNeII are the only contributor to kinetic stellar feedback,
hich follows the prescription of Springel & Hernquist ( 2003 ), with
 fixed wind velocity of 350 km s −1 . Black hole (BH) growth and
GN feedback are implemented following Steinborn et al. ( 2015 ),
here supermassive black holes (SMBHs) grow via Bondi–Hoyle-

ike gas accretion (Eddington limited), with the model distinguishing
etween a cold and a hot component. 

.2 The halo catalogues 

o identify the haloes in THE THREE HUNDRED simulations, we use
he open-source halo finder Amiga Halo Finder (AHF) (Gill, Knebe
 Gibson 2004 ; Knollmann & Knebe 2009 ). AHF finds potential

alo centres as local o v erdensities in an adaptively smoothed density
eld, and thus automatically identifies haloes and substructures (see
nebe et al. 2011 for more details on halo finders). The radius at
NRAS 522, 1270–1287 (2023) 

 The MultiDark simulations – incl. the MDPL2 used here – are publicly 
vailable at https://www.cosmosim.org 
 The halo virial mass is defined as the mass enclosed inside an o v erdensity 
f ∼98 times the critical density of the universe (Bryan & Norman 1998 ). 
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 v erdensity 200, R 200 , is defined as the radius r at which the density
( r ) = M ( < r )/(4 πr 3 /3) drops below 200 times the critical density
f the Universe at a given redshift, ρcrit . This is computed for each
sub)halo found by AHF, together with the corresponding enclosed
ass M 200 , as well as the analogous quantities for an o v erdensity of

00. For the substructure, AHF defines subhaloes as haloes that lie
ithin R 200 of a more massive halo, which is called the host halo. The
ass of this host halo then includes the masses of all the subhaloes

ontained within it. Apart from mass and radius, AHF also allows
or other properties to be generated for each (sub)halo, considering
heir gas, stars, and dark matter particles. Properties such as peculiar
elocities or angular momentum are based on all the bound particles
hat account for a halo. 

To obtain additional information, the stellar population synthesis
ode STARDUST (see Devriendt, Guiderdoni & Sadat 1999 , and refer-
nces therein) can be used to produce luminosities (and magnitudes)
n any spectral band, by considering the contribution of all the
ndividual stellar particles and assuming a Kennicutt initial mass
unction (Kennicutt 1998 ). We finally note that in this work we only
se the simulation snapshots at z = 0, so no merger trees are needed
o trace the haloes across cosmic time. 

.3 CAESAR catalogues 

part from the AHF halo catalogues, to include further properties
f the galaxies, also the CAESAR galaxy finder was run on THE

HREE HUNDRED data set. CAESAR 

4 is a yt -based python package for
nalysing the outputs from cosmological simulations ( yt is an open
ource, astrophysical analysis and visualization tool, cf. Turk et al.
011 ). Originally, CAESAR provides a halo catalogue generated using
 3D Friend of Friend (FoF) algorithm with the galaxy catalogue
sing a 6D (in both spatial and velocity fields) FoF. It takes as input
 single snapshot from a simulation and outputs an HDF5 catalogue
ontaining a list of galaxy and halo properties, including physical
nd photometric properties for each object. To be consistent with
he AHF catalogue, we run CAESAR to only identify galaxies by
sing the (sub)halo information from AHF. Thus, the galaxies from
AESAR can be precisely matched to the subhalos from AHF with

heir IDs. This way we can combine AHF and CAESAR properties for
ll the objects we work with. This kind of joint analysis with the two
atalogues has already been done by Cui et al. ( 2022 ) in THE THREE

UNDRED simulations. 
One limitation of our study that needs to be mentioned regards the

umerical resolution. In previous convergence studies, it is shown
hat, although halo mass is very stable for halos down to 20–30 par-
icles, other individual properties of halos exhibit a more significant
catter. Trenti et al. ( 2010 ) show that, for additional halo properties
ike core density, virial radius and angular momentum, N � 100–400
articles is needed to guarantee a scatter below 20 per cent and
chiev e conv ergence. Re garding the shape, Allgood et al. ( 2006 )
nd that, for halos with ∼300 particles, the error in estimating

he shape can be around 10 per cent. With the resolution of THE

HREE HUNDRED simulations, the galaxies used in this study range
etween 100 and 1000 stellar particles. Therefore, although some of
hem have stellar properties below the suggested resolution limits,
ur sample includes a significant number of galaxies abo v e these
imits. Nevertheless, the results should be interpreted with caution,
eing aware of this non-negligible scatter due to low number of 
articles. 
 https:// github.com/dnarayanan/ caesar

https://www.cosmosim.org
https://github.com/dnarayanan/caesar
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 M E T H O D O L O G Y  

n this Section, we first present the way observers find close pairs
f galaxies in the sky. Then we explain how we apply this same
ethod to THE THREE HUNDRED data set, and how we can compare

nd correlate it with the more theoretical information that can be 
xtracted directly from simulations. 

.1 Finding pairs in obser v ations 

rom an observer’s perspective, defining two galaxies as a close pair 
epends on two quantities: their projected separation in the sky and 
heir separation in velocity along the line of sight. In general, some
ind of selection criteria is first applied to the galaxies, for instance,
ased on their luminosity or stellar mass, and then the remaining 
alaxies are paired based on these two quantities. This way, two 
alaxies are defined as close if their projected separation and line- 
f-sight velocity separation are within certain values selected as 
hresholds, which we will designate as r sep and v sep , respectively. 
n the literature, the specific values used for these thresholds depend 
trongly on the particulars of the study in question. The values in r sep 

ange from 20 h 

−1 kpc in works about galaxy mergers themselves 
e.g. Robotham et al. 2014 ) up to 2 Mpc when the focus is on
he effects of interactions and companions (e.g. Patton et al. 2016 ).
he range is also wide for v sep , with the values depending on how

he redshifts of the galaxies are determined. When the redshifts are 
etermined spectroscopically, they are accurate enough to apply cuts 
n km s −1 , that can range from 250 to 1000 km s −1 . Ho we ver, studies
here photometric redshifts are used prefer to apply cuts in redshift

eparation, such as �z < 0.2 (Williams, Quadri & Franx 2011 ). In
his case, the conversion to line-of-sight velocity can yield differences 
uch larger than 1000 km s −1 . 
Finally, most works on galaxy mergers also include separating 

hem into major or minor, based on the stellar mass ratio (sometimes
uminosity or flux) of the two involved galaxies. In general, pairs
here this ratio is below 1:10 are not major nor minor but instead are
iscarded. Hu ̌sko et al. ( 2022 ) provide a useful summary of different
bservational close pair studies, indicating the different selection 
riteria applied in each of them. 

.2 Application to simulations 

aving this observational method already defined, we now want to 
mplement it in our simulations, replicating it as much as possible.
n our previous work Contreras-Santos et al. ( 2022b ), we already
pplied this procedure to find pairs and groups of close galaxies in
HE THREE HUNDRED data set. The methodology followed here will 
e essentially the same but, since there are some slight differences, 
e will nevertheless describe the process here. We still refer the 

eader to that work for further information regarding the statistics of
D pairs and groups found. 
As in Contreras-Santos et al. ( 2022b ), we first apply a selection

f the objects we are going to work with from the simulations.
hroughout this work, we will use the word ‘galaxy’ to refer to

he objects in the hydrodynamical simulations, including both their 
tellar and dark matter components. For each of the 324 clusters in
HE THREE HUNDRED data set, we select the galaxies that are within
 R 200 of the main cluster centre, and we apply a stellar mass cut M ∗
 10 9.5 M �, similarly to what is done in observational studies (see
ui et al. 2018 , for the stellar mass function of all the galaxies in our
ata set). We also remo v e from our selection all the objects in the
imulations with M 200 > 10 13 M �, so that we do not include the most
assive objects like galaxy clusters, and work only with galaxy–
alaxy pairs. Although the interaction of satellites with the brightest 
luster galaxies (BCGs) can also be of great interest, for consistency
e prefer to not allow for such pairs in this study, since BCGs
ave been shown to be different from typical elliptical galaxies, in
oth their formation and evolution mechanisms (Lin & Mohr 2004 ;
rough et al. 2005 ). These selections leave us with a total number of
alaxies between ∼400 and 1200 depending on the cluster, which is
till enough to have a significant number of pairs. 

In order to find pairs within the selected galaxies, we first create
mock observations’ by projecting the galaxies’ 3D coordinates into 
 2D plane. For simplicity, we will al w ays project into the XY
lane. In Contreras-Santos et al. ( 2022b ), we randomly rotated the
oordinates before projecting them, so that we obtained 100 different 
andom projections for each cluster. In this work, we only create one
rojection for each of the 324 clusters, since this provides a large
nough sample size whilst also simplifying the process significantly. 
e do not expect any differences in our results due to the projection

irection; we have checked that, although having fewer statistics 
eads to higher scatter, the main results hold when doing this. Our
air-finding algorithm is based on the two parameters r sep and v sep .
he spatial separation between two galaxies is simply their distance 

n the XY plane, while for the velocity separation we consider two
ontributions to the line-of-sight velocity: the peculiar velocity of 
he galaxies along the z-axis (given by AHF) and the difference in
ecession velocities due to the Hubble flow (computed as H · r , H
eing the Hubble constant and r the coordinates of each object). Two
alaxies are considered close if their distance and velocity separations 
re below r sep and v sep , respectiv ely. F or further research into the
mportance of these parameters, we use three different thresholds for 
ach, so that they can be combined in nine different ways. For the
D-spatial separation, we use the values 20, 50, and 100 h 

−1 kpc ,
hile for the velocity separation we use 300, 500, and 1000 km s −1 .
Although most observational studies also apply a cut in the stellar
ass ratio of the pairs, we prefer not to apply a similar cut and
ork with all the pairs found. This way we do not bias our sample

owards pairs with similar masses, but rather keep the mass ratio
s another feature to describe the galaxy pair, whose rele v ance can
e investigated. In Contreras-Santos et al. ( 2022b ), we found that
bserved pairs with a mass ratio below 1:10 (i.e. very different
asses) are more likely to be close in physical distance than the

eneral population of pairs. For this reason, we believe including 
hese pairs can be important in a study like ours. 

In our previous work, we also allowed for groups to be formed,
.e. connecting more than two galaxies. In this case, we will skip that
tep and create only pairs. This means that if a galaxy A has two
lose companions B and C, but B and C do not meet the criteria to
orm a pair between themselves, we will identify this situation as two
ifferent pairs: A-B and A-C, rather than a group with the three of
hem. We use this approach because we are interested now in galaxies
eing gravitationally bound to each other, not only physically close, 
nd hence it may be counterproductive to connect galaxies like B
nd C since they do not necessarily have any relation. 

Once all the pairs are found, they can be analysed both generally
y considering the o v erall statistics for all the clusters, and also more
horoughly by making use of all the information available in the
imulations. We will expand on the latter in the following subsection.

.2.1 Classifying 2D pairs as ‘true’ or ‘false’ 

sing the methodology described abo v e we can associate all the
rojected galaxies with their ‘paired’ galaxies, taking into account 
MNRAS 522, 1270–1287 (2023) 
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Figure 1. Fraction of the observed pairs that are ‘true’ according to the 
criteria in Haggar et al. ( 2021 ), i.e purity of the sample. The dots show the 
median values of the distribution for the 324 clusters in THE THREE HUNDRED 

data set, with the shaded regions indicating the 16th–84th percentiles. The 
colours indicate the velocity threshold v sep used, in magenta 300 km s −1 , in 
green 500 km s −1 , and in cyan 1000 km s −1 . 
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hat a galaxy can be paired with more than one galaxy. Then, the
D information available in simulations can be used to discern if the
rojected pairs are also close in real space. We focused on this in our
rst paper (Contreras-Santos et al. 2022b ), where we differentiated
etween ‘good’ and ‘bad’ pairs, based on whether the 3D separation
etween the galaxies was within the allowed 2D range. In the present
 ork, we tak e a more theoretical approach and, apart from positions,
e also use velocity and mass information to determine if the two
alaxies are gravitationally bound. 

For this task, we use the prior work done by Haggar et al. ( 2021 ),
o which we refer the reader for further information. In this work,
alaxy groups are identified in THE THREE HUNDRED simulations by
etermining how many galaxies are associated with each individual
alaxy (which is referred to as the ‘primary’ galaxy). Considering
ach galaxy in the simulation, the other galaxies (referred to as
secondaries’) are associated with it if they satisfy certain criteria.
irst, the total (dark matter, gas, and stars) mass of a ‘secondary’
alaxy must be less than that of the ‘primary’ galaxy; and the galaxy
ust satisfy the condition below: 

v 2 

2 
+ � ( r) < � 

(
2 . 5 R 

primary 
200 

)
. (1) 

This condition is the same previously used by Han et al. ( 2018 )
nd Choque-Challapa et al. ( 2019 ) to find galaxy groups. In equation
 1 ), � ( r ) represents the gravitational potential due to the primary
alaxy at a distance r from its centre, and v is the relative velocity
f a secondary galaxy with respect to this primary galaxy. R 

primary 
200 

s the radius of the primary galaxy (not to be confused with the
adius of the main cluster in each of the simulations). If a galaxy
s less massive than another one defined as the ‘primary’ and this
riterion is satisfied, then the galaxy is considered to be bound to
his primary galaxy. The advantage of using this kind of definition
s that it allows us to include pairs at all points in their orbit – not
nly those with distance and velocity separations below some fixed
hresholds. 

Comparing our identified pairs with the catalogues of gravitation-
lly bound galaxies created by Haggar et al. ( 2021 ), we can check
f the galaxies in our pairs are bound or not. In the latter case,
he galaxies can be either separate in physical distance, with the
air being a projection effect (as we studied in our previous paper
ontreras-Santos et al. 2022b ), or they can be physically close but
assing by, not bound to each other (which is called a flyby). In
oth cases, the galaxies are expected to evolve independently rather
han being merging candidates, and hence we will refer to them as
false’ pairs. On the contrary, when an identified pair is also found
y Haggar et al. ( 2021 ) to be bound, we refer to it as a ‘true’ pair. We
ill devote the following sections to studying this distinction when

pplied to all our pairs. 

 A NA LY S I N G  T H E  RESULTS:  PURITY  A N D  

OMPLETENESS  

sing the methodology described in the previous section, we can link
he galaxies to their close projected companions in each of the 324
lusters. Then, we can classify the identified pairs into ‘true’ or ‘false’
epending on whether the galaxies are gravitationally bound or not.
n this section, we will analyse the results obtained and assess how
ood the observational method to find pairs is when used to detect
ravitationally bound galaxies. We will do this first by counting how
any of the observed pairs are classified as true (purity), and then by

ounting how many of the real pairs found in the theoretical work by
aggar et al. ( 2021 ) are also found by our methods (completeness). 
NRAS 522, 1270–1287 (2023) 
.1 Purity 

n this subsection, we study the fraction of the observed pairs that
re classified as ‘true’ according to the criteria in Section 3.2.1 . This
s the first measure of how good our sample is compared to a true
ample, such as the one given by Haggar et al. ( 2021 ). From now on,
e will refer to this as the purity of our sample, since it is a measure
f the percentage of pairs that are within the required criteria. This
alue, computed for the nine different combinations of r sep and v sep 

s shown in Fig. 1 . In this figure, the dots show the median values
or the 324 clusters (one random projection for each cluster), while
he shaded regions show the 16th–84th percentiles. The values in
he x -axis indicate the different distance separation thresholds, while
he colours indicate the different velocity thresholds (as shown in the
egend). Through these results, we can see that the purity is very high
or the smallest separation of r sep = 20 h 

−1 kpc , reaching 82 per cent
or the most restrictiv e v elocity separation. When increasing the
aximum allowed separation, the purity drops significantly. For v sep 

 300 km s −1 , the fraction drops to 59 and 41 per cent for 50 and
00 h 

−1 kpc separations, respecti vely, and these v alues become e ven
ower when relaxing the velocity criterion. In general, we can say
hat, although for a separation of 20 h 

−1 kpc the results are very
ood and the purity is high, increasing this parameter worsens the
esults significantly. This is especially true when we reach r sep = 100
 

−1 kpc , where the purity can be as low as 25 per cent as many pairs
re false/not gravitationally bound. Note that purity depends on both
patial separation and velocity separation criteria. 

.2 Completeness 

lthough purity is a very important parameter to describe the
oodness of a sample, it only measures how good the identified
airs are. It does not answer the question of whether all the actual
airs in the simulation are identified with our method or not. We can
av e v ery high purity, meaning that all our pairs are true, but at the
ame time many real pairs that should also have been identified can
e missing. The measure of how many of the real pairs are actually
ound is often referred to as completeness since it measures the degree
o which our sample is complete when compared to a ‘true’ sample.

art/stad1061_f1.eps
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Figure 2. Total number of pairs found for maximum velocity separation v sep 

= 500 km s −1 , binning by cluster mass M 200 . From darker to lighter green, 
the triangles, diamonds, and squares show the median values for maximum 

separations r sep = 20, 50, and 100 h −1 kpc , respectively. The black dots are 
the values from Haggar et al. ( 2021 ). 
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In our case, it is not easy to compute a precise value for
ompleteness, ranging between 0 and 1, because the true sample 
e are using from Haggar et al. ( 2021 ) contains both pairs and
roups of bound galaxies. On the other hand, our sample is designed
o contain only pairs, and thus a one-to-one comparison between 
he two samples is not as straightforward. As a first approach to
tudying the completeness of our sample, in Fig. 2 we show the
otal number of pairs we find as a function of cluster mass M 200 ,
ocusing only on the results for one velocity separation threshold, 
 sep = 500 km s −1 . The dots show the median values for all the
lusters in each mass bin and the error bars indicate the 16th–84th
ercentiles. From darker to lighter green, the dots show the results for
0 (triangles), 50 (diamonds), and 100 h 

−1 kpc (squares) separations, 
espectively. Black dots are the values for Haggar et al. ( 2021 ), noting
hat we count only the pairs and not the groups, so that we make a
omparison just between pairs. Apart from the expected trend for 
ore massive galaxy clusters to have more pairs (both theoretically 

nd observationally), we see in this plot that we are finding many
ore pairs than in the ‘true’ sample. This is especially the case for the

igher separation thresholds r sep = 50 and 100 h 

−1 kpc , which can 
xplain the low purity we saw in Fig. 1 for these separations. Even
or r sep = 20 h 

−1 kpc , we see that our values are slightly higher than
he black dots. One thing to keep in mind is that we are removing the
roups from Haggar et al. ( 2021 ) for this plot, while in our sample
e are allowing each galaxy to be in more than one pair. Including

ll the groups would raise the black dots a little, but the values from
his work would remain significantly higher. 

Although we have seen in Fig. 2 that we are finding too many
airs, the question still remains of whether we are finding all the real
airs or not. To address this issue, we define a pseudo completeness
sing only the pairs from Haggar et al. ( 2021 ), which we will call
pair-completeness’. This can be computed as the fraction of pairs 
rom the true sample that are found by our methods. Although it
s not the full completeness since we are ignoring part of the real
ample, it is still a measure of how complete our different samples
re – how good they are at finding all the real pairs. 

Similarly to Fig. 1 , Fig. 3 shows the pair-completeness for the nine
ifferent combinations of r sep and v sep , the dots being the median
alues and shaded regions the 16th–84th percentiles. The first thing 
o note here is that there is no dependence on the v sep threshold, with
he values being almost the same for the three different thresholds
elected. This means that bound galaxy pairs al w ays have a line-
f-sight velocity separation below ∼300 km s −1 , so increasing this
hreshold simply results in the inclusion of more false pairs in the
ample (which can be either f ar aw ay galaxies or flybys). For future
tudies, this indicates there is no reason to use a v sep higher than
00 km s −1 , and lowering this limit should even be considered in
rder to increase purity without a significant loss in completeness. 
Regarding the values of the pair-completeness themselves, we 

ee in Fig. 3 that for r sep = 20 h 

−1 kpc the completeness is only
0 per cent now. In other words, although the purity is very high with
his restricted separation threshold (reaching 85 per cent), we miss a
ery rele v ant amount of true pairs. For the higher values of r sep , 50
nd 100 h 

−1 kpc , pair-completeness increases significantly, reaching 
3 and 83 per cent, respectively . Interestingly , completeness seems
nly to depend on spatial separation with very minor changes with
ifferent velocity separations. This means that the velocity separation 
hresholds used here are still too large to enter the gravitationally
ound calculation. 
To summarize the results in this section, we have shown that a

ompromise needs to be found between the purity and completeness 
f a sample. If the selection criteria are very restrictive (as for r sep 

 20 h 

−1 kpc ), the purity will be high but the sample might not be
omplete enough. On the contrary, more relaxed criteria like r sep =
00 h 

−1 kpc can lead to a less pure sample that contains a much
ore significant fraction of the real pairs. Keeping this in mind, the

efinition of close pair can be chosen according to the particulars
nd aims of each specific study. 

 IMPROV ING  T H E  CLASSIFICATION  

n the previous section, we showed how the different thresholds 
dopted when finding galaxy pairs affect the quality of the obtained
ample. This way, for the most restrictive values of r sep and v sep ,
e obtained a high purity (majority of true pairs) at the cost of low

ompleteness (many real pairs missing). On the other hand, for less
estrictive criteria, we found a low purity but with high completeness.
his is already valuable information, which can help to choose the
MNRAS 522, 1270–1287 (2023) 
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esired parameters depending on the particulars of the study to be
one. Ho we ver, in general, it would be desirable to have a method
hat maximizes both purity and completeness, so that observational
amples of pairs can be created to be used for multiple applications
nd show a good agreement with theory. In this section, we present
ur approach to this issue, by applying an ML model to classify
bserved galaxy pairs based on their known properties. 

.1 Random Forest algorithm 

sing ML has the advantage that it allows us to work with very big
ata sets, and analyse amounts of data that might be very difficult –
f not impossible – to inspect manually. In our case, this means we
an use all the available properties of the galaxies rather than having
o select the ones we believe to be more important. We hence reduce
ossible biases in the results related to this. In simulations, where
 large amount of information is available, this can be of special
ele v ance. 

For our specific problem, namely classification into two classes
true or false), one algorithm that is widely used due to its simplicity,
tability, and robustness is Random Forest (RF). RF ( Breiman 2001 )
s a commonly used ML algorithm constructed by combining mul-
iple decision trees. A decision tree is a tree-like graph constructed
op-down from a root node. Each node partitions the data into two
ubsets based on the values of the input parameters. The resulting leaf
odes can either be a new node or a final prediction. At each step, the
est split is chosen based on minimizing the Gini impurity – this is a
easure of the likelihood of a random data point being misclassified

f it were given a random class label based on the class distribution
n the data set. A Gini impurity of 0 can only be achieved if the split
erfectly separates the data points into the two given classes. 
After splitting the data into a training and a test data set, different

andom subsamples of the training set are used to construct a number
f decision trees. When using it for classification, the output of the
F is the class selected by most individual trees. If applied to the test

et, the output can be compared to the ground truth, thus e v aluating
he performance of the model. This algorithm can also output the
mportance of each feature used for the classification. This way, as
ell as directly using the model to classify pairs, we can learn which

eatures are the most important when discerning if an observed pair
s gravitationally bound or not. 

In the following subsections, we explain in detail how we apply
his algorithm to different subsets of our data, with the aim to find a
odel that classifies observed pairs into true and false with improved

erformance. We start with a theoretical approach including many
ifferent properties of the involved galaxies, and then use the results
o make a selection of those properties that appear to be the most
mportant and can be used in observational studies to classify pairs. A

ore in-depth description of the models, together with the validation
f their performance, is shown in Appendix B . 

.2 Theor etical appr oach: all pr operties 

s a first approach to our problem, we start from a more theoretical
oint of view, including information that is only available in simu-
ations. This will help us understand the performance of our method
nd the data itself. The main goal of this subsection is to find which
roperties of the galaxies are most important when determining
hether they belong to a bound pair. We start by describing the
ata used as inputs for the RF algorithm to perform the classification
ask, i.e. a list of properties for all the galaxies included in the pair
ample. 
NRAS 522, 1270–1287 (2023) 
Given the already mentioned advantage of ML in handling large
mounts of data, we blindly use all the properties given by AHF,
ombined with those given by CAESAR . For AHF, these include a set
f properties regarding all the particles in each halo, i.e. dark matter,
tars, and gas. The full list (60 properties from AHF) can be seen in
able A1 in Appendix A , but in general, they are properties related

o mass, radius, velocity, spin parameter, angular momentum, the
oment of inertia tensor, and kinetic and potential energies. Then,
HF can also repeat these calculations but using only one family of
articles. In this case, we include also the same properties but only for
he star particles, including also the mean metallicity and the stellar-
o-halo mass ratio. By applying the STARDUST code (see Section 2
or further detail), we also compute luminosities and magnitudes in
ifferent Johnson bands and use them to compute different colour
ndices. 

Regarding the CAESAR properties, they are listed and briefly
escribed in Table A2 (55 properties from CAESAR ). They can also
e separated into different groups: masses computed for different
ypes of particles, i.e. gas, stars, and both together, and for different
pertures; as well as radii, angular momentum, and velocity dis-
ersion for the different components. Then, CAESAR also includes
he option to compute luminosities in different spectral bands, and
ence colours. Finally, we also include age, metallicity, and star
ormation rate (SFR) for all the galaxies. Although there is some
 v erlap between AHF and CAESAR properties, we decide to keep all
f them, since this method allows us to include as much information
s possible without an y e xtra cost. While AHF properties are
heoretically oriented, CAESAR properties are more observationally
riented. Additionally, the same properties are obtained in different
ays in the two catalogues, and so this way we will also be able to

heck for consistency between them. 
We collect all these properties for all the galaxies that appear in

ur sample of pairs. Then, there are two ways in which we can
se them for our purpose. We can either study the properties of the
alaxies individually, or the properties of the pairs of galaxies, i.e.
he properties of one galaxy but in relation to the other galaxy in the
air. 

.2.1 Properties of galaxies in pairs 

or this section, we select the pairs found using the thresholds in
rojected distance r sep = 100 h 

−1 kpc and in velocity separation
 sep = 500 km s −1 . For the velocity, we saw in Fig. 3 that the pair-
ompleteness is independent of the threshold used, so we simply
elect the middle value of 500 km s −1 . Regarding the distance
eparation, we start with 100 h 

−1 kpc because it can be seen in Fig. 1
hat this separation is where the most impro v ement can be made in
erms of purity of the classification. 

We first work with the properties of the individual galaxies in
he identified pairs. This means that we use the different features of
oth galaxies in every pair but as two independent galaxies, rather
han considering them two attributes of the same pair. This way we
nclude all the properties mentioned before (together with whether
he galaxy belongs to a true or false pair) as inputs for the RF, which
e apply using the function RandomForestClassifier from

he scikit-learn library 5 (Pedregosa et al. 2011 ). We use 70 per cent
f the whole data set for training and the remaining 30 per cent for
esting. After training this model with our data, we can obtain the
elative importance of each feature when classifying the pairs into

https://scikit-learn.org/
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true’ or ‘false’. This is computed for each feature as an average
 v er all the decision trees, based on how splitting the tree about this
eature affects the purity of the results. 

The importance of each property is shown in Fig. 4 . The values are
n percentages so that the sum of all properties is equal to 100. The
ed dots correspond to the 20 most important properties, whose labels 
an be seen beside, while the blue dots correspond to the rest of the
roperties, whose names are not shown for clarity (but can be seen in
ables A1 and A2 ). For easier visualization, the plot is separated into

wo columns, AHF properties in the left and CAESAR properties in the
ight, but we note that the algorithm has been applied to both of them
imultaneously. In general, we see that the most important feature is
 200 , followed by escape velocity, mass, and spin parameter. Since 

he mass is defined as mass enclosed within R 200 , and the escape
elocity is computed based on both the mass and the radius, these
hree quantities in the end contain very similar information. The spin
arameter, ho we ver, depends also on the angular momentum of the
bject, so it provides different information, indicating that the spin 
s an important parameter to distinguish whether a galaxy belongs 
o a true pair. Another rele v ant feature is the surface pressure of the
alaxies, which is computed in AHF following the Shaw et al. ( 2006 )
efinition, and accounts for the particles that are bound to the halo
ut at its boundary, so that it is also related to the size and mass of
he objects. For CAESAR , we see that radii are important too, mainly
he gas radius in this case, but also for the stars. We also want to
ighlight the importance of the gas mass given by CAESAR , which
e find to be an interesting result (and will further investigate in the

ollowing subsection). 
Regarding the AHF properties including only the stellar particles, 

e see again that the spin parameter shows up, and in this case also
he b and c parameters. These are defined as the second (for b ) or
hird (for c ) largest axis of the moment of inertia tensor divided
y the largest one. They are a measure of the shape of the galaxy,
ith a value equal to 1 indicating perfect sphericity. The stellar-

o-halo mass ratio is also shown to be rele v ant. We see that the
agnitudes in all the different bands do not play an important role in

his classification. The AHF colours are shown to be slightly more 
ele v ant than the magnitudes themselves but still with low feature
mportance compared to other properties. 

In general, we can say that, when talking about properties of
ndividual galaxies in observed pairs, the size of the galaxies together 
ith their mass, spin parameter, gas content, stellar-to-halo mass 

atio, and shape of their stellar component are the properties that help
he most to distinguish between true and false pairs. We also note
ere that, as its name implies, RF has a random component, so that
he specific values shown in Fig. 4 will only be repeated to a certain
ccuracy in different realizations. Thus, we prefer to emphasize the 
rder of importance of the different features, rather than the values of
mportance themselv es. Moreo v er, the resulting feature importances 
f the RF can be affected if there are some features that are strongly
orrelated, like M 200 and R 200 . This is because, in general, the model
as no preference for one o v er the other, and thus their values of
mportance can be reduced. Ho we ver, this ef fect does not af fect
he order of importance of the features, or the distinction between 
mportant and non-rele v ant v ariables (Genuer, Poggi & Tuleau-Malot 
010 ), and thus it is not an issue for our results here. 
At this point we also studied the possibility of one of the galaxies

n the pair being more important than the other one, to see if, for
nstance, the most massive (or primary) galaxy is the one leading the
lassification criteria. For this, we separated the galaxies of each pair 
nto the most and the least massive of them (G 1 and G 2 , respectively)
nd considered their properties as two different properties of the same
air. We then applied the RF algorithm and studied the resulting
eature importance. In general (the plots are not shown here for
larity), we saw that G 1 , i.e. the most massive galaxy, dominates,
ith a summed importance of its features of ∼57 per cent against
3 for G 2 . When looking at the different features individually, we
ee that G 1 is more important in most of the features except for the
adius, which, as can be seen in Fig. 4 , is actually the most important
roperty. Therefore, R 200 of the less massive galaxy is significantly 
ore important than that of the most massive galaxy when making

his classification. The rest of the properties, like gas content and
 ∗ and c ∗ (which are the same as b and c but computed only for
he stellar particles), show a predominance of G 1 , while for the spin
arameter both galaxies have a similar rele v ance. 

.2.2 Properties of galaxy pairs 

fter studying the properties of individual galaxies in the pairs, we
o v e to analysing properties of the pairs themselves, by computing

he ratio of the properties between the two pair members. That is, for
ach property P used previously, we compute the ratio P 2 / P 1 , where
 2 and P 1 are the specific properties of the two galaxies in the pair,
hosen so that this ratio is al w ays ≤1. 

Similarly to Fig. 4 , in Fig. 5 we show the feature importance when
pplying the RF algorithm to classify the identified pairs instead. In
his case, comparing with Fig. 4 , we see that a similar selection of
eatures appear to be rele v ant: virial radius, mass, and the centre of
ass offset. The shape of the stellar component remains relevant, 

ndicating that the relation between the shapes of the two galaxies is
lso important, not just the shapes of the galaxies alone. The same
s true of the stellar-to-halo mass ratio. These results can indicate a
ossible stripping of the stars and dark matter halo of one galaxy
y the other, a situation we already described in our previous paper
ontreras-Santos et al. ( 2022b ). There we concluded that galaxies

n physically close pairs showed a tendency to have different shapes
nd stellar-to-halo mass ratios, as opposed to galaxies in spurious 
airs created by projection effects, where the galaxies could be 
ore similar in both parameters. The rele v ance of the mean stellar
etallicity ratio here also confirms the results in Contreras-Santos 

t al. ( 2022b ). 
The main difference with Fig. 4 is in the spin parameter. While

reviously we saw that it was quite important, both for all particles
nd only for stars, we see now that the ratio of the two galaxies in
 pair does not seem to be rele v ant. This can be interpreted to mean
hat, although galaxies in true pairs tend to have specific values of the
pin parameter, the relation between the two of them is not affected
y the two galaxies forming a gravitationally bound pair. 
Finally, regarding the gas content, we see again that it remains

ele v ant, for the ratio of both H 2 and HI components. Although here
e only list the most rele v ant features as highlighted by the RF

lgorithm, we will elaborate on them and how they can be used to
lassify pairs in the following subsections. Hence we emphasize that 
he purpose of these models with numerous properties, rather than 
he classification itself, is to find the most rele v ant features when
lassifying galaxy pairs, so that we can now study and work with a
ore reasonable set of properties. 
We want to highlight again that the results shown in these

wo subsections have been obtained for the pairs found using the
hresholds r sep = 100 h 

−1 kpc and v sep = 500 km s −1 . Although we
nly show these results here, we have also repeated these calculations
or r sep = 50 h 

−1 kpc . We have seen that, in spite of some differences
ue to the random component of this analysis, the results obtained
re essentially the same regardless of the thresholds selected. 
MNRAS 522, 1270–1287 (2023) 
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Figure 4. Feature importance in percentage as given by the RF algorithm in Section 5.2.1 , for all the AHF (left) and CAESAR (right) properties of the individual 
galaxies combined. Red dots designate the 20 most important features. For easier visualization, the labels are only shown for these properties, but a list with all 
of the properties together with a brief description of them can be seen in Tables A1 and A2 . The different coloured regions in the plot separate related or similar 
properties, again only for visualization purposes. The vertical dashed line corresponds to the importance of the 20th most important feature. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/522/1/1270/7116485 by IN
AC

TIVE - U
niversidad Autonom

a de M
adrid. Biblioteca de Econom

icas user on 02 April 2024
NRAS 522, 1270–1287 (2023) 

art/stad1061_f4.eps


Identifying bound galaxy pairs 1279 

Figure 5. Feature importance in percentage as given by the RF algorithm in Section 5.2.2 , for the AHF (left) and CAESAR (right) properties of the pairs of 
galaxies, obtained as the ratio of each property between the two pair members, P 2 / P 1 , so that P 2 / P 1 ≤ 1. Red dots designate the 20 most important features. 
For easier visualization, the labels are only shown for these properties, but a list with all of the properties together with a brief description of them can be seen 
in Tables A1 and A2 . The different coloured regions in the plot separate related or similar properties, again only for visualization purposes. The vertical dashed 
line corresponds to the importance of the 20th most important feature. 
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Table 1. For each combination of projected distance and line-of-sight velocity separation thresholds ( r sep and v sep ), fraction of ‘true’ pairs (purity, P) 
and fraction of pairs from Haggar et al. ( 2021 ) that are found using the observational method to identify pairs (completeness, C). The following columns 
indicate the resulting purity and completeness when training and testing an RF algorithm with the selected properties of the galaxies and pairs in the given 
observational samples. Note that C (observational) is the absolute completeness, while c for the different models is the relative completeness of the model 
itself, renormalized taking into account that C is the maximum value that can be achieved. The properties used in each of the models are listed in the main 
text in Section 5.3.1 . 

r sep v sep Observational RF: (A) (B) (C) (D) (E) (F) 
( h −1 kpc ) (km s −1 ) P C p – c p – c p – c p – c p – c p – c 

100 500 0.354 0.836 0.817–0.502 0.717–0.323 0.714–0.293 0.770–0.420 0.751–0.402 0.783–0.504 
20 300 0.718 0.403 0.929–0.897 0.815–0.886 0.788–0.913 0.918–0.878 0.917–0.883 0.924–0.888 

500 0.656 0.406 0.900–0.876 0.771–0.823 0.699–0.892 0.885–0.853 0.878–0.846 0.898–0.868 
1000 0.564 0.406 0.908–0.826 0.748–0.650 0.854–0.419 0.872–0.807 0.865–0.796 0.898–0.819 

50 300 0.578 0.627 0.866–0.809 0.751–0.653 0.824–0.478 0.817–0.785 0.822–0.771 0.846–0.818 
500 0.499 0.634 0.873–0.727 0.739–0.534 0.785–0.432 0.830–0.682 0.828–0.661 0.853–0.731 

1000 0.393 0.634 0.830–0.619 0.708–0.408 0.760–0.370 0.786–0.565 0.778–0.556 0.808–0.616 
100 300 0.419 0.825 0.821–0.609 0.734–0.421 0.737–0.378 0.776–0.548 0.762–0.542 0.805–0.605 

1000 0.274 0.836 0.816–0.351 0.702–0.177 0.697–0.186 0.732–0.291 0.735–0.269 0.797–0.345 
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.3 Obser v ational approach: selection of properties 

n the previous subsection, we blindly included all the available
HF and CAESAR properties as input for the RF algorithm to
redict if an observed pair was gravitationally bound or not. We
sed this model to determine which properties of the pairs and the
nvolved galaxies played a more important role when doing this
lassification. Although we obtained rele v ant information, this was
 very theoretical approach, since real observational studies do not
rovide that much information about the galaxies. For this reason, in
rder to have something useful from an observer’s perspective, we
ill now make a selection of properties that are more easily accessible

o observers. This way, we will train a new RF only on a selection
f rele v ant properties of the galaxies. We will also try to understand
he physical situation behind the ML model, by investigating how
he selected properties differentiate the true from the false pairs. 

Based on the results described in 5.2 and the plots of feature
mportance in Figs 4 and 5 , we can make a selection of properties
hat can be available in observations and at the same time are rele v ant
or the interests of this work. We also aim to reduce the number of
roperties used as much as possible, thus making this method more
ealistic and manageable. Consequently, in this subsection we decide
o work with the following properties of each pair: 

(i) Stellar spin parameter, λ∗. We decide to keep this value for
oth galaxies in the pair, since we saw in Section 5.2.1 that they were
imilarly important. The ratio of the two values was not found to be
s important in Section 5.2.2 , so we do not select it. 

(ii) Stellar shape parameter, c ∗, defined as the ratio of the minor
o major axis of the moment of inertia tensor. Based also on our
revious results, we keep only that of the most massive galaxy (as
e find the ratio c ∗, 1 / c ∗, 2 to be less important than c ∗1 ). 
(iii) Molecular gas content M H 2 , only of the most massive galaxy

n the pair. 
(iv) Radius enclosing 80 per cent of the stars, R ∗, 80 . In this case,

e keep the values for both galaxies, which are shown to both be
mportant. 

(v) Mean stellar metallicity ratio, Z ∗, 2 / Z ∗, 1 . 

We thus select a list of seven different properties characterizing
ach galaxy pair: λ∗, 1 , λ∗, 2 , c ∗, 1 , M H 2 , 1 , R ∗, 80, 1 , R ∗, 80, 2 , and
 ∗, 2 / Z ∗, 1 . 
NRAS 522, 1270–1287 (2023) 
.3.1 Application of RF 

iven this selection of properties, we can train a new RF model
hat uses only this selected information to classify the pairs into
rue or false (gravitationally bound or not). Comparing the output
lassification to the ‘ground truth’ in Haggar et al. ( 2021 ) (see
ection 3.2.1 ), we can compute the purity and completeness of

his classification similarly to how we did in Section 4 . In this
ase, using the seven properties previously listed, we obtain a
urity of 82 per cent (i.e. from all the pairs classified as ‘true’,
2 per cent of them were actually true), as opposed to the previous
4 per cent in Section 4 (see Fig. 1 for r sep = 100 h 

−1 kpc and
 sep = 500 km s −1 ), demonstrating a very significant improvement.
egarding completeness, the previous value we had of 85 per cent

see Fig. 3 ) is now reduced to 50 per cent. This means the RF classifier
orrectly classifies as ‘true’ 50 per cent of the ‘observed’ true pairs.
lthough this is a non-negligible decrease, it is still a high value for

ompleteness, especially if we consider the remarkable increase in
urity. For instance, for r sep = 20 h 

−1 kpc and v sep = 300 km s −1 we
ad a very similar purity (82 per cent) but with a lower completeness
40 per cent, see Section 4 ). 

Apart from the seven selected properties together, we also consider
ifferent combinations of them, in order to create more realistic
odels that can be applied when only some of these features are

vailable. For instance, we find c ∗, 1 to be the most important of them,
nd hence we try a model that uses only this attribute. Similarly, we
rain four more distinct models with combinations of the selected
roperties. We summarize all the models here: 

(i) All seven selected properties 
(ii) Only stellar shape c ∗, 1 

(iii) Only gas content M H 2 , 1 

(iv) Stellar shape and radii: c ∗, 1 , R ∗, 80, 1 , and R ∗, 80, 2 

(v) Gas content and radii: M H 2 , 1 , R ∗, 80, 1 , and R ∗, 80, 2 

(vi) Stellar spin parameter, gas content, and radii: λ∗, 1 , λ∗, 2 , M H 2 , 1 ,
 ∗, 80, 1 , and R ∗, 80, 2 

The performance of the different models can be seen in the first
ow of Table 1 . For r sep = 100 h 

−1 kpc and v sep = 500 km s −1 , the
rst two columns show the values of purity and pair-completeness
s described in Section 4 , with the difference that, in Figs 1 and 3
e computed the value for each cluster and then showed the median
alues, while in Table 1 we are directly showing the values computed
y stacking together the pairs from all the clusters. The following
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Figure 6. Left column, distribution of the value of the given property (from 

top to bottom: stellar spin parameter, stellar shape, H 2 mass, and radius R ∗, 80 ) 
for all the galaxies in the paired sample, separated into those belonging to 
‘true’ (solid blue lines) and ‘false’ (dash-dotted orange) pairs. Right column, 
distribution of the ratio of the given property (mean stellar metallicity, stellar 
shape, H 2 mass and radius R ∗, 80 ) between the two galaxies in the pair. 
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olumns show the performance of the different RF models when 
rained and tested with the different samples (we use 70 per cent of
he data for training and the remaining 30 per cent for testing). We
ee that the model using only c ∗, 1 (model B) already gives 72 per cent
urity and 32 per cent completeness, while combining this with the 
hape and radii information (model D) raises the purity to 77 per cent
nd completeness to 42 per cent. Additionally, the gas content alone 
model C) yields a high purity (71 per cent) but with quite low
ompleteness (29 per cent), but these values can be impro v ed if we
nclude the radii information (see model E). In model F, apart from
as content and radii, we also include the spin parameter of the
alaxies, raising the purity and completeness to values considerably 
loser to the model with all properties. In general, any combination 
f three different properties shows a very similar performance to 
odel F. It is important to keep in mind that, although columns (A)–

F) in Table 1 refer to the performance of the RF algorithm itself,
his is trained on the ‘observational samples’ (obtained following the 
ethodology in Section 3 ), so the completeness here does not use the

otal number of pairs from Haggar et al. ( 2021 ), but rather the true
airs found with the observational method. Given that the C for each
ample is the maximum value that the ML method can achieve, we
ntroduce relative completeness, c , which is a further renormalization 
f the C value of each sample. 
As before, we can repeat the results in the first row of Table 1 , but

hanging the paired sample used to that obtained using the different 
 sep –v sep combinations. The performance of the different models can 
e seen in the following rows of Table 1 . For r sep = 20 h 

−1 kpc , the
urity is already high with the observational model, but we see that
he different RFs, even those that require only one or two properties
s input, achieve purity around 90 per cent with still very high
ompleteness. For r sep = 50 h 

−1 kpc , the behaviour of the values 
s similar to that in the first row, with a performance that clearly
mpro v es on the observational one, reaching more than 80 per cent
urity with more than 70 per cent in completeness. 

.3.2 Interpretation of the results 

n the previous subsection, we have applied an ML algorithm to 
lassify galaxy pairs into gravitationally bound or not. Ho we ver, 
his was done as a ‘black box’, in the sense that there was no
hysical interpretation of the results, we did not address the question 
f why the selected properties were important when making this 
lassification. In this subsection, we will try to give some insight into
his and understand the physical situation behind these classification 

odels. For that, we individually analyse each of the properties 
reviously selected: spin and shape of the stellar component, gas 
ontent, radius containing 80 per cent of the stars, and mean stellar
etallicity. 
In the left column of Fig. 6 , we show the distribution of the

ifferent properties of the individual galaxies, separating them into 
hose belonging to true (solid blue lines) and false pairs (dash-dotted 
range lines). As before, these results have been obtained for the pair
ample with r sep = 100 h 

−1 kpc and v sep = 500 km s −1 , but the same
onclusions hold for different thresholds. From top to bottom, the 
roperties shown in Fig. 6 are stellar spin parameter, λ∗, shape of
he stellar component, c ∗, H 2 gas mass M H 2 , and radius containing
0 per cent of the stars, R ∗, 80 . For these plots, we do not make a
istinction between the two galaxies in the same pair; they are both
ncluded in the same distribution. Comparing the distributions for 
rue and false pairs, although the differences between them are small, 
e see that galaxies in true pairs tend to have a higher spin parameter
nd gas content, while the shape parameter is lower, indicating that
hese galaxies are less spherical. Regarding the radius, we see that
he distribution for true pairs is wider, reaching both higher and lower
alues than that of the false pairs. 

The right column of Fig. 6 shows the ratio of the given properties
etween the two galaxies in a pair. These properties are the same
s in the left column, except for the spin parameter, which we saw
n Section 5.2.2 was not rele v ant for this separation, and instead
e include the mean stellar metallicity. We can see that for the
etallicity, true pairs are more likely to have galaxies with similar

alues of metallicity, i.e. Z ∗, 2 / Z ∗, 1 close to 1, than false pairs. For the
hapes, the situation is the opposite, pairs with c ∗, 2 / c ∗, 1 ∼ 1 are more
ikely to be false, and those where the galaxies have very different
hapes are almost all true pairs. The conclusion is similar for the gas
ontent and the radius: physically bound pairs have galaxies with 
ifferent properties, for instance one with high R ∗, 80 and one with a
o wer v alue. 

The results in Fig. 6 can be interpreted as a sign of the interaction
etween the two galaxies in the pair: the spin parameter is growing
ecause the galaxies are physically bound and getting closer together, 
hich is also affecting their shape. One of the galaxies can become
ery elongated due to this, while the other galaxy remains with a
ore spherical shape, explaining the situation we see for the ratio. 
MNRAS 522, 1270–1287 (2023) 
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For the gas content, we have to be careful because actually most of
he galaxies have no gas content. In Fig. 6 , we are only including the
airs where both of the galaxies have gas. In fact, around 80 per cent
f the galaxies in the paired sample have no H 2 . In turn, 70 per cent
f these galaxies are in false pairs and only 30 per cent of them are
n true pairs. This means that if a galaxy without H 2 is in a pair,
his is most likely a false pair (70 per cent likelihood against the
eneral 65 per cent of false pairs for this sample). In Fig. 6 (left
olumn, third row), we see that galaxies in true pairs tend to have
ore gas than those in false pairs. This is simply the continuation

f the previous trend: the higher the gas content in the galaxy, the
igher the probability of it belonging to a true pair. This can be one
eason wh y g alaxy interactions produce an increase in star formation
see e.g. Patton et al. 2013 ; Pan et al. 2018 ), because these galaxies
ave more gas. Although an SFR parameter is included within the
AESAR properties, we do not see an effect on it in our results in
ection 5.2 , which could be because the interacting galaxies have
ot had time yet to form stars from this gas. The fact that true pairs
end to have different gas contents in their galaxies (that is, a low
 H 2 , 2 /M H 2 , 1 ) can be interpreted as a stripping effect of the gas from

ne of the galaxies by the other. We also want to note that, although
or this section we decided to study the molecular gas content of the
alaxies, the same general situation is seen when studying the HI
raction instead. 

To summarize this section, we have first seen how all the AHF
nd CAESAR properties available in the simulations can be used to
lassify observed pairs into ‘true’ or ‘false’. For that we have used an
F algorithm that informs us about the importance of each property.
his way, we have learned the role that the different properties play
hen discerning if an observed pair is gravitationally bound or not.
e have presented the results here, which indicate that the main

roperties of interest when doing this kind of classification are the
 200 and R 200 ratio of the two galaxies in the pair, together with the

pin parameter, the shape of the galaxies, their stellar-to-halo mass
atio, and their gas content. Future studies of galaxy pairs should aim
t investigating these properties (or other properties that trace them),
n order to distinguish bound pairs and understand their peculiarities.
n a more observational approach, we have selected a reduced number
f properties available to observers, and seen how they alone can be
sed to classify pairs with a performance that clearly impro v es that
btained with the traditional observers’ method. We thus suggest
L as a tool to classify galaxy pairs in future studies, as depending

n the information available, this can strongly impro v e the quality
f the obtained samples. We have finally studied how these selected
roperties affect the distinction between true and false pairs, and
ried to understand the physical situation behind this. 

 C O N C L U S I O N S  

n this work, we studied close pairs of galaxies and how we can
istinguish if they are gravitationally bound or not. This way, apart
rom differentiating physical pairs from spurious ones (i.e. created by
rojection effects), we also distinguish them from flybys (i.e. galaxies
hat are close but just passing by, not bound to each other). Identifying
hese bound pairs can be particularly interesting because they are the
nes that are most likely to merge in the future. In order to do this, we
ork with a set of numerical simulations of galaxy clusters and their

urroundings, so that we can study galaxy pairs in a cosmological
nvironment. We find pairs in the sky following an observer’s
pproach and then we investigate if they are gravitationally bound
sing the full information from the simulations. We further apply an
NRAS 522, 1270–1287 (2023) 
L algorithm to classify the pairs with impro v ed performance and
o understand which features determine this classification. 

The simulations used in this work are provided by THE THREE

UNDRED project and consist of a set of 324 numerically modelled
pherical regions centred on the most massive clusters found in a prior
M-only cosmological simulation. These 324 regions of radius 15
 

−1 Mpc have been re-simulated including full hydrodynamics. For
ach of them, we limit our study to the region within 5 R 200 of the
luster halo centre and select all the objects with M ∗ > 10 9.5 M �
nd M 200 < 10 13 M �. We project their 3D coordinates (positions and
elocities) into the XY plane, thus creating ‘mock observations’. We
hen applied the same techniques used by observers to find close pairs
f galaxies, based on setting a maximum separation in the sky, r sep 

nd a maximum separation in velocity along the line-of-sight, v sep ,
or two galaxies to be considered as close. Based on the literature,
e used three dif ferent v alues for each of these parameters (20, 50,

nd 100 h 

−1 kpc for r sep and 300, 500, and 1000 km s −1 for v sep )
nd combined them. We also allowed for a galaxy to be part of
wo different pairs. Since we are interested in gravitationally bound
alaxies, we kept these as two separate pairs rather than combining
hem into a group. 

After finding the galaxy pairs in the 324 different regions, we
ompared them against the theoretical study done by Haggar et al.
 2021 ) with the same data, where they find galaxies that are bound
o each other based on the criterion in equation ( 1 ). We classified
ll our observed pairs into ‘true’ (gravitationally bound) or ‘false’
not bound) and, using Haggar et al. ( 2021 ) as the ground truth, in
ection 4 we analysed the performance of the observational methods

n finding bound pairs. We computed the purity (fraction of observed
airs classified as true, Fig. 1 ) and the pair-completeness (fraction
f pairs from Haggar et al. 2021 that are also found in this work,
ig. 3 ). We saw that for the most restrictive definitions of proximity
 r sep = 20 h 

−1 kpc ), purity can be as high as 82 per cent, but at
he cost of missing a significant fraction of the pairs (completeness
f 40 per cent). When relaxing the criteria ( r sep = 100 h 

−1 kpc ),
ompleteness can be increased to more than 80 per cent but with a
urity of around 40 per cent. 
In order to impro v e this classification and find a method that
aximizes both purity and completeness, we trained a machine

earning algorithm to classify observed galaxy pairs based on their
roperties. ML has the advantage that it is unbiased and it can
andle large amounts of information. We used this with all AHF
nd CAESAR properties, which are two different codes to identify
alos and galaxies within the simulations (cf. Section 2 ). These
ere combined to provide two different approaches – AHF more

heoretical and CAESAR more observational – and obtain as much
nformation as possible, as well as checking for consistency between
hem. We gave all these properties (see Tables A1 and A2 ) as inputs
o a RF classifier, trained to differentiate ‘true’ from ‘false’ pairs.

e did this in tw o w ays, w orking first with the individual galaxies
nd using their properties directly (Fig. 4 ); and then working with
he pairs, computing, for each property, the ratio between the two
ember galaxies (Fig. 5 ). After training the RF model with our

ata, we obtained the relative importance of each feature and thus
earned which properties are most important when carrying out this
lassification task. The results obtained are summarized below: 

(i) The most important feature when classifying the pairs is the
adius of the subhalos, R 200 , followed by other related quantities such
s the mass M 200 and the escape velocity. The stellar and gas radii
iven by CAESAR are also found to be relevant. All these quantities
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efer in the end to the size of the galaxy, for which we find that the
elation between the two pair members is important. 

(ii) Another important feature is the spin parameter, both of all 
articles and stellar only. It is interesting that these parameters are 
nly rele v ant for indi vidual galaxies, and not their ratios for the pairs,
ndicating that the relation between the two galaxies’ spin parameters 
s not affected by them being gravitationally bound. Although there 
s a correlation between spin and halo mass (Knebe & Power 2008 ),
he spin parameter also depends on the angular momentum of the 
ubhalo and its orientation, suggesting that this result is not only due
o this correlation. 

(iii) The shape of the stellar content also plays an important role, 
uantified here by the b ∗ and c ∗ parameters, which indicate the degree
f sphericity of this component. This confirms our previous results 
n Contreras-Santos et al. ( 2022b ), where we concluded that galaxies
n real pairs tend to have dif ferent shapes, an ef fect that we attributed
o stripping. A similar situation is found for the stellar-to-halo mass
atio, with the two galaxies showing more different values. This is
lso highlighted in this work, and explained in Contreras-Santos et al. 
 2022b ) as one of the DM haloes being stripped by the other one.
he gas content of galaxies is also shown to be relevant, with similar
onclusions to those for the shape and stellar-to-halo mass ratio. 

(iv) In general, we find that the properties of the most massive 
alaxy are more important than those of the least massive one when
lassifying the pair as true or false. 

(v) Finally, although the results are shown only for r sep = 100 
 

−1 kpc and v sep = 500 km s −1 , all these conclusions hold when
epeating the same procedure using different combinations of the 
 sep and v sep parameters. 

Although this gives us relevant information about the properties of 
ravitationally bound galaxy pairs, it is a very theoretical approach, 
nd is difficult to exploit from an observational side. For this reason,
e then made a selection of observable properties that were also 
ighlighted in the previous step. Working only with the stellar spin
arameter, stellar shape, gas content, radius enclosing 80 per cent of
he stars, and mean stellar metallicity, we trained a new set of RF
lgorithms to classify the pairs. When e v aluating its performance, we
aw that the purity and completeness are better than those computed 
n Section 4 , reaching 82 and 50 per cent, respectively, for r sep =
00 h 

−1 kpc and v sep = 500 km s −1 when using all the selected
roperties. We also saw that different combinations of a number 
f these properties can already provide a good performance. For 
nstance, using only the shape parameter c ∗ of the most massive 
alaxy in the pair already gives more than 70 per cent in purity and
ore than 30 per cent in completeness. We analysed these same 

esults for different r sep –v sep combinations in Table 1 , where we saw
hat the general trends remain regardless of these thresholds. 

We concluded from here that these RF algorithms can be used to
lassify galaxy pairs as gravitationally bound or not, based only on 
 few observable properties. Investigating these properties individu- 
lly, we determined that galaxies in bound pairs are more likely to
ave a higher spin parameter and gas content and a less spherical
hape than galaxies in spurious pairs or flybys. Additionally, the 
wo bound galaxies in the pair are generally quite different in stellar
adii, gas content, and shape, an effect that can be attributed to the
nteraction between them. 

We further note here that our study has been carried out for galaxy
airs in cluster environments, reaching up to 5 R 200 of the main
luster centre (additional massive objects can also be found here). 
his means that our results are only valid for these high-density 

egions and they may not hold for randomly selected pairs from
ide surv e ys, for instance. Re garding this, ho we ver, se veral works
ave studied galaxy pairs as a function of the environment. Although
alaxy interactions are present everywhere in the Universe, their 
bservational manifestations are found to depend on the environment 
f the galaxies. In general, the results show that the effects of
nteractions appear to be largest in the lower density environments 
Ellison et al. 2010 ; Tonnesen & Cen 2012 ; Kampczyk et al. 2013 ;
as et al. 2021 ). Studies in high-density environments like ours can

hus help to clarify this situation and investigate to what extent this
s affecting galaxy evolution in clusters. 

Finally, we also want to highlight the importance of creating 
alaxy pair samples that are as pure and complete as possible,
o that they do not introduce any bias that can alter the derived
esults. Studies like Bottrell et al. ( 2022 ) focus on the selection
f a pure and complete sample, but for the identification of galaxy
erger remnants. Our proposed method for identifying bound galaxy 

airs increases significantly the performance of current observational 
echniques. For this method, we adopted a general approach, so as
o not have a biased perspective, but for further work, it would be
nteresting to focus even more on the properties we highlight here
nd study in more depth how they affect and are affected by galaxy
nteractions and mergers. Another task we consider for future work 
s extending the study to higher redshifts so that we can see if our
esults hold in time, and analyse what is the fate of gravitationally
ound galaxies. 
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Table A1. List of properties of the galaxies given by the AHF and selected for 
input for an RF algorithm to classify galaxy pairs into gravitationally bound or no
to each property in Figs 4 and 5 , while throughout the text they may also be addr

Name Symbol Units 

1 M 200 M 200 h −1 M �
2 R 200 R 200 h −1 kpc 
3 Rmax R max h −1 kpc 
4 r2 r 2 h −1 kpc 
5 mbp offset h −1 kpc 
6 com offset h −1 kpc 
7 Vmax V max km s −1 

8 v esc v esc km s −1 

9 sigV σ km s −1 

10 lambda λ –
11 lambdaE λE –
12: 14 Lx,y,z L x , L y , L z –
15 b b b/a R
16 c c c/a 
17 Eax E a, x 

18 Eay E a, y 

19 Eaz E a, z 

20: 22 Ebi E b, i 

23: 25 Eci E c, i 

26 Ekin E kin h −1 M � ( km s −1 ) 
2 

27 Epot E pot h −1 M � ( km s −1 ) 
2 

28 SurfP P s h −1 M � ( km s −1 ) 
2 

29 M star M ∗ h −1 M �
30: 31 

lambda(E) star 
λ∗, λE , ∗ –

32: 34 Lj star L j, star –
35: 36 b star , c star b ∗, c ∗ –
37: 45 Eji star E j, i, ∗ –

46 Ekin star E kin, ∗ h −1 M � ( km s −1 ) 
2 

47 Epot star E pot, ∗ h −1 M � ( km s −1 ) 
2 

48 mean z star Z ∗ Z �
49 SMHM M ∗/M 200 –
50 JOHNSON V Johnson-V –
51 JOHNSON B Johnson-B –
52 JOHNSON H Johnson-H –
53 JOHNSON I Johnson-I –
54 JOHNSON J Johnson-J –
55 JOHNSON K Johnson-K –
56 JOHNSON R Johnson-R –
57 JOHNSON U Johnson-U –
58 U-B U − B –

59 B-V B − V –
60 V-I V − I –

m
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Norman M. L., 2011, ApJS , 192, 9 

an den Bergh S., Abraham R. G., Ellis R. S., Tanvir N. R., Santiago B. X.,
Glazebrook K. G., 1996, AJ , 112, 359 

hite S. D. M., Rees M. J., 1978, MNRAS , 183, 341 
illiams R. J., Quadri R. F., Franx M., 2011, ApJ , 738, L25 
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PPENDI X  A :  LIST  O F  PROPERTIES  

n Table A1 , we list all the AHF properties used as inputs for the RF
lgorithm described in Section 5 , together with a brief description of
MNRAS 522, 1270–1287 (2023) 

this work. These properties, together with those in Table A2 were used as 
t (see Section 5.2 ). The index and ‘name’ columns refer to the label given 

essed by their ‘symbol’. 

Description 

Mass enclosed in the radius at o v erdensity 200 
Radius at o v erdensity 200 

Position of rotation curve maximum 

Position where ρr 2 peaks, where ρ is the density 
Offset between most bound particle and halo centre 

Offset between centre-of-mass and halo centre 
Maximum of rotation curve 

Escape velocity at R 200 

3D velocity dispersion for all the particles inside the halo 
Spin parameter (Bullock et al. 2001 definition) 

Classical spin parameter (Peebles 1969 definition) 
Three components of the angular momentum vector (with | L | = 1) 

atios of the second major (and minor) to the major axis of the moment of 
inertia tensor (a value equal to 1 indicates perfect sphericity) 

Largest axis of moment of inertia tensor (with | E | = 1) 

Second largest axis of moment of inertia tensor (three components) 
Third largest axis of moment of inertia tensor (three components) 

Kinetic energy 

Potential energy 

Surface pressure (Shaw et al. 2006 definition) 
Mass of stellar particles 
Spin parameters for stars 

Three components of the stellar angular momentum vector 
b and c parameters for stellar components 

Three (i) components of the three (j) axes of the stellar moment of inertia 
tensor 

Kinetic and potential energy for stars 

Mean stellar metallicity 
Stellar-to-halo mass ratio 

Absolute magnitudes in the different spectral bands as computed by the 
stellar population synthesis code STARDUST (Devriendt et al. 1999 ) by 

considering the contribution of all the individual stellar particles 

Colour index obtained subtracting the indicated magnitudes: 
Johnson-U − Johnson-B 

Johnson-B − Johnson-V 

Johnson-V − Johnson-I 
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M

Table A2. List of properties of the galaxies given by CAESAR galaxy finder and selected for this work. These properties, together with those in Table A1 
were used as input for an RF algorithm to classify galaxy pairs into gravitationally bound or not (see Section 5.2 ). The index and ‘name’ columns refer to the 
label given to each property in Figs 4 and 5 , while throughout the te xt the y may also be addressed by their ‘symbol’. By default, length units are comoving 
kpc. 

Name Symbol Units Description 

61 masses: H2 M H 2 M � H 2 and HI masses come from assigning all the gas in the 
62 masses: HI M HI M �/ M b halo to its most bound galaxy within the halo, 
63 masses: baryon M b M � baryon includes both stellar and gas particles, 
64 masses: gas M gas M �
65 masses: gas stellar half mass M gas, shm 

M � stellar half mass (shm) denotes the radii enclosing 50 
per 

66 masses: star stellar half mass M ∗, shm 

M � cent of the stellar mass 
67 masses: stellar M ∗ M �
68 radii: baryon half mass R b, 50 kpc Radius enclosing 50 per cent of baryons 
69 radii: baryon r20 R b, 20 kpc Radius enclosing 20 per cent of baryons 
70 radii: baryon r80 R b, 80 kpc Radius enclosing 80 per cent of baryons 
71: 73 radii: gas XX R gas, XX kpc Same for gas and stars (the galaxy center of mass from which 
74: 76 radii: stellar XX R ∗, XX kpc the radii are found is recomputed for each type) 
77 rotation: baryon ALPHA αb – α and β are the rotation angles required to rotate the galaxy 
78 rotation: baryon BETA βb – to align with the angular momentum 

79 rotation: baryon BoverT B/T b – Bulge-to-total mass ratio, where the bulge mass is 
defined kinematically as twice the counter-rotating mass 

80 rotation: baryon L coord0 L 0, b M �·kpc · km s −1 Three components of the angular momentum vector of the 
81 rotation: baryon L coord1 L 1, b M �·kpc · km s −1 galaxy 
82 rotation: baryon L coord2 L 2, b M �·kpc · km s −1 

83 rotation: baryon kappa rot κ rot, b – Fraction of kinetic energy in rotation (Sales et al. 2012 ) 
84: 90 rotation: gas XX Same for gas and stars 
91: 97 rotation: stellar XX 
98 v disps: baryon σ b km s −1 Mass-weighted velocity dispersions for each particle type, 
99 v disps: gas σ gas km s −1 computed around the centre of mass velocity (recomputed 
100 v disps: gas stellar half mass σ gas, shm 

km s −1 for each type) 
101 v disps: star stellar half mass σ ∗, shm 

km s −1 

102 v disps: stellar σ ∗ km s −1 

103 absmag: sdss g sdss- g – Absolute magnitudes for the indicated photometric band 
104 absmag: sdss i sdss- i –
105 absmag: sdss r sdss- r –
106 absmag: sdss u sdss- u –
107 absmag: sdss z sdss- z –
108 colours: g-r g − r – Colour indices obtained by subtracting the indicated 
109 colours: u-r u − r – absolute magnitudes from abo v e 
110 colours: r-i r − i –
111 ages: mass weighted age Gyr Mean stellar age, weighted by mass 
112 metallicities: sfr weighted Z gas – Gas-phase metallicity, weighted by SFR, in total metal 

mass fractions (not solar-scaled) 
113 metallicities: stellar Z ∗ – Stellar metallicity, mass weighted 
114 sfr SFR M �/yr Instantaneous SFR, from summing SFR 

in gas particles 
115 sfr 100 SFR 100 M �/yr SFR averaged over last 100 Myr, from star particles 

formed in that time 
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ach of them. Table A2 shows the corresponding list for the CAESAR

roperties. 

PPENDIX  B:  VA LIDATION  O F  M AC H I N E  

E A R N I N G  M O D E L S  

n this section, we show the validation of the machine learning models
hat we introduced in Sections 5.2 and 5.3 . For this, we compute the
raining and test error of each of the models – that is, the fraction of
airs in the training and test sets, respectively, which are incorrectly
lassified as either true or false by the model. In Fig. B1 , we show
hese two errors for the two models in Section 5.2 , i.e. one using
he properties of individual galaxies (in red) and the one for the
atios of each property between the two pair members (in blue). In
NRAS 522, 1270–1287 (2023) 
his figure, we run the RF classifiers with different parameters and
nalyse the performance of the models in each of the cases, in order
o choose the best one. In the top panel of Fig. B1, we plot these
rrors as a function of the maximum depth allowed for the individual
rees in the RF, for a fixed number of trees. The maximum depth of
 tree is the largest possible length between the root to a leaf. In the
lot, we can see that, while both training and test errors are similar
or the smaller maximum depths, the training error decreases fast
or increasing maximum depth. The behaviour of the errors for the
igher maximum depths indicate that our models are o v erfitted – or
 v ertrained – since they are working much better on the training set
han on the test set. The high values of the maximum depth allow the
ecision trees to grow so as to fit perfectly the training set, instead
f adapting to an arbitrary test set. To a v oid o v erfitting, we select a
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igure B1. Top, training (dash-dotted) and test (solid) errors of the RF
odels presented in Section 5.2 (red for individual properties of galaxies –
ig. 4 , and blue for the ratios between the two pair members – Fig. 5 ), as
 function of the maximum depth allowed for the decision trees (for a fixed
umber of trees of 65). Vertical dashed lines indicate values of 6, 8, and
0. A maximum depth of 8 is selected for these models, since it minimizes
he test error while keeping the training error similar. Bottom, same but as a
unction of the number of trees used, for a fixed maximum depth of 8. Note
he different scale in the y -axis. The vertical dashed line indicates the value
f 65 used throughout the paper. 

aximum depth that reduces the test error as much as possible while
eeping a training error that is similar to the test error. We choose a
alue of 8, indicated in Fig. B1 as a vertical dashed line, and fix this
aximum depth for all the models. 
In the bottom panel of Fig. B1 , we now fix the maximum depth to

 and plot the training and test errors of the models as a function of
he number of decision trees used. In this case, we see that both errors
onverge to a reasonably stable value within ∼20 trees. The number 
f trees that minimizes the test error for both models is 65, and thus
e fix this parameter at this value, although we can see in Fig. B1

hat the precise value used for the number of trees will not affect
ery significantly the results in terms of training and test errors of
he models. We want to highlight that, for the selected values for the

aximum depth and the number of trees of the model, the difference
etween training and test error is below 10 per cent. 

Finally, in order to validate all the machine learning models 
resented, in Fig. B2 we show their training and test error for fixed
alues of number of trees of 65 and maximum depth of 8. The
raining error is plotted as blue dots, while the test error is depicted
y orange diamonds. We also indicate the total number of pairs used
n this model, 44 575 in this case, together with a reminder of the
igure B2. Training (blue dots) and test (orange diamonds) errors of the
ifferent RFs presented in this paper, for fixed number of trees of 65 and
aximum depth of 8. The first two values in the x -axis represent the two

heoretical models in Section 5.2 , while the models from A to F are those
resented in Section 5.3.1 , which use only a subselection of properties. 

Table B1. For each combination of projected distance, r sep , and line-of- 
sight velocity separation, v sep , thresholds, parameters of the RF models 
used to classify pairs: total number of pairs (i.e. size of the sample), number 
of decision trees used, and maximum depth allowed for each of them. 

r sep v sep N pairs n trees max depth 
( h −1 kpc ) (km s −1 ) 

100 500 44 575 65 8 
20 300 5009 65 6 

500 5720 55 6 
1000 6945 55 6 

50 300 12 182 60 6 
500 15 815 65 7 

1000 22 795 65 8 
100 300 31 007 65 8 

1000 71 608 65 8 

istance and line-of-sight velocity separation thresholds used, r sep 

 100 h 

−1 kpc and v sep = 500 km s −1 , respectively. The first two
alues in the x -axis in Fig. B2 represent the two theoretical models
n Section 5.2 (same as Fig. B1 but for fixed number of trees and
aximum depth). The following ticks, A to F, indicate the models

resented in Section 5.3.1 , constructed with only a subselection of
he properties found to be most rele v ant as well as available in
bservations. In Fig. B2 , we can see that, although the test error
s al w ays higher than the training error, they are al w ays within a
if ference belo w 10 per cent, sho wing that no o v erfitting is taking
lace. This is especially true for the A-F models, where the difference
etween the two errors is even smaller. 

The process shown here in Figs B1 and B2 was repeated for all
he different combinations of thresholds in distance, r sep , and line-of-
ight velocity separation, v sep , between pair members. This means we
nd the optimal values for the maximum depth and number of trees of

he models, so that the training and test error are within 10 per cent of
ne another. In Table B1 we summarize the properties of the different
odels – that is, we include for each r sep –v sep combination the total

umber of pairs used (i.e. the size of the sample), the number of
rees used, and the maximum depth allowed for them. The results in
able 1 regarding the purity and completeness of this models were
btained with the parameters shown here. 
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