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Abstract

Pattern recognition research has not traditionally focused a lot of attention on how
the brain solves the very same problem of recognizing patterns itself. Important
components of the physical world, such as its hierarchical structure and the existence
of the time dimension have often been ignored in machine learning paradigms. Yet,
evidence from neuroscience suggests that the brain uses those properties in solving
the pattern recognition problem. Classical classifiers usually operate on a static set
of attributes and do not mimic the principles used by the brain to recreate invariance
during object recognition. This is all in spite of the fact that the brain is a very
robust pattern recognition “engine” for many types of problems, one not surpassed
yet, by computational approaches.

Hierarchical Temporal Memory or HTM is a neocortically bioinspired algorithm
for pattern recognition, time series prediction and control consisting on a network
of spatio-temporal pooling nodes arranged in a hierarchy. HTM is a very successful
classifier for cases where the whole spatial representation of an instance is present at
one point in time, such as for instance image recognition. However, HTMs struggle
with problems where instances are composed of a spatial structure evolving over
time, i.e. multivariable time series.

In this work, we propose an extension of the HTM algorithm to optimize its
performance on the recognition of multivariable time series. Our extension consists
of an additional top node in the HTM topology that stores and compares sequences
of input data. The spatio-temporal codification of an instance in a sequence serves
the purpose of handling its temporal evolution. Sequence comparison is carried out
by sequence alignment using dynamic programming. We apply our extended HTM
in the representative real world problems of sign language recognition, using data
captured with an electronic data glove, and gaze gestures recognition in real time
using a low cost video based eye tracking system. Gaze gestures represent an inno-
vative method of human computer interaction consisting on using sequences of gaze
movements to generate input commands for electronic devices. Both sign language
and gaze gestures recognition are good example of machine learning problems where
attributes evolve over time. The position of the hands, or the eyes, at one point in
time does not represent the whole instance, and several categories can share certain
spatial arrangement of the hands or the eyes. It is the temporal variation over time
of the hand position and shape or the eye position what constitutes a sign or a
gesture.

On the sign language recognition problem, our extended HTM algorithm reaches
the same recognition performance than state of the art techniques employed in sign
language recognition such as Hidden Markov Models and Metafeatures Tclasses:
91% recognition performance on a data set of 95 categories of Australian sign lan-
guage. Furthermore, we surpass state of the art methods on specific aspects such
as the need for a low number of training instances, tolerance to increasing vocabu-
lary sizes, low degree of supervision requirements during training, lack of manually
curated features models to detect and absence of language or grammar models to
support recognition.
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Gaze gestures represent another example where instances consist of evolving
spatial patterns. We evaluate through a set of user studies, different modalities of
carrying out a gaze gesture and determine the superiority of saccadic gaze gestures
over gliding gaze gestures. We show how a simple dynamic programming approach
outperforms traditional HTMs in the real time recognition of gaze gestures, reaching
94% recognition rate over a simple set of 10 gaze gestures using a self-built, head-
mounted and low cost eye tracking system. Furthermore, our extended HTM reaches
a 98% recognition rate over the same set of gaze gestures in real time on a remote
setup and with higher noise levels. Again, the extended HTM does not use external
models, but rather the model is constructed internally by the network through its
exposition to the training data. From the robust performance of the algorithm
and user reports, we conclude that gaze gestures hold considerable potential as an
innovative paradigm of Human Computer Interaction.

In summary, this thesis discusses and extends the features of a neocortically
inspired temporal learner capable of producing comprehensible classification of mul-
tivariate time series. The problems of sign language and gaze gesture recognition are
used as proof-of-concept of the robust performance of the extended HTM method.
Nonetheless, the extended HTM algorithm is inherently flexible and has a broad de-
gree of applicability to other recognition problems whose instances are also formed
by a spatio-temporal structure unfolding over time.
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Resumen

El campo de investigación del reconocimiento de patrones no ha prestado tradicional-
mente mucha atención a cómo el cerebro resuelve susodicho problema. Componentes
importantes del mundo f́ısico tales como su estructura jerárquica o la existencia de la
dimensión temporal, a menudo han sido ignorados en los paradigmas de aprendizaje
automático. A pesar de todo, la evidencia que emerge de la neurociencia sugiere
que el cerebro utiliza esas propiedades para resolver el problema del reconocimiento
de patrones. Los clasificadores clásicos operan a menudo en una serie de atributos
estáticos y no mimetizan los principios utilizados por el cerebro para recrear invar-
ianza durante el reconocimiento de objetos. Todo esto ocurre a pesar del hecho de
que el cerebro es un motor de reconocimiento de patrones muy robusto para nu-
merosos problemas. Un motor, por cierto, todav́ıa no superado por metodoloǵıas
computacionales.

La memoria jerárquica temporal, o HTM por sus siglas en ingles, es un algoritmo
bioinspirado en la neocorteza capaz de llevar a cabo reconocimiento de patrones,
predicción de series temporales y tareas de control usando una red de nodos que
realizan un agrupamiento espacio-temporal y que se organizan de forma jerárquica.
La HTM es un clasificador robusto para casos donde la representación espacial com-
pleta de un patrón está presente en cualquier instante de tiempo, como por ejemplo
el reconocimiento de imágenes. Sin embargo, la HTM, no es tan robustas a la hora
de trabajar con problemas donde las instancias están compuestas por estructuras
espaciales que se desarrollan en el tiempo, por ejemplo las series temporales multi-
variables.

En este trabajo, proponemos una extensión del algoritmo HTM para optimizar
su rendimiento en el reconocimiento de series temporales. Nuestra extensión consiste
en la incorporación de un nodo superior adicional en la topoloǵıa HTM que alma-
cena y compara secuencias de datos entrantes. La codificación espacio-temporal de
una instancia sirve el propósito de lidiar con su evolución temporal. La comparación
de secuencias se lleva a cabo utilizando el alineamiento de secuencias mediante pro-
gramación dinámica. Aplicaremos nuestro procedimiento en los problemas repre-
sentativos de reconocimiento de lenguaje de signos, usando datos capturados con
un guante electrónico y de reconocimiento de gestos pupilares en tiempo real us-
ando un sistema de seguimiento de la pupila de bajo coste. Los gestos pupilares
representan un método innovador de interacción hombre-máquina consistente en el
uso de secuencias de movimientos pupilares para generar comandos de control para
aparatos electrónicos. Tanto el reconocimiento del lenguaje de signos como el de
los gestos pupilares son buenos ejemplos de problemas de aprendizaje automático
donde los atributos evolucionan en el tiempo. La posición de la mano o de los ojos en
un instante de tiempo no representa la instancia en su conjunto y varias categoŕıas
distintas pueden compartir una cierta configuración espacial de las manos o de los
ojos. Es la evolución temporal de la posición de la mano y su forma o de la posición
de la pupila lo que constituye un signo o un gesto.

En el problema de reconocimiento de signos, nuestra extensión del algoritmo
HTM alcanza unos rendimientos de reconocimiento similares a las técnicas repre-
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sentativas del estado del arte en el reconocimiento del lenguaje de signos, tales como
los Hidden Markov Models y las Metafeatures Tclasses: 91% de reconocimiento en
un conjunto de datos de 95 categoŕıas del lenguaje australiano de signos. Además,
nuestra extensión HTM supera el estado del arte en aspectos espećıficos tales como
la necesidad de un bajo número de instancias de entrenamiento, la tolerancia a
tamaños de vocabularios crecientes, bajos requerimientos de supervisión durante el
entrenamiento, ausencia de modelos introducidos manualmente en el algoritmo de
reconocimiento o la ausencia de modelos gramaticales o de lenguaje para ayudar al
reconocimiento.

Los gestos pupilares representan otro ejemplo donde las instancias consisten en
patrones espaciales que evolucionan en el tiempo. En este trabajo evaluamos a
través de una serie de estudios de usuario, diferentes modalidades de llevar a cabo
un gesto pupilar y determinaremos la superioridad de los gestos pupilares sacádicos
sobre los gestos pupilares arrastrados. También mostraremos como un simple algo-
ritmo de programación dinámica supera a las HTM en el reconocimiento en tiempo
real de gestos pupilares, alcanzando un 94% de reconocimiento sobre un conjunto
de 10 gestos pupilares con un sistema de seguimiento pupilar de bajo coste y situ-
ado a 5-10cm del ojo. Además nuestra versión extendida de las HTM alcanza un
reconocimiento en tiempo real de hasta un 98% sobre el mismo grupo de gestos
pupilares utilizando un sistema de seguimiento pupilar remoto y con altos niveles
de ruido. Es importante recalcar que nuestro sistema extendido de HTM no usa
modelos externos, sino que construye el modelo en la representación interna de la
red a través de su exposición a los datos de entrenamiento. Teniendo en cuenta la
robustez de los resultados de reconocimiento obtenidos por nuestro algoritmo ex-
tendido y la retroalimentación positiva de los usuarios en terminos de usabilidad,
concluimos que los gestos pupilares poseen un potencial considerable como forma
innovadora y viable de interacción hombre-máquina.

En resumen, esta tesis discute y extiende las caracteŕısticas de un clasificador
temporal inspirado en la neocorteza capaz de llevar a cabo una clasificación de se-
ries temporales multivariables. La aplicación al problema del reconocimiento del
lenguaje de signos y al problema del reconocimiento de gestos pupilares se utiliza
como prueba de concepto de la robustez de la HTM extendida. En cualquier caso la
HTM es un paradigma inherentemente flexible y tiene un amplio espectro de apli-
cación a otros problemas de reconocimiento cuyas instancias también estén formadas
por una estructura espacio-temporal que evoluciona en el tiempo.
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Chapter 1

Introductory Remarks

This thesis deals with the subject of pattern recognition within the realms of com-
putational neuroscience and machine learning. Over the course of this work, we lay
out a description, analysis and extension of a connectionist and bio-inspired machine
learning algorithm known as Hierarchical Temporal Memory or HTM [Hawkins,
2004, 2006; George and Hawkins, 2009].

Numerous tasks that humans find easy to do are very difficult or impossible
to replicate on a computer: image recognition, understanding spoken language,
manipulation of objects and navigation in 3D space are routinely performed by
humans with apparent ease. However, no computer can even come close to human
performance in these tasks in spite of numerous research efforts working toward
those goals.

In humans, the main cognitive actor carrying out the biggest load of those tasks
is the neocortex. Hierarchical Temporal Memory is a connectionist artificial intel-
ligence paradigm that pursues the far fetched goal of encapsulating the structural
and algorithm properties of the neocortex into a set of computer algorithms.

Hierarchical Temporal Memory is relatively different to many machine learning
approaches trying to emulate human cognitive capabilities. In traditional artificial
intelligence paradigms, programmer’s create customize programs to solve specific
problems. For instance, a program developed to recognize speech or to predict
weather. HTM is more like a memory system and it does not execute different
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CHAPTER 1. INTRODUCTORY REMARKS

algorithms for different problems. HTM are trained by exposing the network to data
encapsulating the characteristics of the problem at hand and hence, the capabilities
of the HTM are determined largely by what it has been exposed to.

HTM theory incorporates the hierarchical organization of the neocortex into its
topology [Hawkins, 2006], and it uses spatio-temporal codification to encapsulate the
structure of problems’ spaces. Hierarchical organization and spatio-temporal coding
are well documented principles for information processing in neural systems [Rabi-
novich et al., 2006; Rodŕıguez and Huerta, 2004; Shepherd, 2004]. HTM algorithms
perform robustly in traditional machine learning tasks such as image recognition
[George and Hawkins, 2005] where patterns are represented as a fixed set of at-
tributes. For problems where an instance is composed of time series of varying
spatial arrangements, HTM performance is not as robust [Numenta, 2006b]. Hence,
in this thesis we suggest an extended HTM algorithm to improve performance on
this type of problems. To illustrate the validity of our extended HTM system,
we measure its performance on datasets consisting of multi-variable time series: a
dataset of Australian sign language instances gathered with an electronic data glove
and several gaze gesture datasets gathered with video-based eye tracking.

HTMs encapsulate within their hierarchical topology a model of the world they
are exposed to during training. Category instances in problem spaces (images,
sounds, financial information) possess structure. This structure is often hierarchical
in both space and time [Hawkins, 2006]. Since HTM networks are intrinsically hier-
archical in the spatio-temporal domain, they can efficiently capture in its structure
a model of the world on which they have been trained.

HTMs are similar in some aspects to Bayesian networks. However, they are dif-
ferent in the way they use time and hierarchy. HTM can be implemented in software
or in hardware [Hawkins, 2006]. Often, it is useful to think of an HTM as a memory
system. Since HTM has been derived from biology, a mapping between HTM and
the biological anatomy of the neocortex can be traced [George and Hawkins, 2009].

This thesis is structured as follows: an Introductory part encompassing the first
five chapters is followed by a Results part compromising another five chapters. A
Summary of results and Conclusions part concludes this thesis by providing as its
title indicates a wrapping up the main results of this work and the main conclu-
sions that can be derived from them. In chapter 2, a very succinct argument for
the need of bioinspired approaches in artificial intelligence is provided. Chapter 3
delineates some of the basic characteristics of the neocortex. Chapter 4 lays down a
basic theoretical description of Hierarchical Temporal Memory. Chapter 5 presents
the particular pattern recognition problems in which we will work to test tradi-
tional and extended HTMs and also provides background information on the topics
of eye tracking and gaze gestures interaction. Chapter 6 describes the results of
our own HTM implementation applied to an in-house data set of two dimensional
binary images. Chapter 7 shows the results of our extended HTM algorithm in the
recognition of sign language, and how extended HTM compares with traditional
HTM algorithms and traditional machine learning techniques usually employed in
the literature for sign language recognition, namely Hidden Markov Models and
Metafeatures Tclasses. Chapter 8 provides preliminary results of traditional HTM
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CHAPTER 1. INTRODUCTORY REMARKS

employed in the recognition of offline gaze gestures. Chapter 9 consists of an in
depth study of different gaze gestures modalities and their corresponding real time
recognition with traditional HTMs or using a simple dynamic programming tech-
niques. Chapter 10 describes the application of our extended HTM algorithm to the
recognition of gaze gestures in real time. Finally, chapter 11 summarizes the main
results described in this thesis and chapter 12 lists the main conclusions to extract
from this work.
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Chapter 2

The Need for Bioinspired
Approaches in Artificial
Intelligence

2.1 Introduction

Artificial intelligence, or AI for short, can be described roughly as the area of com-
puter science aiming to create machines that can produce intelligent behavior [Rus-
sell and Norvig, 2002]. Nonetheless, a precise and formal definition of the term AI
remains elusive. The imprecise nature of the word intelligence itself has played a role
in this difficulty. The concept “intelligence” represents a blurry characteristic that
has proved difficult to measure. Some cognitive theorists though, claim that intel-
ligence allows the identification of the right piece of information at the appropriate
instant during a decision-making process [Rios, 2007].

AI is a broad subject integrated by experts from different fields: computer sci-
ence, physics, neuroscience, psychology, physiology and philosophy. Research into
the areas of learning, language, and sensory perception have aided scientists in their
far fetched goal of building intelligent machines. The enormity of the task can be
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grasped by realizing that the final goal of those efforts is to emulate the functionality
of the human brain, made up of billions of neurons [Rios, 2007].

The ability to create intelligent machines has attracted humans interest since
ancient times. Today, in spite of the ever increasing power of microprocessors and
50 years of research into AI, the dream of truly intelligent machines remains distant.
Yet, research continues to be done with the objective of creating machines that can
mimic human thought or comprehend emotions. Traditionally, AI research has as-
sumed that machines can match human intelligence without the need to understand
how a real brain generates intelligent behavior. But AI performance in comparison
to some human capabilities remains unimpressive, this suggests a pressing need to
look at neuroscience research in order to incorporate in computational models of AI
the principles that the brain uses to process information.

2.2 A Short History of AI

The beginnings of AI research can be traced back to philosophers and mathemati-
cians who built up a theoretical body of knowledge on the principles and foundations
of logic. AI consolidated itself as a field of its own a few years after the invention of
the electric computer in the 1940s. Computers appeared at first sight as a technology
that would easily simulate intelligent behavior.

It is widely assumed that English mathematician Alan Turing laid down the
foundations of AI. Turing provided a formal demonstration of the concept of univer-
sal computation. This concept states that any computer is equivalent to any other
regardless of how it is actually built. As long as the CPU can realize a basic set of
operations and it has at its disposal an unending tape (memory), it can carry out
any definable sequence of operations. Turing felt that computers could be intelligent
and he proposed a way to determine if a machine has gained human intelligence,
the Turing test, claiming that a computer could be considered intelligent if it could
deceived a person into thinking that it was itself a human. From his writings, it
seems like Turing assumed that the brain was just another kind of computer.

The field of AI was formally established in 1956, at the Dartmouth conference.
The term AI was coined by the organizer of that conference: John McCarthy. The
conference itself did not produce any breakthroughs, but lied the bases for future
research. Since then, and although advancements have been slower than first esti-
mated, AI has expanded into a vivid research field.

Pioneers of AI research perceived strong parallelisms between computation and
human intelligence. They observed that what is commonly considered as the highest
pinnacle of human intelligence: the manipulation of abstract symbols, i.e. language,
chess or math, can be formalized in a logical language interpretable by a universal
computer. Turing had previously shown that it is irrelevant the hardware with which
the symbols are implemented or manipulated. As long as the functional equivalent
of the universal Turing’s machine could be realized, it could be done with a network
of electronic switches or a network of neurons.

In 1943 the neuroscientist Warren McCulloch and the mathematician Walter
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Pitts published an influential journal article [McCulloch and Pitts, 1990] providing
further support to this notion. In their work, the authors described a theoretical
model for real neurons to be connected together to perform logical operations. That
is, they showed that it was theoretically possible that neurons could replicate the
functionality of logic gates used by digital computers. Logic gates are electric circuits
able to perform digitally logical operations such as AND, NOT, and NOR. Thus,
McCulloch and Pitts claimed that it was feasible that the brain could theoretically
be built and wired in a manner analogous to electronic circuits although, they did
not proved that that was how the brain was actually build [Hawkins, 2004].

A dominant school of thought in psychology during the first half of the 20th
century was that of behaviorism, which in turn heavily influenced and shaped AI
from its inception. Behaviorists thought claimed that the inner-workings of the brain
were inaccessible (they even referred to the brain as an impenetrable black box) and
hence it was better to focus efforts on just observing and measuring characteristics
of the brain. Behaviorists were particularly interested in changing the brain and
exploring the technique of conditioning: making an animal adopt new behaviors
through reward and punishment schemes. At that time, several scientists working
on artificial intelligence also felt that mathematics and logic would be enough for
computers to do vision, language, robotics and so on. The prevailing view was
that if, as it appeared back then, a computer could emulated the functionality of
a brain, research efforts should not constrain themselves with biological boundaries
[Hawkins, 2004]. Hence, during that time there was not a lot of interest on the AI
community in trying to understand the nuts and bolts of the human brain.

In the 1940s, the emergence of the electrical computer both in the U.S. and
Germany revolutionized information processing and storage [Ennals, 2004]. The
innovation of the stored programmable computer, late during the 1940s, made the
job of entering a program easier. Further advancements in computer theory laid the
ground for the emerging field of computer science, and its artificial intelligence sub-
field. In the early 1950s, the link between human intelligence and machines started
to become apparent. Norbert Wiener carried out very influential work on the topic
of feedback theory. Early developments of AI were hence heavily influenced by the
notion that intelligent behavior was the result of feedback mechanisms.

Digital computers became more pervasive in the second half of the 20th century,
pioneers of AI thought that problems such as language translation and vision would
be easy to tackle by AI. The idea of using geometric theorems to deal with trans-
lations and rotations seemed straight forward. An important breakthrough was the
emergence of programs that could infer mathematical theorems (something which
it is considered to require high level cognitive functions). However, this programs
were very limited in their mathematical skills since they could only derive very sim-
ple theorems, which were already proved [Hawkins, 2004] and lacked any type of
mathematical “creativity”.

The 1970s witnessed the advent of “Expert Systems” which caused a big fuss.
An expert system consists of a knowledge database and an inference engine for
interpreting incoming data using the knowledge supplied in the knowledge base. The
databases are constructed by cropping knowledge from experts in a certain domain,
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collecting facts about that particular domain and embodying all these knowledge into
a computer program for carrying out some task. These systems can only operate
on the facts that have been built within them and often are not able to handle
contextual differences. This turned out to be of limited use in terms of AI but very
important in commercial settings [Hawkins, 2004].

During the 1980s, AI expanded into industry with large companies increasingly
relying on “Expert Systems”. Some sub-fields failed on their way to the market
place. One in particular was machine vision. Although not very robustly, image
recognition algorithms could differentiate shapes of objects using black and white
differences but not enough computer power was available at the time to create
mainstream applications [Hawkins, 2004].

During the late 1980s, demand for AI software reached a plateau. Further ad-
vances nonetheless, continued occurring in the research front. Fuzzy logic, that had
the unique ability to make decisions under uncertainty created a fuss of its own.
Connectionist approaches such as neural networks attracted interest to the up to
then somehow disregarded notion of bioinspired AI [Hawkins, 2004].

Over time, computers would manage to match the highest human performance
at chess as demonstrated when IBM’s Deep Blue won Garry Kasparov in a series
of chess matches. But these successes are misleading. The computer was not being
smarter than the human, it was just billions of times faster and able to explore
billions of possibilities in a huge parameter space.

The subject of artificial intelligence nowadays spans a wide range of subfields
and it is not uniform. AI deals with knowledge representation schemes, intelligence
search, planning, motion and manipulation, machine learning, natural language pro-
cessing, social intelligence, creativity, logical AI, deduction, reasoning, problem solv-
ing and many others. Such a diverse set of topics has emerged only thanks to the
field being enriched with interdisciplinary knowledge from philosophy, psychology,
cognitive science, computer science, mathematics and engineering.

2.3 Symbolic vs. Connectionist Approaches

AI research can be divided in two major branches: the symbolic approach or top
down and the connectionist approach or bottom up [Sondak and Sondak, 1989]. The
symbolic approach seeks to replicate intelligent properties of the brain by studying
cognition independently of the biological structure of the nervous system. That is,
in terms of the study of symbol processing and manipulation. The connectionist
approach towards AI tries to encapsulate some of the biological properties of the
brain in computer algorithms with unitary computational components called nodes.
Artificial neural networks are the most common example of connectionist approaches
[Krogh, 2008].
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2.3.1 Symbolic AI

Symbolic AI tries to represent human knowledge in a declarative form (using facts
and rules). Symbolic AI tries to translate implicit or procedural knowledge into
explicit form by means of symbols and rules for their manipulation. Symbolic ap-
proaches have been very successful as expert systems or as chess playing programs.
Symbolic AI however possesses certain drawbacks. The main problem of symbolic
AI is the common sense knowledge problem.

The common sense knowledge problem refers to the enormous amounts of implicit
knowledge that humans possess about the world and ourselves. For instance, implicit
knowledge such as “if a person has a father, then the father is always older than the
person and will remain older throughout its life” is obvious to humans. However, it
is unrealistic to represent in a symbolic form all sort of similar constructs. Trying
to replicate intelligence without that kind of knowledge is unlikely to succeed since
there exists a surprising amount of implicit knowledge on which we operate on a
daily basis [Sondak and Sondak, 1989].

The common sense knowledge problem deals with how to efficiently implement
knowledge representation: what is the best approach to represent knowledge? Is it a
dictionary or a set of rules? Can everything be formulated as a set of “if . . . then . . . ”
rules? What about multiple forms of representation? Should they be used at all? It
is apparent that very little amount of human knowledge is represented in the human
brain in an explicit form. The implicit nature of knowledge is obvious in tasks such
as visual perception, understanding language, creative thinking, etc. It is precisely
in those tasks where the brain naturally relies on procedural or implicit knowledge,
such as sensory information processing (image recognition, speech recognition, etc)
where symbolic AI has struggled. And it is precisely those fields, where symbolic
AI has had limited success, where connectionist approached have shown to be more
suitable for such tasks.

2.3.2 Connectionist Approaches - Artificial Neural Networks

An artificial neural network (ANN) is a computational model inspired on the struc-
ture and/or functional aspects of biological neural networks. An artificial neural
network consists of an interconnected group of nodes that process information us-
ing connectionist approaches to computation. Most often, artificial neural networks
operate as adaptive systems that change the structure of the network according to
external or internal information that flows through the network during the learning
stage [Specht, 1990].

Neuroscience research has intensively investigated the idea of connection strengths
between real neurons. Connection strength refers to how strongly one neuron is able
to influence those neurons with whom it makes a synapse. Learning through expo-
sure to a repetitive stimulus causes the brain’s connection to change [Hebb, 1949]:
synaptic connections become enhanced or inhibited. Real neurons can operate as ex-
citatory or inhibitory influence in the neurons with whom they connect. The degree
of excitation or inhibition of a given neuron is related to the receiving connection
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strengths. Hence stronger connection, results in more marked inhibition or excita-
tion of the receiving neuron. The neuron transfer function heavily shapes a neuron
response to an stimulus. The transfer function defines how the neurons output fir-
ing rate should change as a function of the inputs received from other neurons. A
very sensitive neuron for instance may increase its firing rate with relatively little
input. This neuron is said to have a low threshold for excitation. Other neurons
may possess a firing rate function resembling the shape of a bell curve, i.e. its firing
rate increases to a maximum and then decreases if over stimulated. Other neurons
yet sum up its firing rate or implement other type of aggregation functions. All of
these behaviors can be represented mathematical in a transfer function.

An artificial neural network tries to capture the biological aspects discussed in
the previous paragraph. The nodes of an artificial neural network are connected to
each other. The strength of the connection is indicated by a value that represents
the degree of inhibition or excitation that the neuron through its connection is able
to convey. Also each node possesses a transfer function that determines its response
to incoming input.

Most artificial neural networks are organized as a set of input nodes, hidden nodes
and output nodes. Input nodes take information (and emulate the purpose of sensory
organs). Information percolates through the network and the impact of any given
channel of information flow is determined by the particular connection strengths it
goes through. The transfer functions determine how much of the activation value is
passed on to the next node. Each node aggregates the input information it receives,
computes its own activation value and passes this information to the next node in
the network. The information flows from input nodes, through hidden nodes towards
output nodes.

Learning in artificial neural networks is an iterative process consisting on ad-
justing connection strengths according to a scoring function between the input-
output relationship and the given category the network is exposed to during train-
ing. The most extended method of learning is the back-propagation algorithm.
Back-propagation starts of with the network connection strengths’ initialized with
random values. A training instance is presented, information percolates through
the network and the output node values are compared with the correct response.
Working backwards from the output node, connection strengths are adjusted such
as if a repeated training instance is presented, the network’s output will be closer to
the desired one. The described process is called a back-propagation cycle. Usually
several iterations of this cycle are required for optimal training. After training, the
network should become fairly proficient at identifying the categories on which it was
trained when exposed to unknown instances of those same categories [Yao, 1993;
Lampinen and Vehtari, 2001].

A problem with the back-propagation algorithm is that in real neurons learning
does not seem to proceed backwards [Lampinen and Vehtari, 2001]. Very often also,
learning in real brains can take place without the presence of a supervisor, which in
the case of the back-propagation algorithm is not possible.

The big advantage of artificial neural networks is that they can work with noisy
input such as blurry pictures. This is precisely the type of problems were symbolic
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approaches struggle. Critics of artificial neural networks often point out neural nets’
inability to learn something like logic.

The beginning of connectionist approaches to AI can be traced back to the
1940s, when [McCulloch and Pitts, 1990] published their work “A logical Calculus
of ideas Immanent in Nervous Activity” where they presented an abstract model of
a neuron in which the probability of it activating itself depends on the input signal
and the connection strength. Also during the 1940s, [Hebb, 1949] published the
work “The organization of the Behavior” where he describes how neurons can learn
by reinforcing the connection strength between neurons when they are activated in
close temporal proximity. In the 1950s [Rosenblatt, 1958] developed the concept of
a perceptron. A perceptron is a type of ANN that performs recognition of abstract
and geometric patterns. In the 1960s [Hoff, 1962] develops a model based on the
ideas of [McCulloch and Pitts, 1990] and the perceptron from [Rosenblatt, 1958].
The new model is known as ADALINE and it is able to linearly separate input
spaces. At the end of the 1960s [Minsky and Papert, 1969] published a book entitled
“Perceptrons”. On it, authors expose perceptron’s biggest weakness, the famous
XOR problem (or exclusive No). XOR is a logic operator in which the conclusion
is true only if just one of the premises is true and false if both are true or false.
The solution to this problem is not linearly separable and a normal perceptron can
not learn to separate the class. In the 1980s, [Hopfield and Tank, 1985] developed
the concept of a Hopfield net: a recurrent ANN that work as content-addressable
associative memory system with binary threshold units. Hopfield nets guarantee to
converge to a local minimum, but convergence to one of the stored patterns is not
guaranteed. During the late 1980s [Kohonen, 1988] developed the concept of “self-
organizing map” or (SOM). SOMs are a type of artificial neural network trained
using unsupervised learning to produce low-dimensional, discretized representation
of the input space of the training samples, called a map. SOMs differ from typical
ANN by using a neighborhood function to preserve the topological properties of the
input space. From then on, other ANNs models have been suggested [Haykin, 2008]
that further develop and optimize the work from the aforementioned pioneers but
without much emphasis on bioinspiration.

2.4 Some Thoughts on the Need for Bioinspired

Approaches in AI

Through AI’s history, AI programs have only managed to do the task for which
they have been specifically designed. In general, AI programs lack the ability to
generalize among different contexts or show flexibility in any way remotely similar
to the degree that the human brain exhibits. AI researchers’ initial optimism about
the possibilities of AI in several fields (language comprehension, creativity, motor
control, etc) have yielded no significant progress over the years. Making computers
emulate human perception, language or behavior remains very challenging. There
are still researchers who argue AI can successfully tackle any problem with faster
computers, but there is a considerable amount of excepticism about that approach
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[Hawkins, 2004].
Some scientists argue that computers should rather focus on simulating real

neural networks in a computer. Theoretically, computer models could simulate
all the neurons in the brain and their connections. If the simulation were to be
realistic, it should be indistinguishable from a real brain and hence the system
should show intelligent behavior. However, a brain can not be simulated without first
understanding what it does. Furthermore, technologically it seems a long way off
until scientists are able to precisely described the complete anatomy and physiology
of a human brain, not even to model that system in a computer.

Over the last six decades, AI has grown from its humble beginnings in which
only attracted a few researchers to nowadays thousands of engineers and specialists
on AI; Algorithms have also progressed from programs capable of very rudimentary
dialogs, to complex systems able to perform medical diagnostics. However, the goal
of recreating real intelligence on a computer remains elusive. Advancements in the
quest for AI though, have and will continue to affect our society [Hawkins, 2004].

The difficulties of AI to live up to its promises suggests that there exists a
pressing need for more bioinspired approaches in AI in general and machine learning
in particular.

Connectionist approaches that have been particularly successful in pattern recog-
nition problems have not incorporated major significant bioinspired approaches since
the 1950s. This is all in spite of the fact that knowledge about brain function has
experienced an exponential growth over the last 6 decades. However, very few of
this knowledge has been incorporated in artificial intelligence paradigms.

ANNs have often been accused of being too simplistic to be considered accurate
models of brain function. While it is true that ANNs try to model neural like
attributes such as connectionist strengths, inhibitory and excitatory activity, it is
also true that they ignore important attributes of brain function such as temporal
dynamics, conduction velocities, local recognition, discrimination of input signals,
multicoding strategies and spatial locations which may be significant aspects of real
brain functioning [Latorre et al., 2011]. So despite their flamboyant name, it seems
highly likely that ANN are just oversimplified models of brain function.

Most ANN consider individual nodes functionally identical, possessing the same
transfer function and without a mechanism for transient memory in each node [La-
torre et al., 2011]. Furthermore, no ANN paradigms discriminate information as
a function of the recognition of the emitter unit. The oversimplification of ANN
facilitates the mathematical formalism subjacent to each paradigm, yet it fails to
mimic biological neural networks in detail. Numerous ANN paradigms also have
disregarded biological inspiration for topological organization and the hierarchical
organization of the neocortex has not been fully incorporated in traditional ANN.
Some ANN do incorporate the concept of a spatial hierarchy but they do not use
a spatio-temporal hierarchy. Traditional ANN have also ignored the role that time
could play during learning despite the fact that the time dimension has been proved
critical in nervous systems learning [Hebb, 1949; Auyeung et al., 1987; Kandel et al.,
2000].

Although for many problems ANN work very well, for several others their per-
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formance is not optimal. Given the lack of transmission from neuroscience research
about brain information processing to machine learning paradigms, it could be ar-
gued that the incorporation of additional properties derived from biology could help
ANN reach higher levels of performance. Bioinspired approaches can be applied to
important aspects of ANN such as individual neuron dynamics, network topology,
and learning functions. In this thesis we will explore the incorporation of biologi-
cally realistic topologies in ANN and the usage of time as a sort of supervisor to
cluster temporally adjacent spatial patterns. Of course, additional knowledge from
human neural information processing will be required to further develop bioinspired
approaches in AI.
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Chapter 3

Mammalian Neocortex and
Memory

3.1 The Neocortex

Brain architecture can be very informative in terms of how the brain works. The
outer surface of the brain is formed by a thin sheet of uniform neural tissue that
surrounds the rest of the brain and it is called the neocortex, see Figure 3.1. Most
high level cognitive functions (language processing, creativity, mathematics, mu-
sic, executive control, perception) are highly based and dependent on neocortical
activity.

The brain consists of many other structures besides the neocortex (brain stem,
cerebellum, hippocampus, thalamus, etc). These structures are involved in regulat-
ing hunger, pulse, emotions, muscle coordination, sexual urges, etc. But it is the
neocortex, the structure that is dominant in those behaviors what we often asso-
ciate with “intelligent” behavior. Many of the subcortical structures in the brain are
highly interconnected with the neocortex with often both parts requiring each other
for proper function. This is especially true for the hippocampus [Kandel et al., 2000].
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A detailed description of the mammalian brain exceeds the scope of this chapter, so
we will briefly delineate the core aspects of its anatomy and functionality.

Figure 3.1: Neocortex tissue. Picture of a human brain. The outside structure
is mainly composed of neocortex, with the other parts of the brain totally covered
from our view by the neocortex except the cerebellum (at the lower right of the
image). The convoluted structure of the neocortex is meant to maximize its surface
area.

The neocortex is divided into six layers, altogether encompassing 2mm in thick-
ness. Each layer has a set of features in terms of cells types on it and connectivity
patterns that makes it different from the others. The surface area of the neocortex
amounts to about a table napkin in size [Hawkins, 2004]. The neocortical area of
other mammals is smaller but all of them also contain six layers. It can be argued
that humans are “smarter” by having a larger “computational” area of neocortex
folded up by evolution in order to maximize the amount of neocortical surface avail-
able.

The neocortex is packed with neurons and supporting cells such as astrocytes,
microglia, and oligodendrocytes. It is estimated that the human neocortex contains
around 30 billion neurons [Kandel et al., 2000]. It is the synchronous activity of
those 30 billion neurons what construct who we are: our memories, hopes, knowl-
edge, skills and accumulated life experience. At first sight, the neocortex does not
present any particularly noticeable landmark except the giant fissure that separates
the two cerebral hemispheres and the prominent sulcus that divides the back and
front regions [Kandel et al., 2000]. But the rest of the surface looks surprisingly
similar: convoluted. This fact is quite remarkable taking into account that differ-
ent parts of the cortex are involved in different types of information processing and
cognitive behavior: the occipital part of the brain is mainly in charge of processing
visual information while the auditory cortex processes sound, the parietal cortex
engages mathematical operations and the prefrontal cortex is involved, among other
activities, in executive function.

Knowledge about the different functional areas of the cortex emerged initially
from studies of lesions on the cortex: strokes, mechanical injuries, etc. Depending
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on the localization of this lesions (Brocas area, fusiform gyrus,...), different func-
tional deficits are apparent: compromise usage of the rules of grammar in language,
inability to move a certain part of the body, incomprehension of a certain abstract
concept, inability to recognize faces, etc. The regions of the lesions seem to operate
semi-independently from each other and a certain degree of specialization in specific
aspects of perception or thought is apparent [Hawkins, 2004]. The arrangement of
these parts is remarkably similar among different humans although the functions
are rarely clearly delineated. Topologically and functionally, they are arranged as a
branching hierarchy [Douglas and Martin, 2004].

The hierarchical organization of the cortex is a fundamental principle underlying
its topology and functionality. In an abstract categorization, a hierarchy specifies
that some elements are above or below others. Here, above and below do not
refer to their physical arrangement, rather to the way they connect between them.
Lower areas feed information towards higher areas and higher areas provide feedback
information to lower areas using a different connection pattern [Kandel et al., 2000].
There are also lateral connections between areas that are in separate branches of the
hierarchy [Douglas and Martin, 2004]. A detailed map of the monkey visual cortex
is shown in Figure 3.2.

The lower functional regions in the neocortex are the primary sensory areas
[Kandel et al., 2000]. For instance, visual information enters the cortex through
the primary visual area [Kandel et al., 2000], known as V1, see Figure 3.2. V1 is
engaged in the recognition of low level visual features such as tiny bits segments,
small scale components of motion and basic color and contrast information. V1
feeds information to higher areas such as V2. The study of higher areas has shown
that they are involved in the recognition of objects of intermediate complexity such
as for instance star shapes [Hawkins, 2004]. The highest areas in the visual pathway
represent visual memories of complete objects such as faces, tools, animals and so
on. Other senses posses similar hierarchies. Sensory information gets aggregated
in association areas were two or more sensory pathways are added up and inte-
grated into a combined representation [Kandel et al., 2000]. Another area of the
cortex whose functionality at first sight may seem very different from the rest is the
motor cortex, which is in charge of generating motor commands directing muscle
movements. Yet, both the hierarchical structures present in the motor area and the
sensory area look remarkably similar [Hawkins, 2004].

Most schematic descriptions of the brain oversimplify the nature of the hierar-
chies within. In general input such as sound, sight or touch enters through the
primary sensory areas and moves up in the hierarchy towards the association areas
from which they are channeled towards the frontal lobes of the cortex to finally reach
the motor cortex and then the information flows out towards the motor neurons in
the spinal cord [Douglas and Martin, 2004]. But this view overlooks the fact that
information flow often travels in both directions with more projections feeding back
down the hierarchy than up [Douglas and Martin, 2004].

Neurons possess a cell body and branching processes forming wired like struc-
tures. These processes are different depending on whether the information flows in
(dendrites) or the information flows out (axons), see Figure 3.3. At the junction
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Figure 3.2: Visual cortex’ hierarchy. Schematic diagram illustrating the hierar-
chy of the cortical areas involved in vision in a rhesus monkey visual cortex. The
hierarchy rises from the primary visual cortex at the bottom of the figure all the
way up to the highest levels of associative processing at the top. The “where” path
is illustrated on the left of the figure and the “what” pathway is illustrated on the
right [Felleman and Van Essen, 1991].

between the axon of one neuron and the dendrite of another neuron, a connection
called a “synapse” is formed. This is how the activity of one neuron influences other
neurons. An incoming neural spike at a synapse increases the likelihood for the re-
cipient cell to spike [Kandel et al., 2000]. However, some synapses show the opposite
effect, with incoming spikes making it less likely that the receiving cell will spike
[Bear et al., 2002]. Hence, synapses are named according to the effect that they
cause in the receiving cell as excitatory or inhibitory. Synaptic strength can change
depending on the temporal behavior of the two cells [Bear et al., 2002]. This effect is
apparent when two neurons generate temporally adjacent spikes, which increases the
connection strength between the two neurons. This effect is called Hebbian learning
[Hebb, 1949; Auyeung et al., 1987].

There are many different types of neurons in the cortex, but one type shows an
overwhelming prevalence over any other, that is the pyramidal neuron. Pyramidal
neurons compromise 80% of all the neurons in the cortex [Kandel et al., 2000].
They own their name to the shape of their cell bodies (that roughly approximate
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Figure 3.3: Schematic diagram of a neuron. A typical neuron is divided into
three parts: the soma or cell body, dendrites, and axon. The axon and dendrites are
filaments that extend from the soma. A synapse signal (excitatory or inhibitory)
occurs at the contact between the axon of one neuron and a dendrite or soma of
another. If the net excitation received by a neuron over a short period of time is
large enough, the neuron generates a brief electrical pulse called an action potential
through its axon.

the shape of a pyramid). All the six layers in the neocortex except layer 1 which
contains mainly axons, contain pyramidal cells. Pyramidal neurons connect to many
other neurons in the immediate neighborhood and to distant cortical regions or lower
brain structures [Kandel et al., 2000].

In 1978 a neuroscientist named Vernon Mountcastle published an article “An or-
ganizing principle for cerebral function” [Mountcastle, 1978]. In this paper Mount-
castle delineated a profound insight about the neocortex. Mountcastle argued that
the neocortex is remarkably uniform in appearance and structure [Mountcastle,
1978]. That is to say that the regions in the cortex that handle auditory input
appear remarkably similar to the regions that handle touch, vision, motor control
or executive function [Hawkins, 2004]. Mountcastle revolutionary idea was the hy-
pothesis that if all the regions look cytoarchitectonically similar, perhaps they are
performing the same basic set of operations, “computational algorithm”, to carry
out their apparently different functions [Hawkins, 2004].

Different regions of cortex do differ among themselves according to different met-
rics: layer thickness, layer cell density, cell types, horizontal connections’ length or
synapses density [Mountcastle, 1978; Kandel et al., 2000]. However, given the as-
sociation of these regions with a very diverse set of cortical functions, what stands
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out is how relatively similar they are overall rather than the marginal differences
that differentiate them. These differences are often so subtle that even trained neu-
roanatomist can not even agree on them [Hawkins, 2004]. Mountcastle hypotheses
was that all regions of cortex are performing the same operations, and what makes
them a vision or motor area is how these regions are connected to each other and to
other parts of the nervous system [Mountcastle, 1978]. In fact, Mountcastle argued
that anatomical differences among cortical regions stem from the different connec-
tivity patterns of each area. Mountcastle was not arguing that vision is the same
as listening or motor output, he was just suggesting that the cortex process signals
from different sensory inputs in a similar way [Hawkins, 2004].

Mountcastle ideas have not enjoyed widespread support in the neuroscience sci-
entific arena over the last decades. Often, efforts in neuroscience have mostly con-
centrated in the determination of where in the cortex a certain function takes place
and not so much to when does it take place and how [Hawkins, 2004]. Furthermore,
most studies published in the last decades using fMRI have favored the notion of a
brain divided in a collection of highly specialized modules [Hawkins, 2004].

Although most of these studies have not placed a lot of emphasis on how the
brain carries out a particular task, evidence exist to suggest that the brain uses a
similar mechanism to carry out different tasks [Hawkins, 2004]. Any given brain,
placed in the right context, can learn one among 100 different languages, sign lan-
guage, mathematical language, written language, musical language, body language
or a computer language [Hawkins, 2004]. The neocortex can learn to survive in
very different environments, it can become an expert in fishing, hunting, farming,
architecture, or engineering [Hawkins, 2004]. Evidence suggests that the brain has
an incredible capacity to adapt to different environments by creating a model about
them. This suggests the notion of a brain as a flexible system that is able to organize
its knowledge representations according to the particular environment in which it is
placed [Hawkins, 2004].

Physiological evidence also piles up to support this notion of flexibility. The
wiring of neural networks is extremely plastic, since they are capable of rewiring
themselves according to the spatio-temporal structure of electrical signals flowing
in. The work from [Newton and Sur, 2005] proves that newborn ferrets brains can
be surgically rewired to send visual input to regions of the cortex that normally
handle auditory input and that in these conditions the ferrets developed normal
visual capabilities. This shows that ferrets can develop functionally capable visual
pathways in anatomical areas normally in charge or processing auditory information
[Hawkins, 2004]. All this suggests that regions of cortex are not predetermined to
specialized in vision, touch or hearing according to anatomical positioning but rather
that connectivity creates the specialization [Shepherd, 2004].

The previously described properties apply to the human neocortex as well which
also shows a high degree of plasticity. For example, humans that are born deaf,
process visual information in what otherwise would be normal auditory regions and
people who were born blind, use the occipital part of the cortex (which in non blind
individuals is used to process visual information) to read Braille [Hawkins, 2004].
All this evidence seems to suggest that regions of cortex become specialized due to
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the type information that flows in during nervous system development.
Additional evidence to support Mountcastle ideas for a common “cortical algo-

rithm” arises from the fact that although information arriving in the cortex from
different sensory inputs may seem very different at first sight: sound, vision or touch;
in fact, all that information arrives into the cortex through bundles of nerve fibers
transmitting spatio-temporal codes by means of electrical signals. These neural sig-
nals are called action potentials or spikes. The sensory organs that generate input
signals travelling towards the central nervous system are different among themselves,
but once these signals are turned into action potentials, they are just patterns of
electrical activity codifying spatio-temporal data structures [Hawkins, 2004].

An easy way to visualize what is meant by spatio-temporal patterns is to think
about vision. The visual pathway transfers both spatial and temporal information
[Hawkins, 2004]. Spatial patterns are simultaneously occurring patterns: they are
generated when multiple receptors in the same sensory system are activated simulta-
neously. In vision for instance, the co-activation of several receptors in the retina at
the same time create a spatial pattern. This pattern is relayed to the brain. Vision
also transfers temporal patterns. Temporal patterns are just the time dynamics of
spatial patterns over time. These changes however, are not random but are defined
by the constraints of the physical world. Sound information coming into the cortex
is also composed of spatio-temporal patterns. We usually think of sound as just
a temporal pattern but the auditory sensory receptors do react specifically to the
different frequencies composing a sound and hence, that represents the spatial pat-
tern of sound stimuli. Touch sensory input also has a temporal component. When
recognizing an object just from touch information without visual information, we
move the object around our fingertips or move the fingertips around the object in
order to identify the object. Without these changing patterns of information it is
very difficult to identify the object. Hence, sensory information coming from touch
sensory organs are also composed of spatio-temporal patterns. To sum up, the cor-
tex does not possess its own interface to sense the world directly, all that it operates
with are electrical patters encoding spatio-temporal information through bundles of
axon fibers.

3.2 Memory and Functions of the Neocortex

Often, an analogy has been traced about the similarities between brains and com-
puters. However, this analogy can be severely misleading. Neurons are relatively
slow to process synaptic inputs and generate action potentials when compared to the
operating speeds of transistors in digital computers [Hawkins, 2004]. The basic op-
eration of a computer is much faster than the basic operation of a neuron [Hawkins,
2004]. It takes a neuron about 5 ms to process an input and generate an output.
Humans can recognize an object in a picture in about half a second. That means
that visual information entering the brain transfers a chain of about 100 neurons at
most during image recognition. A digital computer would require billions of serial
steps to not even come close to the performance levels of the brain. The brain solves
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the problem however in just a few steps, but using massive parallelization [Hawkins,
2004].

A hypothesis lied out in [Hawkins, 2004] postulates that the brain does not
compute answers to recognition problems, since this would take a long time. It
seems that rather the brain retrieves the answers from memory. The idea is that
patterns were stored previously in neural networks and neurons just perform pattern
matching to infer what information to retrieve from memory. Hence, neurons are
not just relays of sensory information but rather they constitute memory itself. A
memory that has been imprinted through life history in their structure and patterns
of connectivity. According to this view, the entire cortex is therefore a probabilistic
memory system not a computer at all [Hawkins, 2004].

We will now contemplate the difference between computing a solution to a prob-
lem and using memory to solve the same problem, for instance, catching a ball
[Hawkins, 2004]. Solving this problem involves perceiving the ball travelling to-
wards us and snatching it out of the air. The task does not seem specially difficult
at first sight, yet it becomes cumbersome when trying to program a robotic arm to
replicate it. Engineers tackle this problem by calculating the flight trajectory of the
ball in order to determine the position in space that it will occupy when it comes
close to the arm using a set of differential equations. The process has to be repeated
iteratively as the ball approaches and sensors get more up to date information about
the ball location and trajectory. A computer requires millions of serial steps to ad-
dress the differential equations involved in solving this problem of catching the ball.
It is worth recalling now that the brain solves the very same problem in just a few
steps (recall the 100 step rule from above) [Hawkins, 2004] by using memories of
muscle commands required to catch a ball [Hawkins, 2004]. When the ball is thrown,
the appropriate memory is retrieved by the sight of the ball, a temporal sequence
of appropriate muscle commands is generated and this sequence is adjusted to ac-
commodate the particulars of the moment (ball’s actual path, position of the body,
etc). The memory of how to catch a ball was not pre-programed genetically into the
brain; it was learned over several years of life history and not calculated by neurons
[Hawkins, 2004].

The previous example has been used to dismount the deceiving view of the brain
as a computer. Let us now elaborate on what it is known about how the brain is
actually organized and how does it process information. Evidence emerging from
neuroscience research has established a few principles that the neocortex uses to
carry out its functioning tasks [Hawkins, 2004]:

-The neocortex stores sequences of patterns: Memories are stored in the
cortex in the form of sequences. It is impossible for a human to retrieve from memory
all the details of an event simultaneously. A walk through the temporal sequence
is necessary to recall complex memories. The temporal aspect of the sequences is
very important. If we try to recite the alphabet backwards, we usually fail because
we are not used to experience that sequence backwards. We store in our memory
the alphabet as a sequence of patterns [Hawkins, 2004]. That memory can not be
recalled all at once, or in an arbitrary order. The same principle applies to other
memories: days of the week, the months of the year, telephone numbers, songs,
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and also low degree sensory memories [Hawkins, 2004]. The storage of memories
as sequences of patterns is therefore an inherent aspect of the neocortical memory
system [Hawkins, 2004].

-The neocortex recalls patterns auto-associatively: An auto associative
memory system can recall complete spatio-temporal patterns when given only partial
or distorted inputs [Hopfield and Tank, 1985; Kandel et al., 2000]. Our cortex is
able to complete visual spatial patterns from partial versions of it. Our brain also
completes temporal patterns. If we recall a fragment of a story, the entire memory
sequence is subsequently retrieved [Hopfield and Tank, 1985]. When talking with
other people, our brain is not able to hear all the words in the conversation, specially
if we are located in noisy environments, but the brain fills in the missing parts
with what it expects to hear, although we are not usually aware that our brain is
constantly completing patterns [Hawkins, 2004].

-The neocortex stores patterns in an invariant form: Another character-
istic of neocortical memory is how it is able to form what the neuroscience research
community refers to as invariant representations. Digital computers store informa-
tion exactly as it is presented. Bytes are stored with absolute fidelity, with single
errors disrupting the whole memory [Hawkins, 2004]. The neocortex does not store
complete-fidelity memories of things. It rather remembers significant associations
in the physical world, independent of details [Hawkins, 2004]. Artificial auto asso-
ciative memories fail to recognize patterns if they are significatively moved, rotated,
rescaled or transformed in any of numerous different ways [Hawkins, 2004], yet our
brains are able to handle robustly these variations. The cortex therefore has a re-
markable ability to perceive things as belonging to the same ultimate cause although
the input patterns flowing in are constantly changing [Hawkins, 2004]. This principle
can be illustrated through an example: looking at a face. The pattern of receptor
cells activated in our retina, as the face moves around us or we move with respect to
it, is very different from time to time. Yet, our neocortex has no problem at perceiv-
ing an invariant representation of that face. The brain’s internal representation of
the face does not change even though the stream of light informing the neocortex of
the presence of the face is in constant flux. Scientists refers to these stable represen-
tations as invariant. Every time, an image moves or our eyes make a new fixation,
the pattern of activity in V1 changes, as a result of the changing sensory pattern
arriving from the retina [Kandel et al., 2000]. However, if we monitor the activity of
cells in the face recognition area, a functional region several steps higher than V1 in
the cortical hierarchy, stability is apparent. Some set of cells in the face recognition
area remain active as long as the face is anywhere in our field of vision regardless
of its size, position, orientation, scale an expression. These stability of cell firing
is an invariant representation [Hawkins, 2004] of that particular face. The problem
of understanding how the cortex forms invariant representations remains one of the
biggest challenges in neuroscience. Hence, it can be hypothesized that the way our
neocortex understands the world is by finding invariant structure in a constantly
changing stream of input [Hawkins, 2004]. However, invariant representations by
themselves are not enough as a basis for making specific predictions and the brain
has to combine knowledge of invariant structure with recent details [Hawkins, 2004].
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The brain uses stored memories to constantly make predictions about everything we
see, feel and hear [Hawkins, 2004]. The vast majority of predictions occur outside
awareness. Prediction in fact is so pervasive that we can derive the profound con-
clusion that what we perceive (how the world appears to us) does not come solely
from our senses. What we perceive, is a combination of what we sense and of our
brains memory derived prediction [Hawkins, 2004].

-The neocortex stores patterns in a hierarchy: Hierarchical organization
leads to shared representations, generalization capabilities and storage efficiency.
Causes at lower levels of the hierarchy are shared among higher level causes, signif-
icantly reducing the amount of memory and time required to learn new causes and
providing a mechanism for generalization [Hawkins, 2006]. The hierarchical struc-
ture matches in fact the spatial and temporal hierarchy of the real world [Hawkins,
2006]. Objects in the real world do possess a hierarchical structure. A human is
composed of legs, trunk, arms and head. A head in turn is composed of hair, eyes,
mouth, ears and eyes. Last but not least, a hierarchical representation affords a
mechanism for attention [Hawkins, 2004].

We can summarize the previous discussion by concluding that intelligence can
be defined as the capacity to remember a variety of patterns in the world and make
predictions about their likely evolution. To make predictions of future events, the
neocortex needs to be able to store sequences of patterns. The correct recalling of
memories requires the ability to retrieve patterns based on their similarity to past
patterns (auto associate recall). Memories also have to be stored in an invariant
form, efficiently, so that abundant knowledge from past events can be applied to
new situations that are similar but not identical to the past [Hawkins, 2004]. The
hierarchical structure contributes to the efficient storage and recalling of information.
The physical neocortex accomplices all these requirements and others not discussed
here or known yet. Hierarchical temporal memory tries to encapsulate those known
concepts into a set of algorithms to carry out pattern recognition and sequence
prediction in-silico.
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Chapter 4

Hierarchical Temporal Memory

4.1 HTM Overview

This chapter provides a succinct overview of Hierarchical Temporal Memory, HTM,
a machine learning algorithm bioinspired on some of the principles that govern
neocortical topology and information processing. HTM was originally developed by
Jeff Hawkings and Dileep George. The authors stated purpose is the far fetched goal
of replicating on a piece of hardware or software some of the fundamental principles
that the human brain uses to carry out its functions [George and Hawkins, 2009].

The main justification for the emergence of HTM theory is the abundance of
cognitive functions that humans perform with apparent ease and that computers
are not yet able to replicate at similar levels of performance [Hawkins, 2006]: visual
pattern recognition, navigation in a 3-D environment, comprehension of language,
executive planning and manipulation of objects just to name a few. In humans, these
abilities reside largely in the neocortex. Hierarchical Temporal Memory proposes
a hypothesis of neocortical function that can be formalized on a set of algorithms
ready to be implemented on a computer.

HTMs can be thought of as a memory system that can carry out classification
and prediction based on spatio-temporal statistics learned during training sessions
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[George and Jarosy, 2007]. HTMs are organized as a tree-shaped hierarchy of com-
putational nodes. Each node implements a common learning and memory function
[Hawkins, 2006]. The HTM topology creates a hierarchical spatio-temporal model
of the data it has been exposed to during training. The fact that HTMs try to
capture spatio-temporal characteristics within a training set makes this technology
applicable to a vast array of problems. Any problem composed of a hierarchical
structure in which there are spatial relations between different variables and non-
random fluctuations through time is amenable for HTM to create a model of it.
Yet, the capabilities of an HTM are largely limited by what kind of data it has been
exposed to during training [Hawkins, 2006].

HTMs can be instantiated in different forms. In this thesis, we develop a sim-
plistic binary HTM that uses binary vectors for information transfer between nodes
as explained in this Chapter and Chapter 6. HTMs can also use more sophisticated
learning models employing Markov Chains to model temporal groups and belief
propagation to shape information transmission in the network in a probabilistic
fashion. This is the implementation developed by HTM original inceptors at Nu-
menta1 and employed in some of the experiments shown in Chapters 7, 8, 9 and 10.
Finally, to deal with multivariable time series, HTMs can be implemented with an
extended top node as described in Chapter 7 using a binary HTM as a primitive.
That type of HTM is the specific contribution of this thesis to the field of HTM and
its inner workings will be specified in Chapter 7. In the next section and in Chapter
6 we will illustrate the inner-workings of a binary HTM on a simple problem of
image recognition, since it is easiest to visualize the main properties of HTMs in
this type of problem.

4.2 HTM Theoretical Principles

HTMs could be theoretically used not only to mimic mammalian sensory systems,
but also to create artificial senses that sample a wide array of data structures:
weather forecast, stock-market analysis, or surveillance systems among others. Nonethe-
less, in the following description we will often illustrate HTM theory in terms of a
visual pattern recognition task, since it is a well studied field of research, and it is
easy to visualize and grasp fundamental HTM concepts when being shown in the
particular task of vision [Hawkins, 2006].

Although the neocortex performs a wide array of functions going from pattern
recognition of sensory input to executive control of behavior, as explained in Chapter
3, cytoarchitectonically all different parts of the neocortex look surprisingly similar
[Douglas and Martin, 2004; Mountcastle, 1978] and HTMs theory lies its roots from
the theoretical prediction that all of the neocortex works on a common neocortical
algorithm [Mountcastle, 1978].

HTM theory speculates that the neocortex functions by creating a model of the
particular input patterns to which it is been exposed through the sensory organs.
The system uses then that model to make predictions about the future based on

1http://www.numenta.com
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the spatio-temporal statistics learned during training and the current state of the
model as it senses its surroundings in real time. These principles are simple to
replicate at a low level in a computer. However, replicating them at higher levels
has proved extremely complicated. If it were to truly mimic neocortex functionality,
HTM algorithms should be able to [Hawkins, 2006]:

• Discover causes in the world

• Infer causes of novel input

• Make predictions

• Direct behavior

Figure 4.1 shows a conceptual view of an HTM system. Basically, an HTM
system divides the world in a hierarchy of so called “causes”. A cause is just a per-
sistent and recurrent pattern in the world [Hawkins, 2006]. Causes can be physical
such as humans, animals, buildings or not physical such as ideas, words or songs.
The common feature to all these causes is that they are persistent, i.e. they exist
over time [Hawkins, 2006]. Therefore, causes are the ultimate culprits for the flow
of electrical information in real neural networks [Hawkins, 2006].

Figure 4.1: HTM model of the world. The world is composed of a wide array
of causes. The function of an HTM is to cluster different input data into invariant
representations of different causes categories and being able to perform inference on
unseen instances based on this clustering performed during training.

Discover causes in the world:
As indicated in Figure 4.1, an HTM interfaces the world through a set of senses.
The senses sample attributes of the world, (for instance light intensity or sound
frequency). Based on the pattern of data flow that the system senses at any moment
in time and using the model previously created during training, the system creates
a set of beliefs about what it believes are the ultimate causes of the novel pattern
to which it is being exposed.

HTMs use time as a key cue to cluster different incoming patterns into the
same ultimate cause, therefore, it is essential during learning that the sensory data
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changes through time. At the inference stage, time changing data is not required,
but it can improve the efficiency of the system. It is important to point out that
eyes saccades also improve the performance of humans during vision recognition
tasks [Hennessey et al., 2008]. Therefore, an HTM receiving spatio-temporal image
patterns should receive them over time in order to create a model of the ultimate
causes likely to generate current input patterns. In an HTM, causes are represented
by vector elements [Hawkins, 2006].

HTM theory argues that discovering causes is at the heart of any intellectual
activity. According to this view, the world is composed of a hierarchy of causes, low
level causes are relatively easy to comprehend, e.g. learn to cluster all types of dogs
that can be encountered into the category “dog”. A middle level cause, would be
to grasp the relationship between a person’s behavior and the possibilities that that
behavior impulses a dog to bite us. Higher level causes would involve for example
the understanding of the high level causes governing the behaviour of markets or
any causal relationships among multivariable systems. Through the hierarchical
HTM system, low-level causes are learned at the bottom of the hierarchy while high
level causes with more subtle spatio-temporal dynamics are learned higher up into
the hierarchy and are composed of spatio-temporal relations between the low level
causes [Hawkins, 2006].

Infer causes of novel input:
As in human sensory systems, a particular pattern of sensory input to an HTM
system at a given time instant will likely always be novel. The visual system in
humans is composed of millions of receptor cells in its retina. Similarly, a camera may
have up to several million pixels in its optical sensor. It is unlikely that precisely the
same pattern of input pixels will be presented to both systems twice. Therefore, after
an HTM system has been trained, the system should be able to perform inference
on novel sensory input using the internal model of the sensory world generated
during training. That is, the system should be able to assign one of the learned
causes as the most likely ultimate culprit of the particular sensory input to which
the system is being exposed. More specifically, the result of the computation should
be a discrete probability distribution among all the causes the system was exposed
to during training with each probability-cause pair indicating the likelihood that a
specific cause is the ultimate cause of the present input pattern. If the sensory input
data would be highly non-ambiguous, the distribution should be peaked at just one
or a few causes, otherwise the distribution would probably be flatter.

It has been mentioned before that time-varying sensory input is absolutely essen-
tial for HTM training, since the discovery of causes requires continuously changing
inputs. This is not the case for inference, yet the performance of the system should
improve when given data that varies over time. It is important to point out again
that the same happens to humans. If a human subject is exposed to a vision recog-
nition test, the performance of the subject will improve if the images are present in
the subject’s retina long enough for his eyes to perform saccadic movements over
the images [San Agustin, 2010].

Make predictions:
Once an HTM has built a model of its world, it can perform predictions about how

37



CHAPTER 4. HIERARCHICAL TEMPORAL MEMORY

a current state of the variables might change over time using the model stored on
memory. Theoretically, each node should store sequences of patterns that are likely
to follow each other. This is more easily said than done, and particular shortcuts are
used on the implementation of this theoretical requirement to avoid an exponential
explosion on memory requirements. The sensory data being perceived by an HTM
system at any time point can be compared with the stored sequences to predict
what might happen next. This ability is highly useful to create prior probabilities
to what may happen next based on the current state of the nodes. For example, an
HTM system designed to process spoken language would automatically create prior
probabilities about words and phonemes that are likely to follow a particular word
or sentence. Using this prior can help enormously to interpret noisy or missing data
[Hawkins, 2006].

Direct behavior:
Last but not least, all the capabilities recently described can be used by a piece
of software to produce and control the behavior of robotic machines or agents in
virtual worlds.

Our implementation of HTM in this thesis has only focused on being able to
perform one of the 4 predicted capabilities, namely, our HTM system is able to
discover causes in the world and to infer causes of novel input.

4.2.1 Discovery and Inference of Causes in HTM Theory

An HTM system can be thought of as a hierarchy of nodes as shown in Figure
4.2. Each rectangle in the hierarchy represents a node, the computational heart of
an HTM network. Each node performs the same function all the way through the
hierarchy except the top node which requires a supervisory signal during training.
Specifically, each node can carry out two distinct phases, one of learning in which it
memorizes recurrent spatial patterns and the sequences of spatial patters arriving to
it over time (causes) and one of inference, in which the node passes up the hierarchy
a vector of “beliefs” in terms of what it believes are the causes (learned during
training) to which it is being exposed at a particular time instant [Hawkins, 2006].

The output beliefs of several nodes become the input patterns of nodes higher
up in the hierarchy. Nodes at the lowest level of the hierarchy receive data from
sensors that sample a certain value of the cause to which the system is being exposed.
Therefore, bottom level nodes discover causes from just a small area of the overall
sensory input area. In neurobiology, this small area is known as receptive field.
Nodes higher up in the hierarchy receive input from nodes underneath and store
the sequences of the most common spatial patterns that tend to follow each other.
Obviously, the receptive field of these nodes is bigger than the ones from the nodes
below. High level nodes should capture and discover causes over the entire input
sensory area. In a problem of image recognition, nodes at the bottom of the hierarchy
just learn sequences of vertical bars, horizontal bars, or corners and their likely
translational sequences, nodes higher up in the hierarchy memorize more complex
geometries by combining lower level causes [Hawkins, 2006].

Nodes cluster the space of stored spatial patterns by clustering them into groups,
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Figure 4.2: HTM as a hierarchy of nodes. HTM hierarchy with 4 layers. Each
layer is composed of several nodes (represented by a rectangle), except the top layer
which contains just one node

not in terms of geometric distances but rather according to their temporal proximity
(whether they tended to follow each other during training). During inference, a node
exposed to sensory input, carries out a set of operations converging towards a definite
and discrete probability distributions over the stored set of invariant representations
(each invariant representation being composed of several spatial patterns). The value
of this probability represents the likelihood of each cause being the ultimate culprit
of the particular sensory input information that the node is receiving. The node
passes then this information higher up into the hierarchy in form of a vector, with
each component representing the particular probability that a certain cause is being
sensed at that particular time by the node [Hawkins, 2006].

Training proceeds in a sequential manner, since nodes higher up in the hierarchy
can not start their learning/training phase until their children nodes, from which
they get their input patterns, have gone from the learning phase to the inference
phase.

The basic operation of each node during inference is divided in two steps [George
and Jarosy, 2007]. First the nodes assigns its input pattern to one of a set of
quantization points, which represent common spatial patterns that entered the node
often enough during training. The node assigns a probability to each one of the
learned spatial patterns quantifying the likelihood that the particular instance being
perceived at the present time instant belongs to a certain stored spatial pattern. The
node then observes sequences of spatial patterns arriving over time, and assigns a
probability that they belong to one of several stored sequences of spatio-temporal
patterns learned during training [Hawkins, 2006].

A node can also send information to its children in terms of what spatial pattern
it believes it is being exposed to, this information can be used by children nodes to
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disambiguate noisy situations during inference [George and Jarosy, 2007]. Beliefs
from the upper nodes can help to disambiguate flat probability distributions over
the set of clusters of spatial patterns. The parent node is able to do this, since
by means of the hierarchical structure of the system, possesses a broader receptive
field and therefore can neutralize noise over a limited spot within its receptive field
[Hawkins, 2006].

Nodes at the bottom of the hierarchy are exposed to fast changing spatial pat-
terns. Nodes higher up in the hierarchy experience changes in the patterns received
upon their receptive fields over a longer time scale. Therefore, nodes possess different
time-dynamics along the hierarchy of an HTM system.

Parameters of the system such as the number of levels through the hierarchy,
number of nodes at each level, or connectivity metrics (fan-in, fan-out parameters)
are not critical to the functionality of the system. Yet, tweaking of the parameters
can lead to vastly different results in terms of performance. Nonetheless, most
arrangements will work to a certain extent. Also the lost of a few nodes through the
hierarchy should not have dramatic results in the overall performance of the system.
In this sense, one property of the HTM theory is its robustness [Hawkins, 2006].

4.2.2 The Importance of Hierarchy

Shared representations lead to generalization and storage efficiency:
Computational approaches that perform pattern recognition usually have to deal
with the problem of scale. As the number of features the system should be in-
variant to (translation, rotation, noise, size) grows, the memory and computational
requirements of the system grow exponentially, leading to a quickly overflow of
computational resources. HTM theory tackles this scale problem by means of a
hierarchy. Since causes at lower levels of the hierarchy are shared and combined
by nodes higher up, HTM systems are able to generalize by means of using previ-
ously learned causes and combining them in novel ways to represent new types of
unlearned causes at the top nodes.

Let’s use a simple visual example for clarification. During a visual recognition
task, a node at the bottom of the hierarchy would have as its receptive field a small
patch of an artificial retina that light could activate. Let’s say the size of this patch
is of size 4X4, that is, 16 pixels. If each pixel has two states (on/off), the amount
of possible patterns that the system could theoretically perceive would be 216 or
65536 different patterns. In HTM, this node would only store a small fraction of
the total number of possibilities (e.g. 150). The node would only store the most
frequent patterns that occur over time within its receptive field during training.
These stored patterns will be called from now on, quantization points. Additional
training should not increase any further the number of quantization points, but it
could change them. During inference, the node would look at a new pattern, one
out of the 65536 different possibilities, and decide using a distance metric how close
it is to each one of the 150 stored quantization points.

It is important to point out, that a node at this stage of the hierarchy is just able
to recognize, vertical or horizontal bars, crosses or corners nor houses, or faces. But
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the former are the building elements that can be combined by nodes higher up into
the hierarchy to form more complex causes (houses, or faces). Notice again, that
the memory used to store and recognize low level features (causes) will be shared
among high level causes [Hawkins, 2006]. It is also important to point out that a
node at any stage through the hierarchy can only learn causes that are combinations
of the causes that its children nodes are passing up the hierarchy.

HTM Hierarchy matches the hierarchy of the physical world:
The physical world is composed of a hierarchical structure. Any object we perceive
through our eyes is just a combinations of sub-objects. The ultimate sub-objects
whose combinations give raise to any complex shape are just lines, corners, curves
and intersections. Combinations of objects give rise to higher-level objects: A set of
curves, lines and intersections can be combined to draw a finger. Five fingers and a
palm give rise to a hand. A hand, forearm, elbow and shoulder give rise to an arm.
Putting together lips, eyes, mouth, nose, forehead, hair, chin and cheeks give rise to
a head. A set of arms, legs, truck and a head give rise to a human body [Hawkins,
2006].

HTM systems not only capture spatial hierarchical relations but also temporal
relations. Nodes at the bottom of an HTM find temporal correlations among pat-
terns that occur close together both in space and in time [Hawkins, 2006; George
and Jarosy, 2007].

In summary, causes that occur close together in time and space are more likely
to be correlated than causes presented farther away in time and space. This is the
result of the forces of physics that tend to be stronger for objects close in space and
time.

4.2.3 The Importance of Time

Nodes through an HTM hierarchy learn common sequences of patterns, therefore,
time changing input is necessary for learning to occur. HTMs use time as a way
to create many-to-one maps or pooling. Spatial pooling is performed on each node
by means of a distance metric: if two spatial patterns have sufficient overlap, they
are assigned to the same cause. Temporal pooling functions by means of assigning
recurrent sequences of spatial patterns to a group that functions as an invariant
representation of all the spatial patterns clustered as they change over time. Time
functions, therefore, as a de facto supervisor during learning. By pooling largely
different spatial patterns to the same cause whenever they follow each other in time
often enough, a time-invariant representation of a set of spatial patterns is achieved,
this group is referred to in this work as a “cause”. Therefore, time has provided
the cues to pool together very different spatial patterns into a common cause. An
HTM can also be extended by adding an artificial supervisor to the system, this
is biologically plausible, since even though any mammalian brain learns to pool
together the very different patterns arriving to the retina and belonging to a certain
physical object to the same cause, we often need an external cue (e.g. a teacher),
that help us assign a common cause to very different spatial patterns. For example,
someone that inform us that patterns belonging to the cause “bear” and “wolf”
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can be pooled together to the higher level cause “animal”. Often, learning correct
categorization can be made faster by using supervised training. In HTMs this is done
at the top node during training, when the top node is informed to which category
the pattern being sensed belongs.

4.2.4 Discovery and Inference of Causes by each Computa-
tional Node

The main function of a node is to assign causes to persistent or recurrent patterns of
input, that is, patterns that happen repeatedly over time. A node distinguishes and
stores two type of patterns: spatial patterns and temporal patterns. If a node at
the bottom of the hierarchy has 16 potential inputs and a set of 4 of those 16 inputs
become active at the same time over and over again (with a frequency greater than
what would be expected by chance). The node infers that they must share a common
cause or part of it, and the node stores these spatial patterns in its memory. The
amount of memory of the node is limited, so it only stores a fixed amount of spatial
patterns through the learning stage. When a new input arrives at the node, the
node calculates how close this new pattern is to each one of the stored quantization
points on its memory and depending on whether it is close enough to some of the
stored patterns or whether it occurs often enough it decides whether to memorize
the pattern or ignore it [Hawkins, 2006].

Now let’s suppose that over time, the node observes that a certain pattern, say
“a3” is often followed by pattern “c5”, which itself is followed by “ f1”. If this
happens a far greater number of times than chance would allow, the node creates
and invariant representation of the patterns arriving over time in the form of a
“temporal pattern” (cause). A temporal pattern is a cluster of temporally adjacent
spatial patterns that represents an invariant representation of all of them. The
rationality for this approach is that spatial patterns that tend to follow each other
in time are likely to share a common cause [Hawkins, 2006].

Figure 4.3 shows the two basic operations of a node in terms of a visual example.
The 4x4 grid, represents the receptive field of a node in the bottom of and HTM
vision hierarchy. A black box, means light being projected at that point and a white
box represents the lack of light. Subfigure 4.3(a) shows a node storing common and
recurrent spatial patterns that fall over its receptive fields while uncommon patterns
of light arrangements are discarded. Furthermore, the node memorizes sequences of
spatial patterns that often follow each other as seen in Subfigure 4.3(b). The node
stores the sequence of a horizontal line moving down and a corner moving towards
the right, while the uncommon third row of spatial patterns that often do not follow
each other when trained with normal images are discarded [Hawkins, 2006].

In summary, each node through the hierarchy learns to store the most likely
spatial patterns of its input and the most likely sequences of those spatial patterns
which are also stored. The node’s output that percolates up the hierarchy represent
a distribution of probabilities over the set of all learned common sequences indicating
the likelihood of each one being present at that particular time instant.
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(a)

(b)

Figure 4.3: Node cause discovery. The node stores common (repetitive) spatial
patterns in the particular input space it is exposed to. Panel a shows that com-
mon patterns in an input space of 2 dimensional images formed by segments would
be formed by horizontal and vertical lines, corners, etc. Uncommon patterns for
that type of input space, would be disregarded by the node. Panel b shows com-
mon temporal sequences being clustered and stored while uncommon sequences are
discarded.

4.3 Comparison of HTMs with other Machine Learn-

ing Algorithms

The no free lunch theorem [Ho and Pepyne, 2002] states that no learning algorithm
is inherently better than any other algorithm for all types of problems. What deter-
mines the performance of an algorithm is the set of assumptions that the algorithm
exploits in order to learn the model of the training data to which it is expose to
during training. Generalistic models are usually harder to train while very specific
algorithms tend to over fit the model to the training data [Numenta, 2006a]. An
ideal learning system that can be applied to a variety of situations needs a set of
assumptions general enough to apply to a large class of problems but specific enough
to match the characteristics of real world data [Numenta, 2006a].

Evolutionary processes have shaped a set of assumptions in the human brain that
make it a very efficient learning mechanism for a wide variety of problems. Some
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of these assumptions are reflected in its hierarchical organization both in time and
space. Machine learning algorithms that exploit the hierarchy in time and space
existing in the physical world should be able to exploit that structure to learn about
the world [Numenta, 2006a]. This is what the neocortex does and what HTM also
tries to replicate.

We delineate next some of the similarities and differences between HTM and
existing machine learning algorithms:

4.3.1 General Purpose Probabilistic Models

Different types of probabilistic models that analyze statistical relationships among
sets of variables exist [Numenta, 2006a]. The variables can represent states of a
category or counters of a variable. These models do not require or specify a partic-
ular relationship among the variables but they work better when they can exploit
conditional independence between the variables.

• Bayesian networks [Pearl, 1988]: Use acyclic graphs for topological or-
ganization. These graphs encapsulate the independence assumptions about
probability distributions.

• Energy based models [Lecun et al., 2006]: Although technically they are
not probabilistic models, there is a rough equivalence between energy based
models and probabilistic models. Energy based models are more convenient
for certain large class problems than probabilistic models.

• Hierarchical hidden Markov models [Fine, 1998]: model time in a simi-
lar way to HTM. However they only use the hierarchical topology in a temporal
way. HTM use hierarchy in both space and time. Additionally, HTM provides
a framework where action and attention can be implemented.

• Boltzmann machine and Hellhmholtz machine [Hinton and Sejnowski,
1986; Dayan et al., 2010]: Abstract energy based models with a neural
instanciation. This models use stochastic sampling to learn a probability dis-
tribution. Historically they have struggled with the issue of getting stuck in
mediocre solutions. These approaches do not use the temporal structure of
data and do not incorporate any assumptions about hierarchy. They employ
the assumption that determining the probability distribution of a problem is
the essence of learning.

General purpose probabilistic models are very good tools for simple probabilistic
analysis, but they are too broad for several real world problems. HTMs do not
conflict with the fundamental principles of these models but HTMs make additional
assumptions about the nature of the world.
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4.3.2 Non Generative Models

Several approaches in machine learning skip the phase of building a model about the
training data that can describe the input and directly try to map inputs to the correct
answer, using some sort of supervised learning for this mapping during training.
These models are collectively called discriminative models. These models are mainly
heavily supervised while HTM is fundamentally unsupervised (although supervision
can be applied at the top node of the hierarchy but this is not strictly required, and
almost all learning is performed in an unsupervised fashion). Furthermore, the HTM
can generate data and it is able to predict the next stage of a temporal sequence.

• Support vector machines [Burges, 1998]: SVMs are very efficient algo-
rithms to find boundaries in high dimensional space to separate several in-
stances according to their corresponding categories. Support vector machines
do not employ any assumptions about the hierarchical structure of the training
data they are exposed to or any type of temporal organization in the world
and therefore do not take advantage of these properties. Since the underlying
models are discriminative and not generative, they can not predict forward in
time.

• Artificial neural networks [Ripley, 1996]: Such as the multilayer percep-
trons. These are supervised learning models that are typically trained with
an algorithm known as back propagation. Some types of artificial neural net-
works make use of space and time but they do not exploit temporal coherence.
Neural networks require rather heavy sampling of the training data and often
struggle with overfitting.

• Slow feature analysis [Wiskott and Sejnowski, 2002]: It is not a discrim-
inative model per se but it lacks generative semantics. Slow feature analysis
learns invariant features in a hierarchy using temporal slowness as the under-
lying principles. HTM use the same principle for learning in a hierarchy and
therefore they share many features with slow feature analysis. However, slow
feature analysis can not generate data and can not be used to predict forward
in time.

4.3.3 Empirical Neuro-Biological Models

Some models try to implement observed neuro-biological behavior in a learning
algorithm. A good example of this approach is:

• HMAX [Riesenhuber and Poggio, 1999]: is a biological a realistic model
of vision. This model shares many similarities with HTMs. HMAX uses a
hierarchical structure similar to HTM. Furthermore, the feature set employed
in HMAX at different levels resembles the quantization points and the tem-
poral groups in HTM. But the HMAX model obtains these basic features
and the feature groups by human intervention so they possess a high degree
of supervision and do not self learn the features models. Also, the HMAX
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model does not implement a generative model and the inference mechanism is
not probabilistic. Additionally, HMAX disregards feedback connections (that
biologically are very relevant) in the model and can not predict forward in
time.
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Chapter 5

Example Applications Of
Hierarchical Temporal Memory

5.1 Introduction

Hierarchical Temporal Memory, HTM, can be applied to a variety of problems. In
this chapter, we present representative problems in which we will study the perfor-
mance of HTMs. Namely, problems where the spatial representation of a pattern is
complete at any give time instant (image recognition) and problems where changing
spatial patterns over time conform a particular instance (sign language recognition
and gaze gestures recognition).

In subsequent chapters of this thesis, we will analyze in detail how HTMs per-
forms on image recognition, using a data set of 2 dimensional binary images sub-
jected to different degrees of translation, distortions, occlusions and noise. We will
also explore HTM performance on Australian sign language recognition using data
gathered with an electronic data glove. Finally, we will employ HTMs to recognize
gaze gestures in real time using a low cost eye tracking system in both head-mounted
and remote setups.

In this chapter specifically, necessary background information will be provided
on the basic characteristics of image recognition, sign language recognition and gaze
gesture recognition. Also, we will introduce eye tracking technology and gaze based
interaction as this information is a pre-requirement to understand the issues involved
in gaze gesture recognition, to be treated in Chapters 8, 9 and 10.
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5.2 HTMs in Image Recognition

The original developers of HTM, [George and Hawkins, 2009] first tested the HTM
algorithms in the problem of image recognition. HTM proved to be very efficient at
solving this type of problem as reported by [George and Hawkins, 2005]. We start
the Results section of this thesis with a replication of the results obtained by the
original authors of HTM using our own implementation of HTM.

Vision is for mammals the most fundamental sensory modality to sense the world.
In humans about 30% of the neocortex is devoted to vision related areas in the
occipital lobe of the brain [Hawkins, 2004]. Light rays projected into our retina
depolarize receptive cells which send patterns of action potentials to the lateral
geniculate nucleus from which information is relayed to area V1 of the occipital
lobe. The brain deciphers and interprets these patterns of electrical activity and
relates them to previously stored causes in the world or memorizes the new patterns
in order to be recalled later.

A critical feature that the mammalian brain is able to performs is that of in-
variant visual pattern recognition. That is, the ability to recognize images despite
changes in location, size, light conditions and in the presence of deformations and
large amounts of noise. When a mammal perceives a certain object, usually the
patterns of light rays entering the retina changes continuously through time, either
the animal moves around the object, the object moves by itself, or the ligh condi-
tions change. There are virtually an unlimited number of possible images for each
specific object. Nonetheless, mammals have no apparent trouble recognizing those
very different patterns of light entering our retina and the very different signals of
electrical activity encoding the visual information as belonging to the same cause or
object. That is, the mammal has created an invariant representation of the object in
its brain that remains stable, besides changes in light conditions, shape, position in
space or deformation. No computer is currently able to match the degree of perfor-
mance of the mammalian brain for a visual pattern recognition task. Tackling the
invariant pattern recognition problem on a computer has not been easy [Russell and
Norvig, 2002]. In part because similarity metrics at the pixel level will not achieve
the desired result since often images from different categories have more overlap in
the pixel space than images from the same category[George and Jarosy, 2007].

Most computer science approaches towards tackling the problem in visual pattern
recognition try to learn low-level statistical patterns of the images and use a super-
visor method to map those features to the correct categories. A typicial approach
is to store a prototypical representation for each object to be recognized. Unknown
patterns undergo then a set of transformations (scaling, rotations, translations) to
get them to match the prototypes. Finally a distance metric is used between the
transformed unknown and the prototypes to determine the best match [Hawkins,
2006]. With these techniques, a certain degree of invariance is achieved, yet they
often are not able to generalize at the degree of performance that the human brain
does.

It can be concluded, that the main issue in image recognition problems is that of
invariances. That is, how to train a system with a set of prototype images, and then
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having a recognition engine able to recognize categories properly and independently
of translations in space, rotations, size changes, deformations, occlusions, changes in
light conditions or contrast and the presence of noise. In Chapter 6, we show how our
HTM algorithm is able to create a certain degree of invariance over the categories
learnt and it is able to recognize unseen instances from those same categories that
are considerably different to the training instances in terms of translations, size
variations, presence of noise, occlusions and distortions.

5.3 HTMs in Sign Language Recognition

As we will discuss in detail in the Results section, HTMs work very robustly in
problems such as image recognition in which the complete spatial structure of an
instance is presented at any given time instant. We will show how HTMs are some-
how limited to this type of problems and struggling on problems where the spatial
structure of a sign is composed of a number of spatial states that develop over time.
We explore this limitation in the problem of Sign language recognition, SLR. We
addressed SLR as a good example of a problem in the physical world with a hierar-
chical structure, that an HTM should be able to model. Due to the limitations of
traditional HTMs to robustly deal with the SLR problem, we propose an extension
of HTMs for them to work better on this type of problem.

Sign language uses hand gestures for conveying information by means of se-
quences of hand/arm/finger shapes, position and movements as well as facial ex-
pressions instead of speech [Sarkaleh et al., 2010].

Several techniques for signal capture can be employed for automatic sign lan-
guage recognition. A video camera can be used to capture frames from a signer,
this approach requires considerable pre-processing of the input data to segment the
hands from the rest of the image. Image processing techniques have to be sophis-
ticated and robust to tolerate occlusions of the hands, recognize different shapes,
etc. A more modern approach is to use 3D scanners which interpret 3D scene in-
formation using continuously-projected infrared structured light. The commercial
success of Microsoft’s Kinect is a hardware development going in that direction, al-
though whether that cheap technology is able to discriminate fine finger movements,
sometimes essential in robust SLR, remains to be seen. An alternative approach to
capture data for SLR involves the usage of electronic data gloves1 such as the one
shown in Figure 5.1.

Although HTM algorithms could work independently of the methodology used
to capture the sign language instances, in the work presented in the Results section
we used a data set consisting of several instances from Australian sign language
captured using a pair of electronic data gloves containing accelerometers and sensors
to track 11 channels of information for each hand: x, y and z spatial coordinates of
the hand, the roll, pitch and yaw rotation angles of the wrist and a bend coefficient
for each finger.

1Data Gloves from 5DT Fifth Dimension Technologies (http://www.5dt.com).
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Figure 5.1: Electronic Data Glove. A glove similar to the one used to capture the
sign language instances used in the Results part of this thesis. The glove provides
dynamically data about the spatial position of the hand, the roll, pitch and yaw
rotation angles of the wrist and the degree of bendiness of each finger.

Sign Language Recognition, SLR, can be carried out in isolated signs or contin-
uous speech. Continuous SLR presents the advantage of being able to incorporate
language models based on grammatical and semantical heuristics to improve per-
formance. SLR can also be classified into recognition of signs from a single signer
and signer independent recognition [AL-Rousan et al., 2009]. Several sign languages
dialects have been employed in machine learning experiments: American [Starner
et al., 1998], Australian [Rozado et al., 2010b; Kadous, 2002], Persian [Sarkaleh
et al., 2010], Arabic [Mohandes et al., 2007], Italian [Infantino et al., 2005], Tai-
wanese [Liang and M., 1998], Polish [Kapuscinski and Wysocki, 2009] and Chinese
[Fang and Gao, 2002]. Some authors have used electronic gloves and magnetic track-
ers conveying information about hand position in space and shape[Kadous, 2002;
Dipietro et al., 2008] while others have opted for video based recognition with or
without visual marking devices [Zhou et al., 2010; Liang and M., 1998; Starner et al.,
1998; Holden et al., 2005; Gupta and Suwei, 2001; Lavee et al., 2009]. The com-
putational methods traditionally used in SLR have been fuzzy logic [Holden et al.,
1999], wavelet transform [Sarkaleh et al., 2010], neural networks [Vamplew, 1998;
Fang and Gao, 2002], Hidden Markov Models, HMM, [Starner et al., 1998; Liang
and M., 1998; Holden et al., 2005; Mitra and Acharya, 2007] and more recently
HTMs [Kapuscinski and Wysocki, 2009].
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5.4 HTMs in Gaze Gesture Recognition

The study of the interaction between humans and computers is known as Human
Computer Interaction or HCI. The aim of HCI is to make interaction easier, more
intuitive, and more efficient. Nowadays, interaction with computers is not limited
to keywords and mouse. Different kinds of pointing devices such as touch sensitive
surfaces, wide resolution displays, microphones and speakers are becoming com-
mon place devices for HCI purposes. Hence, new modalities for HCI have emerged:
speech interaction, gesture based interaction or tangible sensor based interaction.
An emerging input modality is gaze interaction which nowadays finds its main ap-
plication in the field of accessibility and user studies. Accessibility systems typically
use gaze as the sole input for HCI purposes. Outside the field of accessibility, eye
gaze can be combined with other input modalities to form multimodal interaction
paradigms.

In Chapters 8, 9 and 10 we explore the usage of traditional HTMs and extended
HTMs on the recognition of gaze gestures, both offline and in real time. Gaze
gestures are a new form of gaze interaction with a computer consisting on using a
sequence of gaze movements recognized by a machine learning algorithm to generate
a command. In order to fully understand the possibilities and limitations of gaze
gestures a brief overview of eye tracking technology and gaze based interaction is
provided next.

5.4.1 Eye Tracking

Eye trackers have been traditionally expensive partly because they require special-
ized hardware setups and customized software. Currently, a precise and robust eye
tracking system costs usually between 10,000 and 50,000 e. Therefore, it is acces-
sible only to a relatively small market segment. There is a great deal of interest in
developing low cost eye trackers using off the shelf components [San Agustin et al.,
2010]. However, trade-offs have to be reached between robustness, accuracy and
price. A system can be developed which is cheap enough for most people to buy,
but not precise or robust enough for all types of applications.

Eye tracking system must find a compromise between intrusiveness and precision.
By placing different lenses or suction devices on the cornea, or by placing electrodes
around the eyes, very precise readings of eye movements can be made. However,
these systems are generally viewed as being too intrusive for everyday use. Video-
based eye tracking systems are preferable for every-day use. Moreover, since many
computer devices such as mobile phones, laptops and flat displays already contain
built in cameras and processor power continues to increase steadily, video based
eye tracking is technically feasible in most electronic devices at reasonable costs
[San Agustin, 2010].

Video based eye tracking uses an infrared led pointed at the user’s eye. The
infrared light causes a reflection on the cornea known as glint. Due to the eye spher-
ical shape, the glint remains at the same position over the surface independently of
where the eye is directed. Using a video camera, image analysis software libraries
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detect the reflection spot, or glint, and measure its distance to the center of the
pupil as the user moves its gaze around, see Figure 5.2. Gaze can be derived from
the glint to pupil center distance through a 2 degree polynomial model generated
during a previous calibration procedure [San Agustin, 2010].

Figure 5.2: Eye tracker. An open source gaze tracker [San Agustin et al., 2010]
tracking one eye. The features detected in the image are the pupil center and two
corneal reflections.

Some people interact with a computer all day long, for their work and in their
leisure time. Most interactions are done via keyboard and mouse. Both types are
dependant on heavy use of the hands. As a result of this trend, some people suffer
from repetitive strain injuries, or RSI, in particular parts of the hands, arms, elbows,
shoulder, neck or back. With the vision of ubiquitous computing becoming a reality,
the amount of interaction with computers will increase further and hence, there ex-
ists a pressing need for interaction techniques which do not cause physical problems.
The eyes are good candidates for this because they move by default anyway when
users interact with computers. Using the information of eye movements, a lot of
hand interaction could be spared [Drewes, 2010]. Finding interface techniques that
take advantage of the intuitiveness and speed of eye movements can offer users some
real benefit in terms of HCI since by being able to track a person’s eye movements,
the focus of its attention can be deduced [San Agustin, 2010].

5.4.2 The Nature of the Eye

The eyes constitute the primary sensory organ of humans. The eye is a light sensitive
organ, which absorbs light patterns and directs them to the brain via the visual
pathway using nerve impulses.

Light is a form of electromagnetic radiation created from the oscillation of electri-
cally charged particles. Electromagnetic radiation is abundant in our surroundings
and this is probably why mammals have evolved sensors to register electromagnetic
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radiation in the environment. Visible light only constitutes a small part of the ac-
tual spectrum of electromagnetic energy (other forms being radio waves, infrared,
ultra violet, microwaves, etc). However, physical light ability to interact with the
surface of objects through the physical concepts of reflection and refraction allows
for a great amount of detail to be conveyed [Duchowski, 2007].

We generally use the eyes to gather information about our surroundings. How-
ever, the eyes are also used to convey information. When we talk with other people,
we normally address the person by looking at her or him. This small example show
how we use the eyes beyond vision for communication purposes.

The fact that we use the eye for human to human communication leads to the
following conclusions for the field of HCI:

• We have the ability to control our eyes and use them as output effector organs.

• For natural communication with computers, the computer should know user’s
gaze direction.

• Analyzing eye gaze reveals information on the person (mood, intention and
life experience [Chua et al., 2005]). This information would be very useful for
smart computer interfaces which are able to assist the user on a personal level.

Figure 5.3 shows a schematic view of the human eye. The eyeball is approxi-
mately a spherical object. Three important structures relevant for our discussion
here are: the iris, the pupil and the sclera. The pupil and the iris are covered by the
cornea, a transparent layer that refracts light before it enters the eye. The pupil is
the opening through which light enters the eye. The pupil regulates the amount of
light reaching the retina by expanding and contracting. The retina in the rear part
of the eye contains photo receptors able to transform light impulses into electrical
signals [Davson, 1990]. Most of the volume of the eye is occupied by the vitreous
body, which consists of a transparent fluid through which light is filtered. The light
entering the eye is refracted by a lens (a transparent structure located behind the
pupil) that changes shape in order to focus the rays of light into the retina.

The process of receiving and transforming light waves into electrical signals that
convey visual information takes place in the retina. Photoreceptors in the retina
are neuron-like cells that convert light into electrical impulses that are then sent to
the brain through the optic nerve. The optic nerve carries the impulses until they
reach the optic chiasm [Davson, 1990]. At this point, impulses that come from the
nasal area of the retina pass over to the opposite side of the cerebral hemisphere.
From this point on, the optic nerve becomes known as the optic truck and relays
information to a subdivision of each cerebral hemisphere called the lateral geniculate
nucleus (LGN) [Davson, 1990]. From here, information moves through the visual
cortex hierarchy and its various processing centers: V1, V2, V3, V4, MT, PIT, PP,
etc.

Photoreceptors are divided into two types: rods and cones. Rods are very sen-
sitive to light but can not discriminate colors. They are able to provide visual
information in dim light conditions and they are mainly responsible for our periph-
eral vision. Cones on the other hand, can discriminate among different colors but
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Figure 5.3: Anatomy of the human eye. Schematic view of the human eye
showing its main anatomical parts. Light enters through the pupil and gets focused
on the retina by the cornea and the lens.

are not as sensitive to light as rods. The distribution of rods and cones across the
retina surface is irregular. The highest concentration of cones corresponds to the
fovea. The fovea is located in the retina precisely at the center of the macula region.
The fovea is responsible for sharp central vision, which is necessary for any activity
where visual detail is of utmost importance. The angle of vision covered by the
fovea is around 2o. Visual acuity is approximately constant within those 2o and
drops linearly from there to the 5o border of the fovea, and exponentially beyond
5o [Davson, 1990]. The eye is not completely symmetric; however, an approximated
symmetry axes can be considered as the line joining the different lenses of the eye.
This is called the optical axes, and it does not coincide with the actual line of sight
or visual axes. The visual axes is the line that connects the fovea with the object
we’re looking at. Optical and visual axes intersect at the lens center, with an an-
gular offset that is subject dependent. There is a high variability among humans.
Typical values are 5o in the horizontal direction and 1.5o in the vertical direction
[Davson, 1990].

5.4.3 States of the Eye

Eye movements consist of rotations of the eye ball. These movements are possible by
six muscles known as the extra ocular muscles. The concept of saccadic suppression
refers to the fact that while our eyes are moving from one fixation point to another,
the visual cortex is not receiving information. The states on which a human eye can
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be are three:

• Fixations: The temporal state in which the eye is relatively still and fixed
on a feature of interest. They have a duration longer than 100ms. It is dur-
ing fixations, that we gather data from our surroundings. The use of the
concept “relatively still” comes from the fact that the eye is constantly mov-
ing. Although we perceive the image as being completely still, three different
types of eye movements (micro-saccades) take place during fixations: drifts,
tremors and micro-saccades. This micro movements are unconsciously and
autonomously performed by the brain stem in order to keep the photo re-
ceptors in the retina constantly excited, and to bring the different parts of
an object of interest to the center of the fovea. Experiments made with the
eyes artificially held still while observing images show that objects appear to
fade away or disappear entirely if the pupil is held still. This micro-saccades
jerky movements of the eye scattered around 1◦ over the visual angle. Where
fixations occur and how long they remain at the specific point is usually an
unconscious decision, based on factors such as light conditions and objects of
interest [Davson, 1990; San Agustin, 2010].

• Saccades: A saccade is a fast ballistic eye movement that prepositions the
eye so that the object in which we are interested is projected on the fovea.
Saccades usually occur between two fixations. No information is gathered by
the visual system during a saccade. The velocity of a saccade is often in the
order of 700o/s for large amplitudes saccades. Saccades are reactions, forced or
unforced, to light changes perceived in areas of the retina with lower resolution
than that of the fovea [Davson, 1990; San Agustin, 2010];

• Smooth Pursuit: Smooth pursuits take place when our eyes track a moving
object. Smooth pursuits require a moving target and the process of following
the target requires a combination of both saccadic and small eye movements.
The object in motion requires the eye to perform minor corrections during
small saccadic movements to maintain the object in the fovea while it moves
around. The vision system is able to track objects moving at a velocity in the
range of 1 to 30o/s. Smooth pursuit movements are not subject to endogenous
control, and require a moving stimulus [Davson, 1990].

5.4.4 Eye Tracking Techniques

The movements of the eye can be tracked using different technologies, and the
accuracy and invasiveness of each will depend on the method employed. Often, a
trade-off needs to be made between the cost of the eye tracker, the precision of
gaze estimation and the intrusiveness of the equipment. Eye tracking methods are
commonly divided into three categories:

• Electrooculography (EOG): Based on the existence of an electric field that
changes its potential as the eye moves in its orbit. To detect these changes
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in electric potential, electrodes are placed on the skin around the eyes. The
system is regarded as invasive [San Agustin, 2010; Duchowski, 2007].

• Special purpose contact lenses: The most accurate method to track the
users’ eye gaze is achieved by means of special purpose contact lenses. The
accuracy is as high as 10 arc-seconds. However, this method is extremely
invasive with the lenses being connected to wires, making the system very
uncomfortable to use and constrained to laboratory research [San Agustin,
2010; Duchowski, 2007].

• Video oculography (VOG): Uses a camera to record the eye movements of
the user, and extracts the information of different eye features to determine
the point of regard or the line of sight. The great advantage of video based
eye trackers lies in their inclusiveness. The user does not need to wear any
hardware, and generally, systems are tolerant to head movements, at least to
a certain extent. Depending on the hardware configuration of the different
components, it is possible to classify this tracking systems as remote or head
mounted. In remote systems, the camera and light sources are placed at a
distance from the user, usually below or around the computer screen, making
for a non intrusive configuration. Head mounted systems places the camera
and light sources on the head of the user, usually mounted on a helmet or a pair
of glasses. Such systems make mobile gaze interaction possible [San Agustin,
2010; Duchowski, 2007].

5.4.5 Gaze Estimation

The main purpose of a gaze tracking system is to determine where a person is looking
at by gathering information from eye position and movement. Several methods exists
to do this that can be best categorize in two main categories [Hansen and Ji, 2010]:

• To determine the person’s eye gaze as a 3D vector in space (the line of sight).

• To determine the person’s eye gaze as a 2D point on a plane (the point of
regard or PoR).

The process of determining gaze direction can be divided into two sub-processes:
eye tracking and gaze estimation. Eye tracking consists of following the eye move-
ments as it moves around in its orbit. This is often achieved by detecting and
tracking eye features such as the pupil or the iris overtime. Gaze estimation uses
these features to estimate the users’ eye gaze. Eye tracking methods can be divided
into three categories:

1. Shape base methods rely on a prior model of the eye structures, which can be
constructed from features of the eye or from contours (deformable shape mod-
els). The pupil, iris and eye corners are commonly used features. The image
data are fitted to this predefined eye model [Hansen and Ji, 2010; San Agustin,
2010].
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2. Appearance based methods rely on building a model of the eye region that tries
to imitate as much similarity in the template to the target feature [Hansen and
Hammoud, 2005]. Usually they are built from a large set of training images
with different subjects, illumination conditions that try to cover all the classical
situations that depict the eye features in any given image [Hansen and Ji, 2010;
San Agustin, 2010].

3. Hybrid methods combined different techniques, such as shape, appearance
and model, to exploit the benefits of each method [Hansen and Ji, 2010;
San Agustin, 2010].

The method employed to track the eye depends on the type of objective wanted
to be achieved. Most systems make use of active infrared light, although passive
systems that use natural light exist. Methods that rely on infrared illumination are
the most popular in both commercial systems and in research. The pupil becomes a
salient feature when infrared light is available. Outdoor eye tracking is challenging,
and efforts are devoted to improve the reliability of eye tracking under varying light
conditions [Hansen and Ji, 2010; San Agustin, 2010].

Depending on the use of the gaze tracking system, two different applications
can be considered: diagnosis and interaction. Diagnostic applications analyze eye
movements to gather information on the person’s cognitive processes and attention
when performing specific tasks such as inspecting a visual scene, listening or read-
ing. These analyses are usually carried out not in real time, and therefore the eye
movements do not have an effect on the scene being observed. Diagnostic applica-
tions are widely employed in different fields, such as usability research, marketing
and psychology [Duchowski, 2007].

Gaze tracking can also be used to facilitate interaction with computers. Gaze
information provided by the gaze tracker can be used as an input to control a GUI
on a screen. Often the PoR coordinates estimated by the system are usually noisy,
mainly due to inaccuracies in the extraction of the eye features. When the PoR is
used as a pointer substituting the mouse the jitter in the pointer can be distracting
for the user, so some degree of smoothing is usually applied to the signal to make
the cursor more stable [San Agustin, 2010].

Gaze tracking systems use infrared light to improve the pupil/iris contrast, see
Figure 5.4 and to create the glint used as a reference to estimate gaze. Infrared
illumination can be used in two different modes. A light source located close to
the optical axes of the camera is called on axes light. The captured image shows a
bright pupil since most of the light falling on the retina reflects back to the camera
[Hansen and Hammoud, 2005]. When a light source is located away from the optical
axes of the camera, which is called off axes, the retrieved image shows a dark pupil
[Hansen and Ji, 2010].

5.4.6 Eye Movement Detection

Analyses of eye movements while users perform different tasks (reading or driving)
allows the extraction of information regarding the visual and cognitive processes
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(a) (b)

Figure 5.4: Improved contrast with usage of infrared illumination. Panel a
shows an image capture of an eye without infrared illumination. Notice the difficulty
for the image recognition routines to precisely identify and delimit the edge between
pupil and iris. Panel b shows the same eye with infrared illumination. Increased
contrast allows the image recognition routines to easily segment the pupil from the
iris.

taking place. Different metrics are employed in the analyses: fixation duration,
saccades amplitude, saccades velocity, etc. This analysis is usually carried out a
posteriori [Duchowski, 2007].

Fixation detection algorithms have been divided into three main categories: ve-
locity based, dispersion based and area based. Each method presents its own set of
limitations [San Agustin, 2010].

Smooth pursuit detection has not been fully explored in real time gaze control
applications. Although most interaction in graphical user interfaces is based on point
and click, applications that display moving objects might benefit from a smooth
pursuit detection algorithm [San Agustin et al., 2010].

A task that has been substantially explored using eye tracking is reading pat-
terns. Generally, fixations occur at every word although small function words are
often skipped and saccades size depends on the specific nature of the task at hand.
In tennis, it has been shown that advanced players loom fixations and saccades to-
gether differently from novices. These examples further substantiate the premise
that cognition affects the way scenes are viewed or vice versa [Chua et al., 2005].

5.4.7 Gaze Interaction

HCI deals mainly with moving information between the computer and the brain of
a user. How to increase the useful bandwidth across that interface, making it more
natural and convenient is one of the main goals of HCI.

Gaze interaction deals with using the direction of gaze to navigate and/or make
selections in information interfaces. This interaction can be considered in the context
of an addition to existing input modalities in HCI or in the context of a sole input.
The reason for this distinction is that the design parameters and applicability of
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these two input strategies are very different. Gaze as an addition mainly deals with
the enhancement of navigation processes. Gaze as a sole input needs to be able to
handle navigation and selection processes [Mollenbach, 2010].

Current day selection strategies use for sole input can be divided into two main
approaches; dwell time activation and gaze gestures, both of which seek to minimize
accidental selections [Mollenbach, 2010]. Dwell time activation consists of prolonged
fixations on onscreen targets. Gaze gestures consist of recognizable and repeatable
sequences of eye movement patterns that can be distinguished from natural search
patterns.

There are many situations where conventional input devices are inadequate or
inappropriate and alternative input devices are necessary. When researching in-
teraction techniques several parameters affect each other and should be taken into
consideration when determining the most appropriate input. The three basic pa-
rameters to be considered are: task, user context, and feedback.

Physical impairment constitutes a context in which the choice of input device
can be a life changing necessity. In other cases, the user might be limited in its
movement possibilities to interact with a system (a doctor performing surgery or a
soldier managing weapons) [Drewes, 2010].

As previously mentioned this interaction has some inherent issues at its core, the
fundamental one being the need to make a system aware of the intentions behind
gaze. In gaze controlled interfaces, additional information is needed to inform the
system whether eye movements are an indication of us wanting to interact with
something or simply examining it.

Users’ gaze can be used as an input to control a computer by using the PoR
provided by a gaze tracker. As such, the users’ gaze becomes a pointing device that
substitutes or complements the mouse. Eye movements can reveal our intention to
interact with an object in the physical world. Interactive applications can use eye
movement as an input to control an interface. In these applications, the user looks
around to select items and activate objects, and the interface reacts in real time by
modifying the information displayed. However, it must be noted that even though
our eyes can show our attention to interact with real world objects, these objects to
not react to gaze.

The use of eye movements as a direct input to control an interface has been
extensively studied. The main issues when using exclusively eye movements for in-
teractions is the Midas touch problem. Our eyes can be used for pointing after some
training but they lack an activation mechanism, a necessity in the case of controlling
an interface. Hence, there is the risk of issuing an unintended activation. Ideally, an
external switch would allow the user to perform selections, in the same way as the
bottom of a mouse. However, some individuals might be unable to use an external
switch, and in these cases gaze is the only selection technique available. Dwell time
clicking or long blinks are the most commonly used solutions to circumvent this
problem. The former requires the user to stare at the desire interactive object for a
predefined amount of time in order to ease an activation, while the later requires a
long blink to generate a selection.

Different studies have shown the speed advantage of gaze over manual input
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devices. This pointing can be faster than mouse pointing for very short dwell times.
However, short dwell times are unrealistic since they produced a high number of
undesired selections in everyday interaction. Provided good tracking conditions and
some training, the eyes can be used for pointing, although not as efficiently as with
the mouse. Nonetheless, an eye gaze interface might offer several potential benefits
[Drewes, 2010]:

• Ease of use: Less stress for hands and arms.

• Interaction speed up: The combination of eyes with another input modality
can provide even faster interaction.

• Maintenance free: Gaze based interaction works contact free which means
that no maintenance is necessary.

• Hygienic interface: Eye gaze interfaces allow interaction without the need
to touch.

• Remote control: High resolution cameras make eye gaze detection possible
over several meters of distance.

• Safer interaction: Eye-tracking not only warranties the presence of a person
but also his or her attention.

• Gain more information on the user’s activity and whereabouts: Track-
ing the eye provides useful information for context aware systems. In the
simplest form an eye tracker tells where the attention is focused. [Drewes,
2010].

Of course eye interaction also possesses drawbacks [Drewes, 2010]:

• Ability to control: The eyes perform constantly unconscious movements
and this might disturb their use as computer input.

• Conflict of input and vision: Using the eye for computer input might result
in conflicts since the eye primary function is to provide vision.

• Fatigue of the eye muscles: It is conceivable that extensive use of mus-
cles groups involved in eye movement could cause physical problems such as
repetitive strain injury.

5.4.8 Gaze Gestures

We explore in this thesis how our extended HTM paradigm can successfully solve the
problem of real time gaze gesture recognition. Hence, we provide a brief introduction
to this innovative HCI paradigm.

The idea of using gaze gestures for HCI purposes stems from a pressing need
to find novel methods to interact with computers through gaze beyond dwell times
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[Drewes, 2010]. Numerous electronic devices nowadays possess a built in camera
within them. Furthermore, the processing power of the standard computer makes
processing of real time video media stream feasible. It is hence possible that in the
near future eye tracking technology could be built in most computing devices for no
extra cost. Therefore, gaze interaction could become an additional input modality
for the mainstream user [Drewes, 2010].

Gestures can consist of any repeatable and recognizable body motion that can
be robustly recognized as separated from normal physical action. Gestures have
traditionally been explored in the field of HCI. Unistroke [Mankoff and Abowd,
1998] for instance consists of gestures formed by sequences of elements, typically
strokes, which are performed in a sequential time manner [Drewes and Schmidt,
2007]. The amount of gestures commands available in gesture interaction can can
be arbitrarily chosen. In GUI command based interaction, commands are usually
selected from a list [Drewes, 2010]. Large commands lists sizes results in large lists
that cause real state problems in the screen. For these reason, gestures have recently
started to be used as a way of interaction with electronic devices.

Stylus based text entry is an area where gestures have been greatly explored.
Unsurprisingly, stylus based text entry has served as an inspiration for gaze gesture
based text entry. More recently, gestures have become a mainstream interaction
principle with the introduction of multi-touch finger gestures for mobile devices,
laptops and pads. Some of the most common finger gestures are: taping, sweeping
and pinching [Mollenbach, 2010].

Various types of physical gestures have also been explored when considering
users with motor skill impairments because they allow for individually adapted in-
teractions. For example, head gestures consisting of simple horizontal and vertical
motions have been used as switch control gestures.

Gaze gestures are a recent addition to the set of gaze interaction modes. A gaze
gesture can be described as: “a definable path of eye movements performed within
a limited time period, which may or may not be constrained to a particular range
area, which can be identified in real time, and used to signal a particular command
or intent” [Drewes, 2010; Mollenbach, 2010].

Strokes are the foundations of gaze gestures. A stroke is the motion between
two intended fixations; it is not necessarily the same as a saccade, which is the
eye movement between any two fixations. A stroke can be completed even if jitter
causing small saccades did take place between the two intended fixation points
[Mollenbach et al., 2009]. Potentially, gaze gestures hold many advantages as an
interaction method:

1. Speed: Gaze gestures can potentially be very fast. Saccades reach over 1o

and 40o of visual angle and last between 30 - 120ms.

2. Screen real state: As shown in [Rozado et al., 2011b] gaze gestures do not
need to take up screen space.

3. No Midas touch problem: If gaze gestures can be easily distinguishable
from navigational eye movements, the Midas touch problem pervading dwell
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interaction can be avoided.

Gaze gestures have nonetheless their own set of innate problems. The main one
being accidental gesture completion, due to the potential overlap between natural
gaze patterns and the eye movement patterns needed to complete a given gaze
gesture. Accidental gesture completion is the equivalent of the Midas touch problem
for dwell activation. An additional drawback of gaze gestures is the cognitive load
that they might induce on the user. In standard HCI, activation is generally a direct
response to information presented on the screen, whereas gaze gestures often rely on
the user to be able to remember specific eye movement patterns under consideration
with no immediate feedback.

5.4.9 Eye Gaze Based Interaction - Limitations

Gaze based interaction is mainly used in the domain of accessibility and user studies
[Drewes, 2010]. Eye tracking based accessibility systems often used a keyboard on
the display through which users enter characters by gazing for a predefined thresh-
old time (dwell time), on the target key. The time saved by the fast nature of
eye movements is lost through the dwell time. Reducing the dwell time threshold
however causes unwanted selections. Furthermore, gaze interaction is limited by the
accuracy limits of eye tracking technology, that coincidentally hast not much to do
with hardware limitations but rather with aspects intrinsic to the physiology and
anatomy of the eye. As a result, gaze interaction requires big size layouts which
leads to space issues [Mollenbach et al., 2010].

Most of the limitations of gaze based interaction can be traced back to the
nature of the eye as mainly an input sensor and not an output actor [Drewes, 2010].
Usually, the eyes move to see something, not to trigger actions. Using the eyes for
both, input and output, often results in conflicts as a results of overloading of the
visual channel [Mollenbach et al., 2009; Drewes, 2010]. The question of how much
intentional output activity the eyes are able to handle is not clear yet.

5.4.10 Stroke Complexity

Strokes are the foundations of many types of gaze gestures. A stroke is defined
as the motion between two intended fixations. The reason why fixation points are
interesting for gaze gestures lies on the fact that they ensure a distinction between
inspection eye movements and selection eye movements.

A single stroke gesture is the simplest form of finite gestures and is defined as the
motion between two intended fixation points. A complex gaze gesture is the motion
between three or more intended fixation points. Intermediate complexity gaze ges-
tures are the main focus of the experimental research conducted and subsequently
presented in this thesis.

Complex gaze gestures have the advantage of increasing the vocabulary size
of gaze interaction and minimize the likelihood of accidental gesture completion.
However, complex gaze gestures bring with them both cognitive and physiological
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loads on the end user. Cognitively it is difficult to remember a large number of
gestures and physiologically it is stressful to create and complete them. There is a
need for determining how demanding it is to complete a number of strokes that can
be both remembered and repeated in a sustainable manner.

5.4.11 Finite Gaze Gestures

Finite gestures are eye movement patterns in which a predefined shape is completed.
These can be based on abstract shapes in which the eye movement follows a dis-
cernible shape, but one with no innate meaning. It could be a triangle, a square or
a circle. Symbolic path gestures also follow a specific shape; however these stand
for or suggest something else by reason of the relationship, association, convention
or accidental resemblance. An obvious example is that of gestures that resemble a
letter in an alphabet.

One of the main issues concerning the implementation of a gaze based interface
is the fact that simple gestures are easy to repeat and there are only a limited
number of them available. Complex gestures on the other hand are plentiful and
can construct a huge alphabet. However, they require more precision when being
completed and increase the cognitive load on the user.

Several studies have shown the limited potential of gaze gestures on text input
using a mapping from a specific gesture to a letter of the alphabet [Wobbrock et al.,
2008]. The main advantage of this principle is that a large number of these gestures
could become easier to remember because they have become contextualized and
build on the familiar representations of the alphabet. The disadvantage is the high
cognitive load they required, which can overwhelm many users.

Path based gestures have also been explored on several locations [Heikkilä, 2009].
Studies have shown the potential of gaze gestures to be used in a drawing program
[Heikkilä, 2011]. This represented one of the first examinations of how gaze behaves
in situations where the user follows unintended shape path with the eyes. The overall
conclusion of the research was that there was not a significant difference between
the time it took to complete the path of large shapes compared to the time it took
to complete the path of smaller shapes. This was found to be the case because
the eye movements of participants would reach higher speeds when completing the
contours of larger shapes. Overall, the study found that it was very difficult for
users to follow the paths properly, specially curved ones.

In another example of abstract gaze based gestures [Drewes, 2010], the gestures
were relative to the eye movements rather than on screen fixed points. A set of these
gestures was developed based and a combination of an existing set of mouse ges-
tures available for the Firefox browser [De Luca et al., 2007]. A short dwell time was
implemented to help differentiate between eye movements. The researchers asked
participants to complete the gestures on different backgrounds with text, tablets or
web pages. Their results hinted that both gaze gesture complexity and the back-
ground over which they were performed did not have a major impact on completion
time [Drewes, 2010]. Gesture completion time only depended on the number of seg-
ments, in other words the number of strokes that needed to be completed. They
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recorded a time of only between 550-600ms per stroke.
In [Vickers et al., 2008], authors proposed a novel approach to gaze interaction

named “Snap clutch”. This method was implemented as a model interface that
allowed the user to control an avatar in the computer virtual scenario of Second
Life. They initially tried to use gaze to substitute mouse control. Snap clutch
was implemented so that the user could move between different modes by looking
off screen in different directions. The results showed that selection times almost
reached that of the mouse and had fewer errors compared to dwell time.

Inspired by this work, the same authors have analyzed the usage of abstract paths
base gaze gestures to control an avatar in the virtual game of “World of Warcraft”
[Istance et al., 2009]. The results of this work show surprisingly small differences
between the input modalities of Mouse/keyboard and gaze respectively. Their main
motivation for their work was to allow users with severe motor impairments to be
able to participate in online communities on equal footing with other players. They
found out that all participants involved in the study could use gaze gestures to
navigate or perform actions in the game. However, locomotion proved quite difficult
during attacks, but accidentally completed gestures were relatively low.

5.4.12 Continuous Gaze Gestures

Continues gestures are not based on a specific shape, rather they are derived through
our response to either a dynamic or a static visualization. A lot of research on
gaze gestures deals with the strokes being tight to some kind of visualization on
the screen. These gaze gestures are defined and shaped by the features laying out
the information, dynamic or otherwise, on the screen. This type of gestures will be
referred to as continuous gaze gestures. Path based gestures are often finite patterns,
whereas continues gestures rely on continuously performed movements.

The main example of software using continuous gaze gestures is dasher which
is also one of the first gaze gesture interfaces [Mackay, 2003]. Dasher uses motion
as feedback to indicate which letter is being selected. Initially 27 characters are
placed in a column to the right of the screen. To select the letter T, the user looks
at the letter T in the right column. The size of the letter begins to increase as it
moves toward the left. Once the letter crosses the line dividing the screen, it is
selected. The user can reverse and then select a chosen letter at any time by looking
at the left side of the center line. Other than being a continuous magnification
base gaze contingent typing application, Dasher is known for having a very well
integrated letter probability prediction model [Mollenbach, 2010]. Probabilities are
dynamically visualized by increasing the size of the most probable subsequent letter
in a sequence. If “T” is the first selected letter, then the letter “H” is presented
as the largest one of the whole set of letters. After that, “E” becomes the most
prominent letter and so forth, see Figure 5.5.

Continuous gaze gestures use eye movements to guide users through the interface
by providing feedback that corresponds to consequences of a given action. The
disadvantage of these techniques is that they are very task and application specific.
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Figure 5.5: Gaze typing with Dasher. Letter selection is done by gazing at the
incoming letters from the right. Letter size is correlated to its likelihood to follow
the text written so far.

5.4.13 Final Thoughts on Gaze Gestures

Traditionally gaze tracking technology has used user’s gaze as a pointing device.
Little research has focused on other types of gaze interactions such as gaze gestures.

Gaze gestures hold considerable promise as an innovative input modality in HCI.
Gaze gestures address some of the problems of eye gaze interaction [Drewes, 2010].
Some gaze gestures modalities use only relative eye movements and consequently do
not require calibration[Drewes, 2010]. Accuracy is in general not a big issue for gaze
gestures, because gaze is not used for pointing [Drewes and Schmidt, 2007]. Hence,
low cost eye trackers can be employed to detect gaze gestures. Also, the usage of
gaze gestures circumvents the Midas touch problem. Finally, gaze gestures do not
need to take real state on the screen freeing up space for the display of information.

Research on gaze gestures is still at its infancy. It remains to be seen whether
users will accept gaze gestures as a new input modality to control an interface. In
the field of accessibility however, gaze gestures offer obvious advantages to users with
disabilities since they provide an additional interaction possibility to a rather inter-
action constrained population. Gaze gestures can also be advantageous in highly
hygienic environments, such as operating rooms, were surgeons or nurses may wish
to interact with computers using gaze alone. Possibilities in the realm of mobile de-
vices also hold considerable promise since traditional input methods are inconvenient
due to the small display size of the devices.
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Chapter 6

HTMs in Image Recognition

6.1 Introduction

In this section, we outline our own implementation of the traditional HTM algo-
rithms and test it on a simple 2-dimensional binary image recognition task. This
implementation served the purpose of my experimental setup on which to explore
HTM theory1. The results shown in this section will illustrate some of the features
of the HTM paradigm such as the emergence of invariance capabilities and its tol-
erance to noise. Not all principles of HTM theory have been implemented. Ideas
such as using probability distribution over a set of beliefs to pass information up
the hierarchy or the usage of prior probabilities by means of feedback from higher
nodes to lower nodes as described in Chapter 4 have not yet been implemented.
Nonetheless, our in-house version was intended as a proof of concept and serves the
purpose of showing HTM robustness, noise tolerance, generalization and invariance
capabilities.

1A freele available version of my software is available at http://www.ii.uam.es/~gnb/

drfthesis/htmimagerecognition.rar)
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6.2 HTM Algorithm - Methodology

6.2.1 Task, Training Data and Network Structure

HTM algorithms can theoretically be applied to a wide array of problems. Yet this
chapter focuses on the usage of an HTM system on a visual pattern recognition task.
The goal of the system is to be able to create invariant representations of a training
set consisting of the 48 symbols shown in Figure 6.1. The system was trained on
4 different representative sizes for each symbol. The symbols were projected and
moved during training over an artificial retina of size 32 by 32 pixels. Afterwards,
the system was able to perform inference on unseen symbols similar to the training
symbols but subjected to variable amounts of translation, scaling, distortion and
noise.

Figure 6.1: Images training set. Training images used by our HTM visual pattern
recognition system. Each image was shown to the system over 4 different sizes going
from small to large.

The training data consisted of a series of “movies” created by taking different
scale variations of the 48 symbol set and moving then horizontally and vertically
across the whole receptive field of the system. These movies determined and con-
strained the kind of transformations the system was invariant to.

As Figure 6.2 illustrates, we used an HTM network consisting of a 3 layers lay-
out. The bottom layer (layer 1) consisted of 64 nodes organized in an 8x8 matrix,
layer 2 consisted of 16 nodes organized in a 4x4 matrix, finally layer 3 consisted
of just 1 top node. The nodes located on layer 1 receive input from the artificial
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retina. In Figure 6.2 an “A” has been projected on the artificial retina with black
pixels indicating “light on” and white pixels indicating “light off” over a particular
receptive field. The different span and mappings of the receptive fields of the different
nodes along the hierarchy have been marked in the figure.

HTM technology is not constraint to specific fan-in/fan-out parameters (the
specific connectivity pattern from nodes in one layer to higher level nodes), we used
the particular configuration of 4 nodes in layer 1 projecting to a node in layer 2, and
the whole 16 nodes of layer 2 projecting to the single node in layer 3.

Figure 6.2: HTM topology. Architecture of the HTM Topology used for our image
recognition task.

The receptive fields of nodes at different layers of the hierarchy span distinct
areas of the artificial retina depending on where in the hierarchy they are located.
Nodes at the bottom of the hierarchy span relatively small receptive fields directly
over the artificial retina. Receptive fields of nodes higher up in the hierarchy span
indirectly wider areas as can be seen in Figure 6.3. A node in layer 1 possesses a
receptive field of 4x4 in the artificial retina. A node in layer 2 possesses a receptive
field spanning the output of 4 nodes in layer 1. Finally, the only node in layer 3
receives as input data the outputs of all nodes in layer 2.

6.2.2 Node Operation

The nodes in an HTM hierarchy are the main computational elements of the net-
work. Each node receives as input a concatenation of the output vectors from the
nodes immediately underneath. The function of each node is to create invariant
representations of vectors presented over its corresponding receptive field. That is,
clustering together different inputs that are slight temporal or spatial variations of
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Figure 6.3: Receptive fields. The span of node’s receptive fields in an HTM
hierarchy depends on their spatial position within the topological hierarchy.

each other. Each node goes through two stages during its lifetime: a learning stage,
after which, the node switches to an inference stage.

Each node carries out two types of pooling mechanisms: spatial pooling and
temporal pooling, see Figure 6.4. The spatial pooler pools together patterns ac-
cording to their dot product similarities. The node stores in memory only spatial
patterns that it has not observed previously and that are sufficiently dissimilar to
stored spatial patterns. During training, when a new input vector pattern arrives
to a node, the node performs a dot product between the new vector and each one
of the already stored vectors. If any of these dot products is high enough2, the new
vector is discarded, since this means that a sufficiently similar vector has already
been stored by the node. We refer to this vector which represents a bunch of similar
spatial patterns as a “quantization point”. If the node does not have in its memory
a pattern similar enough to the incoming pattern, it stores the incoming pattern as
a new quantization point. Spatial pooling works well in noise removal from patterns,
but it is not useful in solving temporal invariances. That is, spatial pooling is unable
to detect the similarity of two spatial patterns representing a horizontal bar moving
up or down from time t to t + 1 since their pixel-similarity metric is very low. Yet

2“High enough” is a parameter set-up before training by the supervisor of the system. This
parameter defines a trade-off: The bigger the parameter is, the more specific the system becomes,
since more quantization points are stored by each node, yet the higher the computational require-
ments in terms of memory and processing power and the less generalization capabilities of the
system
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Figure 6.4: Spatio-temporal pooling. Each node carries out during learning two
operations: spatial pooling and temporal pooling.

both spatial patterns represent a horizontal bar. We need a system therefore that
would cluster both spatial patterns into a group which represents the ultimate cause
that generates this spatial patterns (a horizontal bar).

Each node uses a second pooling mechanism according to temporal adjacency.
This pooling mechanism uses temporal proximity as distance metric. If a certain
pattern sp4 follows another pattern sp12 often enough, the two are cluster into an
invariant representation formed by several spatial patterns with significant tempo-
ral proximity but not necessarily dot-product similarity. This system is able to
pool together patterns that do not possess a high pixel-to-pixel similarity, but that
nonetheless are caused by the same cause as it varies through time over the receptive
field.

Summarizing, a node can be conceptually thought of as a computational box
with two separate “boxes”, a spatial pooler that stores “quantization points” repre-
senting the incoming input spatial space and a temporal pooler that pools together
“quantization points” that are temporally adjacent into groups, Figure 6.5. The
node generates as output a vector that indicates what temporal group is most likely
being sensed at a particular instant in time.

Nodes throughout the hierarchy go through a learning mode before they switch
to an inference mode. When all the nodes at a particular layer in the hierarchy have
completed their learning process they are all switched to inference mode, and nodes
in the next upper layer start their learning phase. The learning process of an HTM
node can be visualized in Figure 6.6.
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Figure 6.5: An HTM node. Conceptual representation of a Node in an HTM
system.

Operation of the Spatial Pooler

During training, a node is exposed to different input patterns. The node stores
only patterns which are novel enough. That is, when new patterns are compared
to previously stored patterns using a dot product operation, only patterns with a
sufficiently low dot product threshold parameter are considered different and stored.
Figure 6.7 shows some of the “quantization points” stored by a node in layer 1 of
our HTM system with a 4x4 receptive field over the artificial retina. Notice these
spatial patterns consist mostly of vertical and horizontal segments, corners and
intersections.

The node keeps learning patterns of “quantization points” until it fills its spatial
memory. The process unfolds over time in a logarithmic fashion with a rapidly
increasing number of “quantization points” being stored by the spatial pooler early
on during learning, followed by a logarithmic-like pattern of growth later on. Figure
6.8.

Once the learning stage for a level of an HTM system has been completed, all the
nodes in that layer are switched to inference mode. In this mode, a node compares
the incoming input patterns to all the quantization points stored in its spatial pooler
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Figure 6.6: Schematic representation of HTM learning. The spatial pooler
stores input vectors that are dissimilar enough. A node in layer 1 of the hierarchy
receives binary input vectors of the type [0,0,1,0,1,0,1,0].

and determines which one of the stored patterns resembles the input pattern the
closest. This approach is a shortcut of the theoretical guidance, which requires that
at this stage the node produces a distribution of likelihoods in terms of how close the
input pattern is to each of the stored quantization points in the spatial pooler. We
have chosen a winner-take all simplification of this theoretical requirement. Once
this operation has been completed, the spatial pooler then sends the current active
“quantization point” to the temporal pooler.

Operation of the Temporal Pooler

The operation of the temporal pooler is partitioned in three stages. First, the
temporal pooler learns the statistics of temporal transitions between the spatial
patterns (quantization points) stored by the spatial pooler [George and Jarosy, 2007].
Then, using the frequencies learned in the previous step, the temporal pooler groups
quantization points according to their temporal adjacency [George and Jarosy, 2007].
The temporal pooler produces then the output of the node by means of generating
an output vector where all components are “0”, except one component, which has
the value “1”. Each element of the output vector represents one of the groups of
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Figure 6.7: Spatial pooler quantization points. Quantization points stored by
a node in layer 1 of the HTM image recognition system. Patterns correspond to
parts of images over a 4x4 receptive field.

quantization points clustered together by the temporal pooler. In a winner take
all fashion, “1”, represents the temporal group of quantization points with high
temporal proximity among themselves that the node believes its is being currently
exposed to. It is important to understand that each component of the output vector
does not represent a quantization point, rather a cluster of quantization points which
have been determined to lie within temporal proximity of each other.

Learning the temporal transitions of quantization points proceeds by creating a
zero matrix whose rows and columns represent all the quantization points stored by
the spatial pooler. Through training, each time a node was perceiving a quantization
point a1 at time t and a quantization point b3 at time t + 1, a unit was added to
the intersection between the row representing quantization point a1 and the column
representing quantization point b3. Figure 6.9 shows how the time adjacency matrix
looks like after training in one of our simulations. In the Figure, some of the row-
column intersections indicate high-values by using a color code that simply reflects
that a “quantization point” in the specific column of the matrix often followed
a “quantization point” in the corresponding row. The figure also shows how a
theoretical zoom into the matrix could look like.

Clustering “quantization points” into temporal adjacent groups consists on par-
titioning the transition matrix once sufficient training has been provided to the
system. The goal is to partition the matrix in temporal coherent subgroups, that
is, subgroups of spatial patterns that often enough during training tend to follow
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Figure 6.8: Filling of the spatial pooler of a layer 1 node over time. During
the first stages of the learning phase, the node adds new quantization points to
its spatial pool at a fast pace. Over time, the rate of growth of the spatial pooler
substantially decreases.

each other in time. There are several ways of carrying out this partitioning. Here,
we implemented a graph partition approach in which each quantization center rep-
resents a node in the graph and the values of the edges between the nodes represent
the frequency with which one node transitions into another node. The idea is to
maximize the objective J function [George and Jarosy, 2007].

J =
1

2

Ng∑
i=1

ni ∗ ti (6.1)

where ni is the number of elements in the partition and ti can be defined as a
time-adjacency measure defined over Di (disjoint subset of the set of quantization
points c1, c2, . . . , cN) [George and Jarosy, 2007]:

ti =
1

n2
i

∑
k∈Di

∑
m∈Di

T (k,m) (6.2)

where T (k,m) denotes the (k,m)th entry of the time-adjacency matrix T . There-
fore, ti can be thought of as a measure of the average temporal similarity of the
quantization points within cluster Di [George and Jarosy, 2007].

The goal is to find the set of partitions Di = 1, ..., n that maximizes this objective
function [George and Jarosy, 2007]. Unfortunately this is not computationally fea-
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Figure 6.9: Time adjacency matrix. Actual time adjacency matrix produced in
one of our simulations. On the right side, an interpretation of how a theoretical
zoom into the matrix could look like.

sible, so greedy approaches must be used with the risk of reaching local optima that
miss the global optimum. In our HTM implementation, we used the same greedy
method employed by the authors of the HTM theory to partition the temporal ma-
trix. The algorithm goes through the following steps as described in [George and
Jarosy, 2007]:

1. Find the most-connected quantization point in the temporal matrix that is
not yet part of a group (i.e. the quantization point whose row in the time-
adjacency matrix has the greatest sum).

2. Pick the Ntop most-connected quantization points to this quantization point
(we use Ntop of 2, only quantization points that are not already part of a group
are considered).

3. Repeat step 2 for each of the newly-added quantization points. With well-
behaved groups, this process will terminate automatically, because all of point
X’s closest Ntop neighbors are also likely to have point X as one of their Ntop

closest neighbors. If the group size does not automatically close off by the
time the group reaches a certain size, the parameters “MaximumGroupSize”
sets an upper bound by which the process is terminated and no new points
are added).

4. The resulting set of quantization points is added as a new group. Return to
step 1 until all quantization points have been grouped.
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Figure 6.10 shows how the algorithm partitions the graph over time and creates
temporal coherent clusters. The nodes of the graph represent quantization points
and the width of the edges that join them, represent the frequency of transitions
stored in the time adjacency matrix.

(a) Each node in the graph represents a “quan-
tization point” and the edges joining the nodes
represent the frequency by which one “quanti-
zation point” transitions into another.

(b) The first temporal group has been founded
starting of from the most connected quantiza-
tion point

(c) The second temporal group has been deter-
mined using the next top most connected quan-
tization point

(d) The partioning of the graph has been com-
pleted and we have found 3 temporal coherent
groups

Figure 6.10: Formation of temporal groups. The figure represents the sequential
steps carried out by the temporal pooler (as described in the text) as it proceeds in
finding temporal groups using the time-adjacency matrix’s data. Explanatory graph
taken from [George and Jarosy, 2007]

Figure 6.11 shows some temporal groups created by the algorithm just described
on a node in layer 1 during one of our simulations. Notice how each temporal group
is represented by a row and that each of the quantization points within a temporal
group does not necessarily share a high pixel-to-pixel similarity with other quanti-
zation points in the group, they all do show a high degree ot temporal coherence
though.

Once the temporal pooler has used the time-adjacency matrix to partition the
quantization points into temporal coherent subgroups, the node can be switched to
inference mode, where the node analyzes an input spatial pattern and determines to
which one of all the quantization points stored in its memory is most closely related.
A simple dot product operation [George and Jarosy, 2007] is used as a similarity
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Figure 6.11: Temporal groups created by a layer 1 node of our image recog-
nition HTM. Each row represents a temporal coherent group of spatial patterns
that tend to follow each other in time.

metric. The node then determines to which temporal group this input spatial pat-
tern belongs by just mapping which of the disjoint temporal groups contains the
quantization point with the highest similarity to the current input spatial pattern.
The node then, produces an output vector in the following way. A parameter deter-
mines how many temporal groups a node is able to report, if let’s say this parameter
is “6”, the node fills all of the 6 elements of the output vector with “0” except the
element representing the temporal group in which it is included the quantization
point that the node believes it is perceiving at the current time instant. On that
specific element, the vector contains a value of “1”. So the output of the nodes
consists of a vector with 6 elements, in which only one of the elements has the value
“1” and the rest are “0s”, see Figure 6.12.

Supervised Pooling at the Top Level

Each node of an HTM system uses time as a sort of supervisor to cluster together
quantization points into temporal coherent groups using temporal proximity infor-
mation. It is possible though, to use an external signal to pool quantization points
into clusters. This approach makes sense at the top level node when an HTM system
is trying to solve a pattern recognition task. In our experiments, the system was
exposed to several drawings and while all the nodes carried out an unsupervised
approach towards learning, the top level node used an external signal to map input
patterns to external category names provided by the designer of the system. This
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Figure 6.12: Node operation over time. The current active “quantization points”
and “temporal groups” of each node as a result of its input data are indicated in
red and underlined. Notice that although the input pattern varies over time, due to
the existence of temporal coherent groups formed during training, the output of the
node remains stable. Invariance has been achieved over this simple input space.

type of clustering, replaces the temporal pooler of the top node.
We used a very simple matrix that associated each vector learned by the spatial

pooler of the top node (this vector is a row of the matrix) with an index category
(a column of the matrix). The matrix is initialized to 0 at the beginning of the
training process [George and Jarosy, 2007]. At each instant in time during training,
the particular intersection of current active quantization point and current active
index category was increased by one.

6.2.3 Hierarchical Node Operations

Training of an HTM system proceeds in hierarchical steps. At first only the nodes at
the bottom layer of the hierarchy are trained. While on training, these nodes produce
no output. When these nodes have been fully trained and switched into inference
mode, the nodes in the next lever higher up in the hierarchy switch on their learning
stage, and use the output generated by the nodes immediately underneath as training
data. Meanwhile, the nodes higher up in the hierarchy are silent, waiting to start
their learning process when the nodes immediately underneath have completed their
learning stage and have been switched to the inference stage. This whole process
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is repeated all the way up the hierarchy until all the nodes are fully trained and
switched to inference mode. Once a node is fully trained, it can be switched to
the inference mode. Inference is about identifying the temporal group to which the
input spatial pattern is more closely related and passing this information in the form
of a vector to the parent node above [George and Jarosy, 2007].

At the bottom level of the hierarchy, nodes receive their input from some artificial
sensor or file. Higher-level nodes form their inputs by concatenating the outputs
from their child nodes [George and Jarosy, 2007]. For any given parent node, its
input is just a concatenation of the outputs of its children, Figure 6.13.

Figure 6.13: Relationship between the output vectors of children nodes
and the input vectors of parent nodes. The input vectors from parent nodes
are formed by aggregating the output vectors of children nodes.

6.2.4 HTM Implementation of Coincidence Detection

It is important to point out that a pervasive principle of neocortical function, that
of coincidence detection, is present in the node operations of an HTM system. Ba-
sically, each quantization point stored by the spatial pooler is a co-occurrence of
several temporal groups from the node’s children nodes.
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6.2.5 Usage of Probability Distributions in Message Passing

We already explained that the input vector to a parent node is the concatenation
of the output vectors of its children nodes. The children nodes outputs carry infor-
mation about the temporal groups they believe they are perceiving. A child’s node
output is just a vector of 0s and one 1, with the 1 element corresponding to the
temporal group the node believes it is being exposed to 6.13.

The performance of the system could improve by using probability values repre-
senting the likelihood of a temporal group as elements of the output vectors instead
of the current winner-take-all approach. This way, the node would not be force to
settle on a particular temporal group if the input pattern is noisy or ambiguous.
Using this approach, the node could generate as output a probability distribution
of the likelihood that the input pattern it is being exposed to corresponds to each
one of the temporal groups it has learned.

6.3 Results

Our HTM system consisted on an arrangement of 3 hierarchical layers (Figure 6.2).
The bottom layer, layer 1, was composed of a total of 64 nodes (8x8) that completely
tiled the grid input space. Each of these nodes had a receptive field of 4x4 pixels
in the artificial retina’s input grid. Layer 2 consisted of 16 nodes, each node had a
receptive field composed of the 4 nodes immediately underneath in layer 1. Finally,
layer 3 was composed of just one node, whose receptive field was the whole 16 nodes
in layer 2. Learning starts at layer 1 and continues all the way up.

Figure 6.14: Operation over time of the system. The red square indicates the
receptive field of a node in layer 1, and how the spatial arrangements that serve as
input to this node change over time.

We formalized the algorithm described in the previous section and train it on
a set of movies of line drawings. The movies consisted of horizontal and vertical
displacements and flips along the Y axis for each one of the categories shown in
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Figure 6.1. Figure 6.14 shows how training proceeds over time. There was a total of
48 categories with 4 representations of different sizes for each category. Each image
was 32 by 32 pixels. The movies were created by placing one of the categories at 1
of 4 sizes and moving it vertically and horizontally with a flip through the Y axis
included across the whole grid (until the edges of a figure reached the limits of the
grid). A movement was produced from time step t to time step t+1.

6.3.1 Recognition

The system exhibits robust recognition performance on sets of images that had been
distorted with relation to the training images, considerable amounts of noise where
also included in the simulations as shown in Figure 6.15. Note that some categories
are recognized besides a flip about the Y axis, translations and sizes oscillations.
This is the result of the system having being trained with flipped and un-flipped
image categories of different sizes and that have moved along the whole artificial
retina. This shows the ability of the system to optimally learn the particular type
of invariances under which it was trained.

Figure 6.15: Unseen images correctly recognized by HTM system (from
left to right and top to bottom). Computer, white board, table lamp, steps,
wine glass, cat, stack, letter A, computer, rake, dog, mug, bed, hat, helicopter,
bus, spoon, window, helicopter and ladder. If these images are compared with
the training images in Figure 6.1, it is apparent that the trained HTM system has
developed generalization and invariance capabilities to translation, distortion, noise,
flips along the Y axis and size changes.

82



CHAPTER 6. HTMS IN IMAGE RECOGNITION

Different combinations of the algorithm parameters alter the specificity and sen-
sitivity of the system. So far we have achieved a best simulation with a recognition
accuracy of 93% over training images subjected to 3% noise ratio and a distor-
tion chance of also 3% along and around the edges of the drawings. Figure 6.15
shows some images from the training library that underwent the described levels of
distortion and noise and which were correctly recognized by our system.

6.4 Conclusions and Directions for Future Research

This chapter of the thesis has described our HTM system in the context of a visual
example. The system uses time as a supervisor by means of using proximity in time
to group diverse spatial patterns into temporal coherent invariant representations
of a certain cause. The hierarchical topology of the systems allows it to build
increasingly complex configurations by using rearrangements of simpler parts: edges,
corners and lines that give rise to more complex geometric figures when combined.

The key computational actor of the HTM system is the node. Each layer in the
hierarchy is composed of several nodes. Each node is composed of two parts. A
spatial pooler reduces the potentially infinite input space into a finite set of input
patterns and a temporal pooler uses time as a supervisor to group quantization
points into temporally-adjacent sets. Each parent node concatenates the output
vectors of its children nodes to create its own input vectors. The pooling of several
quantization points into a temporal coherent cluster produces an invariant represen-
tation of a feature. The spatial pooler of a high-level node learns coincidences of the
invariant representations of its children nodes. The spatial-pattern learning process
learns in the spatial dimension by storing particular coincidences of the invariant
representations from lower level nodes [George and Jarosy, 2007]. The whole hier-
archical system can be thought of as alternatively learning invariance (determining
temporal-adjacent clusters) and selectivity (storing particular spatial arrangements
within the input space) along the whole network to enable the system to recognize
different objects besides their transformations. The alternation of these two tech-
niques prevents the combinatorial explosion often associated to scalability in the
pattern recognition problem.

The ability of the human brain to solve the invariant pattern recognition problem
has been the subject of intense research for decades. Several systems have tried
to emulate the capabilities of the human visual systems using various approaches.
However, the performance of those systems has so far been limited and their ability
to generalize questionable. HTM theory postulates that using continuity in time is
the key cue to how the brain solves the problem. HTMs are able to capture multiple
temporal and spatial scales at the same time.

HTM theory tries to encapsulate the algorithmic properties of the neocortex.
The main capability of an HTM system is being able to discover the ultimate causes
of persistent and recurrent patterns in the world, underlying sensory data. A cause
can be a human face, a species of animal, a word, or an idea. An HTM system tries
to create a model of the recurrent causes that persist in its input data by creating
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internal representations of those causes. The learning period requires repeated ex-
posure through the sensory input to causes that vary over time and that yet are
persistent.

The physical world consists of a hierarchy of causes that an HTM tries to model.
The HTM builds representations of lower level causes and higher level causes. Higher
level causes are formed by combinations of lower level causes. Lower level causes
in the hierarchy span shorter time dynamics and smaller areas of the input space
[George and Jarosy, 2007]. The temporal dynamics of higher level causes is slower
and they occupy wider regions of the input space (receptive field).

Discovery of causes is a pre-requisite towards later recognition. Once an HTM
system has built a model of the world, it can infer what may be the most likely
culprit of novel sensory input using the statistics stored throughout the hierarchy.
During inference, information flows through the hierarchy all the way up to the top
node that settles on the likeliest cause for its receptive field current input.

The described implementation of an HTM system has not yet fulfilled all of the
requisites that the theoretical HTM postulates. In the following chapters we will
examine the performance of a simple binary HTM (as the one described in this
chapter), an HTM implementation from the authors of the theory containing all
the theoretical requirements of the HTM paradigm and an extended version of our
own binary HTM implementation to improve the performance of the algorithm in
multivariable time series data sets.
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Chapter 7

Extended HTMs in Sign Language
Recognition - Comparative Study

7.1 Introduction

In this chapter we present an application of Hierarchical Temporal Memory (HTM)
to the recognition of Sign Language [Rozado et al., 2010b]. In particular, we develop
an extension of traditional HTM in order to adapt the algorithm to problems where
instances possess a temporal structure that develops over time. We use as a proof of
concept of our ideas, the specific problem of Australian Sign Language Recognition.
We also compare the performance of our extended HTM system to well established
machine learning approaches used in the literature [Rozado et al., 2011c] for Sign
Language Recognition, SLR.

The theoretical aspects of the HTM paradigm have been thoroughly described
in [Hawkins, 2006], [Hawkins, 2004] and in Chapters 4 and 6. An up to date version
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of the theory with a probabilistic model of temporal aggregation and feedback in-
formation flowing from parent nodes to children nodes to disambiguate noisy inputs
can be found in [George and Hawkins, 2009]. As the generative models that they
are, HTM algorithms can be used to solve problems on different domains: pattern
recognition, control or forward prediction [Numenta, 2006b]. In this Chapter as in
the rest of the thesis, we center our attention to HTMs applied within the realm of
temporal pattern recognition.

The main objective of an HTM network trained for pattern recognition is the
development of generalization capabilities [George and Hawkins, 2005]. That is,
given a set of categories, each one of them represented by a set of instances, the
system should learn to properly separate the category-space using a small subset of
training instances from each category set. After training, the system should be able
to generalize and properly assign the correct categories to unseen instances from the
category space.

HTM algorithms perform robustly in traditional machine learning tasks such as
image recognition [George and Hawkins, 2005]. Problems where HTM excel are those
with an inherent spatio-temporal structure and whose instances are fully represented
spatially at any given time instant. For problems where an instance is composed of
a time series of spatial arrangements, HTMs performance is not as robust.

In this paper we develop a feature for HTMs to perform better on learning tasks
whose instances unfold over time: we modify the HTM’s top node by enabling
it to store sequences of spatio-temporal input patterns arriving at the top node
over time. This top node also performs similarity measurements among incoming
sequences in order to map unseen instances to known categories. The rationale for
using sequences to map stimuli to categories has been justified in [Abeles, 2004],
[Rabinovich et al., 2006], [Rodŕıguez and Huerta, 2004].

We illustrate the performance of our modified HTM system in the problem of
Sign Language Recognition. Sign language is used by deaf people to communicate
by means of using sequences of hand movements instead of speech. Sign Language
constitutes a good fit for the type of problem that we wanted to tackle: category
spaces whose instances are composed of an ordered sequence of spatial arrangements.
Therefore, we chose a data set containing time series of hand movements representing
signs from Australian Sign Language (ASL) as a proof of principle that our extended
HTM system can perform well on this type of problems.

In [Starner et al., 1998], authors use a four-state HMM for the recognition of
a 40 categories set of American Sign Language. The recognition accuracy of this
video-based approach was 91%. The authors used a language model to improve
recognition accuracy in a sentence-based context, without which, the performance
of the algorithm in isolated SLR dropped to 74%. The work in [Liang and M.,
1998] shows another HMM being applied to recognize a set of 250 categories of
Taiwanese Sign Language (TSL) using a DataGlove. This work divided the input
data in several predefined and supervised categories: posture, position, orientation
and type. Authors achieved high recognition accuracies for categories embedded
within sequences. However, the recognition accuracies for isolated gestures, without
the usage of language models, also dropped the recognition accuracy to 70% for 250
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categories and to 84% for 71 categories. The work from [Fang and Gao, 2002] used
a combination of Simple Recurrent Networks (SRN) and HMM and a high number
of dimensional features: 48. Their methods were computationally demanding for
real time usage and oriented towards identifying proper partition of sentences and
signer independent recognition and achieved a high recognition rate of Chinese Sign
Language. The work in [Holden et al., 2005], also used HMMs for video based SLR
of sentences, pulling heavily on a language model and predefined features to be
recognized as well as face tracking. The authors of the data set [Kadous, 2002] that
we used for our work, achieved SLR accuracy of up to 93% using a symbolic decision-
tree like approach. However, their method is intrinsically of a highly supervised
nature, since the features to be matched by the algorithm were previously defined
by the authors. Recently, authors in [Kapuscinski and Wysocki, 2009] have also
used HTMs for Polish SLR using video images. They achieved a 96% recognition
rate for isolated words on a vocabulary set consisting of 101 categories. In their
work, authors used an elaborated and innovative pre-processing of the data to divide
gestures into their spatial structure (position, shape and movement of hands) and
their temporal structure (visemes) and then fed the HTM algorithm with this data
representation.

As shown previously, state of the art SLR reaches robust levels of performance
[Liang and M., 1998]. Yet often, methods in the literature make use of pre-defined
features to be search for by the recognition algorithms, pre-processing of the data,
large feature input vectors and language models for additional support. When lan-
guage models are not used, performance decreases substantially [Starner et al., 1998].
This chapter shows that our extended HTM system outperforms traditional HTM
algorithms and that it reaches levels of performance similar to those in the exist-
ing literature using low dimensional features and without the usage of a language
model, pre-defined features to be detected, pre-processing of the input data, nor a
customized vocabulary set. Our approach has potential applications in simultane-
ous translation of Sign Language to natural language or between different dialects of
Sign Language as well as applicability to other multi-variable time series recognition
problems since it is not optimized nor specifically designed to handle the type of
input data used in this work.

7.2 Methods

For our analysis, we compare under different contexts the SLR accuracies of binary
HTMs (our own in-house version of traditional binary HTMs as explained in chapters
4 and 6), Markovian HTMs (a more sophisticated implementation using Bayesian
belief propagation), our extended HTM system, the Metafeatures TClass algorithm
and Hidden Markov Models.
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7.2.1 Data

The data set used to measure the performance of our algorithms was a publicly avail-
able data set of the 26 letter-alphabet Australian Sign Language (ASL) [Kadous].
It consists of a vocabulary of 95 signs categories with 27 instances per category
[Kadous, 2002]. The data was recorded from a single native signer volunteer using
ASL. This data set was chosen for its open accessibility, easiness of experimental
reproducibility and the appropriateness of the data structures contained within to
the type of problem we wanted to tackle. The list of categories in the training set
is shown in Table 7.1.

God I Norway alive all
answer boy building buy change mind
cold come computer PC cost crazy
danger deaf different draw drink
eat exit flash-light forget girl
give glove go happy head
hear hello his/hers hot how
hurry hurt innocent is true joke
juice know later lose love
make man maybe mine money
more name no not my problem paper
pen please polite question read
ready research responsible right sad
same science share shop soon
sorry spend stubborn surprise take
temper thank think tray us
voluntary wait not yet what when where
which who why wild will
write wrong yes you zero

Table 7.1: List of all the Australian Sign Language categories contained in the data
set and used in the simulations.

The data set was captured at 100 Hz using a pair of electronic data gloves
containing accelerometers and sensors to track 11 channels of information for each
hand: x, y and z spatial coordinates of the hand, the roll, pitch and yaw rotation
angles of the wrist and a bend coefficient for each finger, see Figure 7.1. A particular
configuration of all the channel variables at one instant in time is referred to in this
paper as a frame. The average length of each sign was 57 frames. As illustrated in
Figure 7.1, when performing a particular sequence of hand movements, the gloves
provide dynamic data representing the spatio-temporal transitions of the tracked
variables as they oscillate over time while the hands “utter” a particular sign.
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Figure 7.1: Channel dynamics of a sign. Visual representations of how channel
dynamics of the right hand unfold overtime for several instances of the sign “danger”.

7.2.2 Markovian HTM

A more sophisticated implementation of an HTM system than simple binary HTMs
involves the use of a probabilistic generative model (Figure 7.2), and Bayesian belief
propagation, (Figure 7.3). We refer to this type of HTM network as a Markovian
HTM. In such an implementation, each node contains a set of coincidence patterns
or CPs: c1, c2, .., cn ∈ C and a set of Markov chains or MCs: g1, g2, .., gn ∈ G. CPs
represent co-occurrences of sequences from their children nodes. Each MC is defined
as a subset of the set of CPs in a node. CPs capture the spatial structure of nodes or
sensors underneath in the hierarchy by representing vectorially the co-activation of
MCs in a node’s children. A MC activated in a parent node concurrently activates its
constituent MCs in the node’s children. The MCs capture the temporal structure of
a set of CPs, i.e., the likelihood of temporal transitions among them. The incoming
vectors to an HTM node encapsulate the degree of certainty over the child MCs.
With this information the node calculates its own degree of certainty over its CPs.
Based on the history of messages received, it also computes a degree of certainty
in each of its MCs. This information is then passed to the parent node. Feedback
information from parent nodes toward children nodes takes place by parent nodes
sending to children nodes their degree of certainty over the children node’s MCs.

We used Numenta’s Nupic package (v1.7.1) [George and Hawkins, 2009] which is
an implementation of a probabilistic Markovian HTM to run simulations with this
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Figure 7.2: HTM as a generative model. A simple two level hierarchy consisting
of a parent node and 2 children nodes is shown. Each node contains a set of CPs,
c’s, and a set of MCs, g’s, defined over the set of CPs. A CP in a node represents a
co-activation of a subset of MCs in its children nodes.

type of HTM implementation.

7.2.3 Metafeatures TClass

TClass is a supervised learner for multi-variable time series created by the author
of the sign language data set used in this work [Kadous, 2002].

TClass works by first looking for sub-events in the training streams - in forms that
the user has previously specified. Then, TClass analyses the extracted sub-events
and selects those that are important, typical or distinctive. For each of the training
instances, the algorithm looks for the sub-events found before. The presence or
absence of these temporal patterns are used as attributes for propositional learning.
The propositional learner built in this fashion is then used to perform inference on
test data.

TClass has been used in classification tasks such as electrocardiographs classifi-
cation and SLR [Kadous]. TClass runs on any platform that supports Java 2 and
has been released under the Gnu General Public License.

7.2.4 Hidden Markov Models for SLR

Hidden Markov Models have been often been used in speech recognition and SLR
[AL-Rousan et al., 2009; Mohandes et al., 2007; Fang and Gao, 2002; Liang and M.,
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Likelihood over
CPs:

yt(i) = P (−et | ci(t)) ∝
∏M

j=1 λ
mj

t (r
mj

i )

where CP ci is the co-occurrence of rm1
j ’th MC from child 1, rm2

i ’th MC
from child 2,. . . , and rmM

i ’th MC from child M.
Feed-forward
likelihood of
MCs

λt(gr) = P (−et0 | gr(t)) ∝
∑

ci(t)∈Ck αt(ci, gr)

α(ci, gr) = P (−et | ci(t))
∑

cj(t−1)∈Ck P (ci(t) | cj(t− 1), gr)αt−1(cj , gr)

α0(ci, gr) = P (−e0 | ci(t = 0))P (ci(t = 0) | gr)
Belief distri-
bution over
CP

Belt(ci) ∝
∑

gr∈Gk βt(ci, gr)

βt(ci, gr) = P (−et | ci(t))
∑

ej(t−1)∈Ck P (ci(t) | cj(t− 1), gr)βt−1(cj , gr)

β0(ci, gr) = P (−e0 | ci(t = 0))P (ci | gr)π0(gr)
Message to be
sent to children
nodes

πmi(gr) ∝
∑

i I(ci)Bel(ci), where

I(ci) =

{
1 if gmi

r is even
0 otherwise

Figure 7.3: Belief Propagation Equations for HTM Nodes. The reader is
encouraged to take the Node N2,1 from Figure 7.2 as reference. N2,1 contains 6 CPs
and two MCs. Each MC is composed of 3 CP. In this table ci is the ith coincidence
in the node. gr is the rth MC in the node. −et indicates the bottom up evidence
at instant t. −et0 indicates the evidence sequence from time 0...t. +e stands for
top-down evidence. λ is the feed-forward output of the node. λmi represents the
feed-forward input to the node from its child node mi. π is the feedback input to the
node. πmi is feedback output of the node to its child node mi. y is the bottom-up
likelihood over CPs in a node. α is a bottom-up state variable for the MCs in a
node. β is a state that combines bottom-up and top-down evidence for a MC in a
node. Bci represents belief in the ith CP in a node.

1998; Starner et al., 1998]. HMMs assumes that the modeled process is determined
by a finite number of states and that states change randomly once per time step in
a statistically predictable way (Markovian assumption)[AL-Rousan et al., 2009].

In our work, gesture categories are modeled as a single HMM with N states
per gesture (s1, s2, . . . , sN). A compacted notation for an HMM is: λ = (π,A,B).
A = aij is the state-transition probability distribution with aij = P (qt = sj | qt−1 =
si); the index runs over 1 ≤ i, j ≤ N . The observation symbol B = bj(k) is the
probability distribution in state sj, with bj(k) = P (vkt | qt = sj); the index runs
over 1 ≤ j ≤ N and 1 ≤ k ≤ M . M is the number of distinct observation symbols
per stated denoted by V = v1, v2, . . . , vM . π = πi is the initial state distribution
with πi [AL-Rousan et al., 2009].

HMM based pattern recognition involves three separate stages:

• The training stage consists on determining the (π,A,B) triplet that most
probably described a set of observations of a category. That is, estimating
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the parameters λ = (π,A,B), given a set of observations O. The Viterbi
algorithm solves this problem by iteratively adjusting the parameters π, A,
and B. At each iteration, the most likely path through an HMM is calculated.
This path produces the current assignment of observation vectors Ot to states
sj [AL-Rousan et al., 2009].

• Determining the most likely sequence of states S = s1, s2, . . . , sT that could
caused the observation sequence O corresponds to the decoding stage. The
Viterbi algorithm is used to determine the best state sequence.

• Evaluation consists of finding the mot likely HMM (π,A,B) from a set that
generated a given sequence of observations (in our work: hand movements).
The probability of an observation given a particular HMM is calculated with
the forward algorithm. That is, given the observation sequenceO = O1, O2, . . . OT

and the model λ = (π,A,B), the P (O | λ) probability that the observed se-
quence is produced by the model is calculated.

For our simulations, we used the General Hidden Markov Model library (GHMM)
a freely available LGPL-ed C library implementing algorithms, data structures and
training routines for HMMs1.

7.2.5 Extended HTM

We have developed a binary version of the HTM theory as proposed in [Hawkins,
2006]. Forward (up the hierarchy) message passing from children nodes to parent
nodes is implemented using binary vectors, containing just 1s and 0s in each element
without feedback messages from parent nodes. A binary vector indicates which tem-
poral group is active at a time. Our extended HTM formalism has been developed
in order to adjust the system to the specific needs of multivariable time-series.

The fundamental modification of our local HTM system with respect to tradi-
tional HTM networks is the modification of the network’s top node whose task in
original HTM algorithms is simply to map incoming vectors from children nodes
to categories. The newly defined top node stores instead complete sequences of
spatio-temporal input vectors in its sequential pooler and maps those sequences to
categories.

We have tested our approach in the problem of sign language recognition. Sign
language recognition is fundamentally different from previously tried out problems
within the HTM community, [George and Hawkins, 2005]. Most problems under-
taken by HTMs, [Numenta, 2006b], consist of instances whose spatial configuration
is fully represented at any time instant. Sign language is composed of sequences of
spatial arrangements over time that together constitute a sign. At any given time
t, the complete representation of the sign is not available, just a particular spatial
arrangement of the hands. It is the particular temporal sequence of hand arrange-
ments what constitutes a sign. The fundamentally different nature of this kind of

1Available at: http://ghmm.org/

92

http://ghmm.org/


CHAPTER 7. EXTENDED HTMS IN SIGN LANGUAGE RECOGNITION -
COMPARATIVE STUDY

problem and the poor performance of traditional HTM networks to deal with it
justified the undertaking of modifications within the HTM inner-workings.

Topologically, our extended top node sits at the top of the HTM network, re-
ceiving its inputs from a traditional top node underneath serving the purposes of
its unique children node, see Figure 7.4.

Figure 7.4: Optimal Topology of the HTM Network used for Sign Language
Recognition. The extended top node sits at the top of the topology receiving its
inputs from a traditional top node. The reasons of the topological arrangement of
the sensor channels responds to the HTM theoretical requirement of clustering in
the bottom levels of the hierarchy channels with high correlation, leaving the top
node to figure out more distant or elusive dependencies, see Figure 7.11.

To deal with the sign language data structures, the extended HTM top node
stores sequences of incoming vectors from children nodes in an abstraction that we
referred to as “sequential pooler” and maps the whole sequence to a specific category,
not just the individual elements. Each element of the sequence is a spatio-temporal
configuration pattern of the hands at any given instant. The aggregation of this
elements form sequences that encapsulate the whole spatio-temporal structure of
a sign as it evolves over time. Figure 7.5 illustrates how the learning of a sign
comes about over time in our modified top node by storing the sequence of spatial
coincidences that follow each other in time during the “utterance” of a sign. A
whole sequence captures the entire spatio-temporal structure constituting a sign
from beginning to end, see Figure 7.6.

Since the spectrum of all possible sequences (to store during training and to rec-
ognize during inference), would quickly overflow the memory available to the node,
a means to cluster different sequences into the same category was needed. This clus-
tering was carried out by performing similarity measurements between an incoming
sequence and previously stored sequences and classifying the incoming sequence as
belonging to a certain cluster of similar sequences according to a threshold.

The need for a measurement of similarity is two-fold: It is needed during train-
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Figure 7.5: Extended HTM formalism - A new Type of Top Node. Tradi-
tional top nodes receive binary vectors representing the temporal groups active in
the nodes underneath in the hierarchy and map this incoming vectors to categories.
Our extended top node instead stores sequences of incoming vectors in an abstrac-
tion we refereed to as sequential pooler and maps whole sequences to categories.
These sequences capture the “utterance” of a sign over time.

ing in order to determine which sequences to store and which ones to disregard, in
case of high similarity to an already stored sequence. A similarity measurement is
also needed during inference to determine which sequence, from the set of stored
sequences in the sequential pooler of a top node has the highest degree of similarity
to an incoming input sequence, see Figure 7.7. The similarity measurements be-
tween sequences representing signs were carried out using the Needleman-Wunsch
algorithms [Needleman and Wunsch, 1970] that employs dynamic programming for
sequence alignment. Dynamic programming has been successfully used by the bioin-
formatics research community to calculate the degree of similarity between genetic
sequences. The inner workings are shown in Figure 7.8 where a matrix, D, represent-
ing the alignment between two candidate sequences, SeqA and SeqB, is calculated
using a scoring scheme that scores matches, mismatches and gaps between both
sequences. Each element, D(i, j), in the matrix row i and column j is calculated
using the function:

|D(i, j)| = max


D(i− 1, j − 1) + s(xi, yj)

D(i− 1, j) + g

D(i, j − 1) + g

(7.1)

The s function represent the score for a match or a mismatch at the matrix
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Figure 7.6: A Sequence Representing a Sign as Stored in the Extended
Top Node. A complete representation of a whole sign from beginning to end in
sequence form as represented in the extended top node by the sequence: e1, e4, e4,
e2, e1. Each element of the sequence represents a spatio-temporal configuration of
the hands.

element D(i, j) according to the corresponding scoring scheme. The g constant
indicates the gap cost according to the scoring scheme. The score at the bottom
right of the matrix, see Figure 7.8, indicates the degree of similarity between both
sequences for the global alignment. The alignment can be traced back using a
traceback matrix, T, starting from the bottom right element and traveling backwards
according to:

T (i, j) = argmax


D(i− 1, j − 1)

D(i− 1, j)

D(i, j − 1)

(7.2)

7.2.6 Experimental Design

We measured recognition accuracies and the computational resources taken by each
HTM algorithm on an 32 bit Intel Core Duo CPU E6550 @ 2.33GHz and 2.00
GB RAM with Windows 7 installed. The measurements were done with the time
function of the time module from Python. Ten runs were carried out for each
simulation and the mean and variance were calculated from the results.

Several topologies were tried out varying the number of layers in the network as
shown in the Results section, see Figure 7.12. The topology shown in Figure 7.4 was
selected after it proved to be the one that optimized the performance of the network
during inference over several alternative network designs.

The suitability of the optimal topology in Figure 7.4 was confirmed by a cross
correlation analysis, see Figure 7.11. HTM theory predicts that HTMs networks
work better if highly correlated channels are grouped in the lower levels of the
hierarchy [Hawkins, 2006], leaving the upper layers to find out more complex, distant
or not so obvious correlations. The network topology that we found to be optimal
according to its performance during inference was in fact one that grouped highly
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Figure 7.7: Alignment Rankings. The extended top node performs sequence
alignment between each incoming sequence and all the previously stored sequences.
A ranking according to similarity score obtained from the sequence alignment algo-
rithm is generated. The category of the stored sequence with the highest similarity
to the incoming sequence is inferred to be the same as the category of the incoming
sequence.

correlated input channels, such as the fingers of each hand, in lower level nodes,
Figures 7.11 and 7.4.

We measured the performance of the different methods being tested by measur-
ing, after training, what percentage of unseen signs’ instances were assigned to their
proper categories using the inference scores provided by the corresponding algorithm.
K-fold cross validation was used during simulations to determine the recognition ac-
curacy during inference for each algorithm being compared. The training data set
was randomly partitioned into 10 groups. Each learning algorithm was trained 10
times, using all of the training set data points except one and then tested on the
data left out in the iteration. The number of errors was recorded and the mean error
over the 10 tests was reported as the accuracy level achieved by the algorithm.

For the cross validation analysis in our simulations, we used a uniform value of
k = 10 since it seems to be a good rule of thumb, although the true best value prob-
ably differs for each algorithm and each data set. We chose k-fold cross validation
for being less “wasteful” of data than test set cross validation and less “expensive”
than leave-one-out cross validation.

Our lack of in house electronic data gloves hardware made us rely on a pre-
viously generated and publicly available data set whose number of categories and
instances per category was predetermined. In order to simulate the performance of
the algorithms with additional training instances per category, we generated 23 ar-
tificial instances per category by averaging the values of random tuples and triplets
of instances from the time series data set.
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Figure 7.8: Dynamic programming. The extended top node uses sequence align-
ment using dynamic programming to measure similarity among two sequences. The
external row and column represent 2 sequences formed by spatial coincidences units.
The score at the bottom right of the matrix indicates the top global alignment be-
tween both sequences. A scoring scheme was used to score matches, gaps and
mismatches in the alignments.

7.3 Results

The original data contained intrinsic noise, making it necessary to filter the data,
see Figure 7.9. For each channel, an average value for each category was determined.
Then, when any instance differed significantly from the category average, the dif-
ference was subtracted from the absolute values for that particular instance. This
procedure visibly reduced noise deviations in the data set.

We created an HTM topology formed by 3 layers as shown in Figure 7.4 that
proved to be the one that optimized the performance of the network over several
alternative network designs as explained below. The bottom layer nodes received
their input data from the 11 channels of input data coming from each glove. Several
topologies were tried out varying the number of layers, nodes, fan-in edges, fan-out
edges, spatial-pooler specificity coefficients and clustering coefficients for the nodes.

Since the original data contained continuous variables, the next filtering step
was to transform the continuous input values into discrete input values. That is,
the continuous input space had to be converted into a discrete input space. For each
channel, the range of possible values was segmented into a finite number of regions.
Each region represented a particular discrete value of the input space. If the value of
a continuous variable from an input channel fell into a particular region, the channel
adopted the discrete value associated with that region.

An entropy analysis for each channel was performed in order to determine the
proper segmentation value for each channel, see Figure 7.10. The objective was to
determine in how many discrete segments the continuous variable should be divided
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Figure 7.9: Pre-processing of the data for normalization purposes. Signals
from the original data set underwent a normalization process to remove offsets and
drifts in the data.

in order to minimize entropy. The entropy of a sequence of values in a channel
X = x1, x2, x3, ..., xN is defined as:

H(X) =
N∑

n=1

(pi · log(pi)) (7.3)

pi =
|xi|
||X||

(7.4)

||X|| =
N∑
1

(|xi|) (7.5)

The probability of value i is represented as pi, |xi| is the number of times value
xi occurs and |X| is the length of the sequence. The optimal parameters suggested
by the entropy analysis and confirmed by manual supervision settled down on seg-
mentation values between 2-6 regions for each channel.

A cross correlation analysis was performed in order to find out correlations among
input channels, see Figure 7.11. This information was used to design the optimal
network topology, see Figure 7.4. HTMs work better if highly correlated channels
are grouped locally in the lower levels of the hierarchy [Hawkins, 2006], leaving
the upper layers to find out more complex, distant or not so obvious correlations.
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Figure 7.10: Entropy analysis of left hand. Determining the right partitioning
values, ν, to transform the continuous input variable into ν discrete states. The op-
timum ν according to simulation trials coincided with low entropies when comparing
different ν values’ impact on performance. The entropy of a sequence of values in a
channel X = x1, x2, x3, ..., xN is defined in the text in Equation 7.3.

Accordingly, our network topology grouped in its bottom layers those variables that
were highly correlated according to Figure 7.11.

HTM theory predicts the ability of HTM networks to warp time by increas-
ing the number of layers in the topology [George and Jarosy, 2007]. That is, a
higher number of layers in the topology should extend the temporal invariance of
the algorithm at the higher nodes of the network and hence, the HTM algorithm
should perform learning and inference on problems where data structures slowly
unfold over time. To test this theoretical prediction, we carried out a number of
simulations testing the recognition accuracy of different Markovian HTM networks
with increasing number of layers in their topology to determine how increasing the
number of layers affects performance. Since HTMs make an inference for each time
instant, or frame, an aggregation of all the inferred categories over the whole length
of a sign was performed. The most common category over the set of all the infer-
ences was taken as the inferred category for the whole sign. As can be seen in Figure
7.12, increasing the number of layers improves performance on the problem at hand
but only up to the 3 layers level. Increasing the number of layers further does not
improve recognition performance. This first experiment highlighted the necessity
for HTM algorithms to be expanded in order to accommodate recognition problems
where instances unfold slowly over time.

Next, we compared the recognition accuracies reached by the different methods
being compared in this work and our extended HTM algorithm. Figure 7.13 provides
a summary of results for different simulation types and methods.

The results of the simulations using a binary HTM network as described in
[Hawkins, 2006] are in rows 1-3. Binary HTM networks obtained the poorest recog-
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Figure 7.11: Cross Correlation Study. Cross-correlation matrix of the 22 chan-
nels from the data set. This matrix was used to find the optimal topology of the
network since highly correlated input channels should be grouped in the network’s
lower layers. All the fingers of each hand are highly correlated. This justifies its
clustering in the lower layers of the HTM topology employed.

nition accuracy results of all the methods being compared for the task of SLR. This
can be explained in the sense that the top node in this binary HTMs was just trying
to guess the proper category of an instance from a given frame during the perfor-
mance of a sign. However, a given time frame of the 11 channels of information for
each hand can be shared by several signs since a frame is just a flash-view arrange-
ment of the hands in space. Only the appropriate sequence of spatial arrangements
over time uniquely constitutes a sign. As explained above, inference was carried
out by pooling the inferences for all the frames constituting a sign. As Figure 7.13
shows, this approach was not very successful to deal with this type of problem.

The recognition accuracy of a Markovian HTM network using Markov Chains
for its temporal clustering is shown in row 4 of Figure 7.13. This Markovian HTM
using a probabilistic Bayesian-like model with Markov Chains improves performance
significantly over a binary HTM. Still, the approach does not warp time enough for
robust recognition.

Row 5 shows the results of the Metafeatures T-Class approach used by the cre-
ators of the sign gestures data set used in this work. Row 6 shows the results of
using HMMs on the data set. Both the Metafeatures T-Class approach and a tra-
ditional HMM algorithm obtained robust recognition results on the sign language
data set. This was expected since both methods possess an established track of
robust recognition performance in the literature [Kadous, 2002; AL-Rousan et al.,
2009; Mohandes et al., 2007] for this type of problems.

The rest of the simulations, rows 7-16, were carried out with our extended HTM
system as described previously and employed different degrees of specificity and
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Figure 7.12: Optimal topology search. Recognition accuracy during inference
for Markovian HTM networks with different number of layers. The bars show the
percentage of correct classifications achieved by 1, 2, 3, 4, 5 and 6 layer networks.

generalization capabilities depending on the degree of granularity used to partition
the input space. If a simulations was carried out by partitioning the input space
in a high number or regions (5 or more), the “Spe” tag was used for Specificity.
That is, a high degree of granularity is used in the transformation of the continuous
input space into a discrete space so high discrimination between similar values can
be achieved. If a simulation was carried out by partitioning the input space in just
a few regions (4 or less) the “Gen” tag was used for Generalization, see results in
Figure 7.13. In this way, values that are not so close might be assigned to the
same region since the continuous input space is partitioned into just a few regions.
Simulations with input data derived from the original data such as first and second
derivatives, integrals and averages of the position information for each of the x, y and
z channels, are indicated with the “Der”, “Der2”, “Int”, and “Ave” tags in Figure
7.13. Simulations in which only the channels from the right hand were used are
indicated by the “Rha” tag. Combinations of different HTM networks that exploit
different data representations improve the performance of the algorithm. Results of
combining several data representations are shown in rows 14, 15, and 16 in Figure
7.13.

The degree of granularity used for the discretization of the continuous input
space in the data set was of critical importance for the performance of our extended
HTM algorithm. A trade-off emerged between the specificity and generalization
capabilities of the network. Excessive granularization, that is, partitioning the con-
tinuous input space into too many regions, increases the specificity of learning, but
leads to over-fitting, lesser generalization abilities and also an explosion in terms of
storage and processing requirements. The more instances available for training, the
higher the degree of specificity that can be reached, but our data set was constrained
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Row Simulation type Accuracy

1 Binary HTM (Gen) 23%

2 Binary HTM (Spe) 27%

3 Binary HTM (Optimal) 38%

4 Markovian HTM 61%

5 Metafeatures TClass 93%

6 Hidden Markov Models 88%

7 Extended HTM with DP (Gen) 73%

8 Extended HTM with DP (Spe) 74%

9 Extended HTM with DP (Rha) 70%

10 Extended HTM with DP (Der) 57%

11 Extended HTM with DP (De2) 38%

12 Extended HTM with DP (Int) 59%

13 Extended HTM with DP (Ave) 56%

14 Combined Extended HTM (Gen+Spe) 82%

15 Combined Extended HTMs (Gen+Spe+Rha) 85%

16 Combined Extended HTMs (Gen+Spe+Rha+Der+De2+Int+Ave) 91%

Figure 7.13: Simulations performance. Recognition accuracies during inference
for the different methods being compared in this work. The last 3 rows show the
results of combining several data representations in our extended HTM system.

to just 27 samples for each sign. Hence, a highly partitioned input space hampers
the ability of the network to generalize and produce proper categorization on unseen
input signs. On the other hand, a very unspecific partition of the input space, favors
generalization capabilities but also decreases the specificity of the network, that is,
the number of false positives increases. An entropy analysis was performed to find
out the optimum degree of granularity needed to transform the input space into
a discrete space while maintaining an optimum trade-off between specificity and
generalization capabilities. Some granularizations, or data representations, were
optimal just for the recognition of some signs while not for others. There was no
apparent optimum data representation for all signs. Combinations of different HTM
networks through a pooling system that aggregates the results of different network
simulations improved overall performance of the system with accuracy jumping up
to 91%.

The input data’s absolute x, y and z coordinates of the hands is sometimes
not enough to completely describe a sign. Other variables such as first and second
derivatives of the x, y, and z coordinates further describe a particular sequence
of hand movements. Therefore, we used derived data from the absolute values
provided by the data set and performed simulations using the derived variables such
as velocity and acceleration information corresponding to the x, y and z variables.

Combinations of different HTM networks that exploit different data representa-
tions improve the performance of the algorithm. Therefore, a method was needed
in order to carry out combinations of results of several simulations. We settled
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Figure 7.14: Network aggregation. The results of HTM networks with different
configuration parameters and fed with different data representations can be pooled
to improve overall performance.

down with a simple aggregated sum of results from different simulations as a way
of pooling the results of several simulations into a combined result, see Figure 7.14.
That is, each trained HTM network was tested by making it to perform inference
over a set of unseen instances. For each inference over an unseen instance, a rank of
sequences stored in the sequential pooler of the top node which were similar enough
to the input instance was generated. Every sequence in the rank had a particular
score and category associated with it. The score was the result of performing a
global alignment between the input sequence and this specific sequence stored in
the sequential pooler. Pooling the results of several simulations simply consisted of
adding all the scores associated to a certain category in the similarity rank generated
for each input instance, see Figure 7.15.

We also studied the impact of training sets vocabulary size on recognition accu-
racy, i.e. how increasing the number of categories to be recognized negatively affects
performance for the different algorithms being compared. However, the degree of
negative impact is different for each method as can be seen in Figure 10.11.

To determine the effect on recognition accuracy of increasing the number of
training instances for each method being compared, we plotted the results of simu-
lations in which we increased the number of training instances in discrete steps for
the 5 methods being compared. As can be observed in Figure 10.12, increasing the
number of training instances improves performance in general but this trend is more
marked for the extended HTM methodology.

The inference time of our extended HTM algorithm was on the order of millisec-
onds showing its potential for real time applications since CPU resources consump-
tion during inference is a limiting factor for real time SLR.

A defining characteristic of HTM systems is that they require a relatively high
number of training instances for good recognition performance [George and Jarosy,
2007]. However, we did not generate the data set used for our simulations and hence,
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Figure 7.15: Aggregation of results. The results tables of two different HTM
network simulations can be combined into a single table by adding up the scores
associated to each category in the similarity rank.

we could not generate additional instances. We were therefore, constrained to the
existing 27 instances per category. To study how increasing the number of train-
ing instances improves performance for our extended HTM algorithm, we needed
to obtain additional instances of training data beyond the 27 instances provided by
the data set we employed. To solve this problem, we used the original data in the
training set to generate additional artificial data and plotted the recognition accu-
racies results in Figure 7.18. The Figure suggest that our system has a wide room
for improvement as increasing the number of training instances markedly improved
performance more than for the other methods.

Most of the literature on SLR uses data generated ad-hoc for a particular exper-
iment. There exist no standardized sign language data set for performance compari-
son purposes. Hence, simple optimization of the category list can boost performance.
To show this, we created a confusion matrix to determine how each method misla-
beled classes during inference. We trimmed the 10 most often mislabeled categories
of the confusion matrix for each method, and run simulations again with just the
remaining 85 categories, Figure 7.19. Simply removing the 10 most conflicting cat-
egories in the data set significantly improves the performance of all the algorithms,
but among the top 3 performing methods (Tclass, HMM and Expanded HTM) our
extended HTM obtained the biggest improvement. This highlights the need in the
SLR community for standardized data sets in order to compare fairly the recogni-
tion performance of SLR algorithms since performance can be easily enhanced by
manual curation of the vocabulary set.
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Figure 7.16: Decreasing performance with increasing vocabulary size. The
recognition accuracy for each method being compared decreases as the vocabulary
size of the sign gestures data set to be learnt increases.

7.4 Discussion

Our extended HTM formalism top node’s fundamental property was its ability to
store and compare sequences of spatio-temporal input vectors representing signs. In
SLR, it is the orderly sequence of input vectors arriving over time what constitutes
a sign, as oppose for instance to image recognition, where at any time instant, the
input vector represents a complete characterization of an image category. As shown
in Figure 7.13, the extended HTM improves the performance of traditional HTMs
for the problem of SLR and reaches similar levels of performance to well-established
methods often used in the literature such as HMMs. This good performance comes
about because of the specific nature of our tackled problem. In our data set, each
frame considered in isolation does not represent any particular sign just a flash-view
spatial arrangement of the hands in space. Only the appropriate sequence of spatial
arrangements over time uniquely constitutes a sign. The top node in traditional
HTMs just tries to guess the proper category of an instance for every given frame
during the performance of a sign. But a given time frame or arrangement of the 11
channels of information for each hand can be shared by several signs and hence the
poor results of this method. To overcome the traditional HTMs shortcomings, our
Extended HTM formalism creates a top node whose main task is to store sequences
of spatio-temporal input vectors as incoming input instances unfold over time.

A critical aspect for the performance of the algorithm is the degree of granularity
used for the discretization of the continuous input space. The discretization pro-
cess represents a trade-off between specificity and generalization capabilities of the
network. Excessive granularization, that is, partitioning the continuous input space
into too many regions, increases the specificity of the learning, but leads to over-
fitting and less generalization abilities of the network. Obviously, the more instances

105



CHAPTER 7. EXTENDED HTMS IN SIGN LANGUAGE RECOGNITION -
COMPARATIVE STUDY

Figure 7.17: Improving performance with increasing number of training
instances. The recognition accuracy for each method being compared increases as
the number of training instances gets larger.

available for training, the higher the degree of specificity that can be reached, but
our data set was constrained to just 27 samples for each sign. A very unspecific
partition of the input space favors generalization capabilities but also decreases the
specificity of the network, that is, the number of false positives increases. An entropy
analysis was performed to find out the optimum degree of granularity to transform
the continuous input space into a discrete space.

We are aware that the use of electronic gloves for automatic SLR imposes ad-
ditional hardware requirements for natural context applications. Image based SLR
often can be computationally demanding due to the necessity of performing pre-
processing of video streams which sometimes limit its applicability to real time
recognition systems. In the work by [AL-Rousan et al., 2009], their system re-
quired up to 7 seconds just for image pre-processing. The emergence of cheap
3D scanners which interpret 3D scene information using continuously-projected in-
frared structured light, such as Microsoft’s Kinect, offers some obvious advantages
for real-time-anywhere SLR. As the precision of such systems is expected to become
sensitive enough to precisely detect fine wrist or finger movements, the technology
holds great potential for the near future. Although, in this work we have focused
on input coming from data gloves, HTM theory in general and the extended HTM
approach in particular are very flexible in terms of accepting input data streams
from a variety of sensors. As long as the data representations in the input data con-
tains a spatio-temporal structure, our extended HTM approach after training with
a sufficient number of training instances would be able to achieve good recognition
accuracy. The method is also light on computing power during inference, requir-
ing only milliseconds, which makes it easily applicable to real-time requirements
contexts.

The extended HTM system is successful when used upon a learning task such
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Figure 7.18: Performance with artificial data. 26 additional instances of arti-
ficial data for each category were generated bringing the total number of instances
per category to 53. Each method being compared was trained with this expanded
training set and recognition accuracy was measured for comparison purposes. Our
extended HTM method shows a larger performance improvement than the Tclass
and HMMs methods.

Figure 7.19: Performance with trimmed data from confusion matrix. Each
method was run without the 10 classes that generated the highest misclassification
rate in a confusion matrix. Of the top 3 performing methods (Tclass, HMM and
Expanded HTM), performance improved for all on the trimmed data set but more
significantly for our extended HTM methodology.

as SLR. It is important to emphasize that SLR performance is highly dependent on
the specific language to recognize, the amount of pre-processing performed on input
data, the usage of language models, the type and amount of input data, the number

107



CHAPTER 7. EXTENDED HTMS IN SIGN LANGUAGE RECOGNITION -
COMPARATIVE STUDY

of training instances and the size of the vocabulary. Our approach does not make
use of language/context models, nor manually defined features to be extracted from
the input vectors and it uses lower dimensional input vectors and fewer training
instances than most methods used in the literature. Hence, the extended HTM
constitutes a valid alternative to traditional HMM methods used in SLR.
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Chapter 8

HTMs in the Recognition of Gaze
Gestures Offline

8.1 Introduction

In this chapter we perform a study on the usage of traditional HTMs in the off-line
recognition of gaze gestures [Rozado et al., 2011b]. This serves the purposes of a
preliminary exploration for this input modality as an innovative form of HCI.

The usage of predefined gestures in human-computer interaction, HCI, often
employs the hands, head or mouse. The arrival of smartphones and tabletop com-
puters with often touch sensitive surfaces as their only input modality has prompted
a recent interest in the subject of gestures for HCI purposes.

Video-based gaze tracking systems can determine where a user is looking at on a
screen. Gaze tracking is a very convenient technology for pointing but problematic
when trying to distinguish whether the user looks at an object to examine it or to
interact with it. This is known as the Midas touch problem, and it highlights the
need for additional gaze interaction methods beyond dwell time selections [Mollen-
bach et al., 2009]. Gaze gestures hold great potential in HCI due to the fast nature
of eye saccadic movements, and its robustness to inaccuracy problems, calibration
shifts and the Midas problem. The main concern with gaze gestures is the accidental
detection of a gaze gesture during normal gaze activity.
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The use of gaze gestures in HCI is a relatively new concept and the amount of
research done on it is rather limited [Drewes and Schmidt, 2007]. Gaze gestures can
be employed by people with severe disabilities, who use gaze as a mono-modal input
in their HCI. Gaze gestures can also provide an additional input channel in multi-
modal interaction paradigms providing a new venue of interaction with small screen
devices such as smartphones or in scenarios where traditional interaction methods
are out of reach such as media center devices or surgery rooms. In this work, we have
created an in-house data set of 50 gaze gestures and used the neuroinspired Bayesian
pattern recognition paradigm known as Hierarchical Temporal Memory, HTM, to
learn them. HTMs are appropriate for this problem due to their robustness to
noise and their ability to analyze patterns with a multi-dimensional structure. The
temporal structure of gaze gestures that unfolds over time requires an appropriate
temporal codification for HTMs to properly perform inference, hence, we analyze
the impact of different temporal codifications on performance.

8.2 Eye Tracking and Gaze Gestures

Gaze tracking video-oculography determines a person Point of Regard or PoR (i.e.
where a person is looking at) by gathering information from eye position and move-
ments [San Agustin et al., 2010]. Infrared illumination is used to improve iris to
pupil contrast and to create a reflection on the cornea, or glint. Due to the spherical
shape of the eyeball, this glint remains stationary as the eye moves in its orbit and
it is used as a reference point from which to estimate gaze direction. This is done
by calculating the vector distance from the corneal reflection and the center of the
pupil. Video-oculography is limited by some optical and anatomical constraints and
as of yet its maximum accuracy is limited to about 0.5◦.

We define a gaze gesture as an ordered sequence of gaze positions over time.
Different conceptualizations of gaze gestures exist. Gaze gestures can be relative,
i.e. they can be performed anywhere on the screen, or absolute, requiring the user
to direct gaze to a sequence of absolute positions on the screen. Due to the limited
accuracy of eye tracking technology, fine discrimination between close points on the
screen is often not possible. This limitation and the discomfort that continuous
micro-movements generate on users, advocates the merits of absolute gaze gestures.
Here, we consider a modality of gaze gestures consisting on gliding the gaze along a
predefined path on the screen using microsaccadic gaze movements and employing
the cursor position as feedback to ensure that the path is followed correctly.

8.3 Experimental Setup

Gaze data acquisition was carried out using the ITU Gaze Tracker [San Agustin
et al., 2010] software in a remote setup. We used a Sandberg webcam with no
infrared filter, a 16mm lens and two infrared lamps. Image resolution was set to
640×480 pixels, and the frame rate was 30 fps. The distance from the eye to the
camera was approximately 60 cm. A filter algorithm was employed on the raw
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gaze data to smooth out microsaccades and involuntary jerks while maintaining an
acceptable real-time latency. The gaze accuracy achieved with the setup was about
1.5◦.

Figure 8.1: Gestures set. Set of gestures employed in the user study to evaluate
performance. Arrowheads indicate the starting point of a gesture.

Gaze gestures data for training the HTM networks was generated with no black
or special purpose background, nor markers to attract or better position the gaze in
specific coordinates of the screen. The data set was designed trying to minimize the
spatial overlap by maximizing orthogonality. Yet, some gestures were intentionally
designed with complete overlap, but different start/end points, to illustrate the
importance of temporal coding. 30 instances for each of the 50 categories in the data
set, Figure 8.1, were generated by a user experienced with eye-tracking. Test data
to measure the performance of HTM inference was gathered by 5 test subjects. All
of them were male, regular computer users, not familiar with eye tracking and with
ages ranging from 25 to 59 years. Participants were instructed to perform the data
set in Figure 8.1 as fast and accurately as possible. One participant with no prior
experience on eye-tracking repeated the task over 5 blocks to study learning effects.
After completing the experiments, participants filled out a short questionnaire rating
speed, accuracy, fatigue and ease of use of their experience with gaze gesture as a
form of HCI.

We used Numenta’s Nupic package (v1.7.1) [George and Hawkins, 2009] to con-
struct and train the HTM networks. The raw gaze data, consisting on a time series
of (x, y) coordinates, was transformed into a m x n matrix representing the screen
on which the gaze gesture was performed. The matrix was initially filled with 0s
but those areas of the screen/matrix scanned by the gaze during the performance of
a gaze gesture were assigned a number codifying its temporal structure, see Figure
8.2. We used three types of temporal codification:

• No temporal codification.
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Figure 8.2: Gaze gestures data codification. The data structure fed to the HTM
network consisted of a matrix codifying the spatio-temporal characteristics of a gaze
gesture on the screen. In the type of temporal coding illustrated in this Figure, 0
codifies that gaze did not hoover over that area of the screen during the performance
of this particular gaze gesture, “c”, or that the gaze tracker did not fetch gaze data
over that area. A 1 codifies the spatial positions of gaze during the beginning of
the gesture, a 2 codifies the spatial positions hoovered by gaze during the middle
instants of the gesture performance and a 3 indicates the positions over which gaze
hoovered during the final phase of the gesture. The lack of a perfect representation
of the idealized gesture in the matrix illustrates the limitations in terms of resolution
and accuracy of gaze tracking technology and the presence of noise in the data.

• Temporal codification in seconds by storing in the corresponding matrix el-
ement the second in which gaze was determined to passed over a particular
area of the screen.

• Three Temporal Stages codification by dividing the total time employed during
performance of a gesture in 3 slices (beginning, middle, end) and assigning
correspondingly to the matrix the numbers 1, 2 or 3 depending when the gaze
was determined to hovered over the corresponding area.

8.4 Results

We studied the amount of time needed to complete a gaze gesture by plotting on a
histogram, Figure 8.3, the distribution of time lengths per gesture required by users
while performing the set of 50 gaze gestures. Inference accuracy for gaze gestures
recognition varied for different network topologies with a two layer network showing
the best performance in Figure 8.4.

Several data representations of the gaze gestures where tried out, see Figure 8.5,
on the optimal 2-Layer HTM network determined above. The data representations
consisted namely in: no temporal codification, a finely grained temporal codification
in seconds and a temporal codification of 3 stages (beginning, middle and end) that
turned out to be the optimal one with up to 96% recognition accuracy.
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Figure 8.3: Time per gesture. Histogram of times per gesture employed by users
while performing the gaze gesture set.

Figure 8.4: Accuracy performance for different network topologies during
inference. The bars show the percentage of correct classifications achieved by 1, 2,
3 and 4 layer networks.

Experiments were carried out to determine HTM decreasing performance with
larger gaze gestures vocabularies, Figure 8.6. The 3 temporal stages data represen-
tation proved to be the most resistant to increasing vocabulary size.

HTM performance improved markedly with increasing number of training in-
stances, Figure 8.7. The 3 temporal stages data representation proved to perform
better than the others for the whole range of training instances availability.

A single user with no prior experience in gaze tracking repeated the 50 gaze

113



CHAPTER 8. HTMS IN THE RECOGNITION OF GAZE GESTURES OFFLINE

Figure 8.5: Accuracy performance of different data representations on the
optimal 2 layer HTM network. Namely, no temporal codification, temporal
codification in seconds and 3 stages temporal codification.

Figure 8.6: Decreasing performance. The figure shows the decreasing perfor-
mance of the optimal 2-layer HTM network using different data representations as
the vocabulary size of the gaze gestures set to be learnt increases.

gestures data set over five blocks in order to determine learning effects, see Figure
8.8.

To study gaze gesture recognition in real time, we measured HTM inference
scores obtained on gaze data during normal computer use and inference scores ob-
tained when specifically performing inferences over gaze gestures data, Figure 8.9.
It is clearly visible in the graph that no inference score appropriate threshold exists
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Figure 8.7: Improving performance. HTM networks using different data repre-
sentations improve performance as the number of training instances increases.

Figure 8.8: Learning effects. Recognition accuracy of the 2-layer HTM network
using different data representations over 5 blocks for a single user.

to clearly discriminate consciously performed gaze gestures from other types of gaze
activity. The overlap between both types of distribution indicates that real time
gaze gesture recognition represents a challenge for traditional HTMs.
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Figure 8.9: Scores overlap. HTM inference scores during normal gaze activity
while using a computer (dark grey bars distribution) and the HTM scores obtained
on consciously performed gaze gestures (white bars distribution). The area of overlap
between both types of inference scores is shown in light grey bars.

8.5 Discussion

For optimal performance, HTMs require training instances to be composed of a
complete spatial structure at any time instant. This creates a challenge for data
structures with a temporal component unfolding over time. To address this issue,
data representation and coding become key when designing and training an HTM
network.

Gaze gestures patterns as existing in the original data set are not fit to be learned
by a traditional HTM network since at any moment in time the complete spatial rep-
resentation of the pattern is not complete. The original data set consisted of just a
temporal series of (x,y) coordinate pairs. The original time-series were transformed
into a 2 dimensional matrix containing the on-screen path performed by gaze during
the performance of a sign. This data structure captured the complete spatial struc-
ture of a gaze gesture. However, a gaze gesture possesses a temporal structure as
well. This aspect is critical since the temporal order of a gaze gesture differentiated
several gestures with complete overlap in their 2D spatial representation such as the
gaze gesture in the 1st row, 2nd column and the gaze gesture in the 2nd column of
the 2nd row in Figure 8.1. In order to codify the temporal information of a gesture,
several approaches were explored as shown in Figure 8.5.

Time needed to complete gaze gestures is an important design and constrain
parameter for gaze-computer interaction. Our experiments show that gaze gestures
are fast to complete, Figure 8.3, easy to learn, Figure 8.8, and they do not occupy
screen-real state since no visual markers to aid in gaze trajectory were used. Fur-
thermore, in our user study, participants showed through questionnaires satisfaction
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with this innovative input modality.
Gaze gestures however present problems of their own, the main one being ac-

cidental gesture completion during normal gaze activity. As Figure 8.9 shows, it
is a challenge for the HTM algorithm to perfectly partition consciously performed
gaze gestures from unintended gaze gestures completed during normal gaze activity
while using a computer. Furthermore, gaze gestures also generate a cognitive load
on the user which is forced to memorize and reproduce sequences of eye movements
to recreate a gesture without an immediate feedback.

Our results suggest that our system can be expanded to a larger vocabulary set
with still acceptable recognition performance, see Figure 8.6. Figure 8.7 illustrates
the importance of having a large number of training instances for the HTMs to
achieve good recognition performance.

A trade-off emerges from our study between complex gaze gestures and simpler
ones. Simpler gaze gestures are easy on the user, yet the possibilities of acciden-
tal gesture completion are high. Complex gaze gestures decrease the possibility
of accidental recognition during normal gaze activity and augment the interaction
vocabulary space, imposing however, a cognitive load on the end user.

Our work shows that humans adapt quickly and comfortably to this innovative
modality of HCI. The good recognition results achieved by the HTM algorithm
and the positive feedback from users, illustrate that using gaze gestures recognized
through HTMs constitutes an innovative, easy-to-learn and viable approach to HCI
for several environments and device combinations. However, as Figure 8.9 indicates,
the marked overlap of scores obtained by normal gaze activity during computer usage
and consciously performed gaze gestures, indicates a challenge for real time gaze
gesture recognition. An appropriate threshold for gesture recognition in this type of
scoring space would never find a satisfactory partitioning threshold for acceptable
sensitivity and specificity. In the next 2 chapters, we explore alternative approaches
to properly partition the scoring space to discriminate consciously performed gaze
gestures from other types of gaze activity. In particular, we show how our extended
HTM algorithm is able to reach acceptable sensitivity and specificity for real time
gaze gesture recognition in contrast to traditional HTM.
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Chapter 9

Gaze Gestures Recognition in
Real Time

9.1 Introduction

While the previous chapter focused on off-line recognition of gaze gestures, this
chapter focuses on the more challenging problem of gaze gestures recognition in real
time using a low cost gaze tracking system [Rozado et al., 2010a]. That is, we aim
to distinguish consciously performed gaze gestures from otherwise standard gaze
activity during HCI. Furthermore, this chapter also studies different modalities of
performing a gaze gesture: gliding and saccadic.

The usage of predefined gestures in human-machine interaction is not new. The
idea of a gesture consists on employing body motion, generally the hands and/or
the head, to convey information [Drewes, 2010]. The emergence of tabletop comput-
ers and smartphones with touch sensitive surfaces as their only input modality has
spurred a growing interest in the subject of gestures in human-computer interaction
or HCI [Drewes and Schmidt, 2007; Kapuscinski and Wysocki, 2009]. Gestures can
be simple and/or culturally independent, such as pointing with the index finger or
the head, or quite elaborate, such as handwriting or sign-language for deaf/mute peo-
ple [Rozado et al., 2010b]. Common gestures usually employed in human-machine
interaction are often done with a pen. The mouse can also be employed to per-
form 2D sequences of movements, such as the gestures employed by the Firefox and
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Opera web browsers. The information transmitted with a gesture can be mapped to
a specific letter, command or macro. Using gestures in human-machine interaction
involves learning a set of gestures and their semantics.

Gaze movements are employed in human-human interaction in the form of rolling
the eyes to express disagreement or indicating direction with a fast movement of
the eyes along with a slight head movement [Drewes, 2010]. In the present work,
we explore the feasibility of using gaze gestures as an input modality to control a
computer by carrying out a sequence of gaze positions. In the following sections, we
highlight the potential of the gaze gestures modalities and recognition algorithms
under study for human-machine interaction in the context of gaze tracking.

Gaze tracking systems using video-based hardware and algorithms can deter-
mine the point of regard (PoR) on a screen for a certain user [Duchowski, 2007;
Hennessey et al., 2008]. Usually, the PoR is employed as a pointing device, that is,
as a substitute of the mouse [Jacob, 1991]. This communication channel has been
shown to enable users with severe motor disabilities to interact with a computer by
using gaze alone for pointing and even selecting objects on the screen using dwell
time activation, albeit slower and more error prone than with traditional input de-
vices [San Agustin, 2010]. Although gaze tracking is a very convenient technology
for pointing [Jacob, 1991; San Agustin et al., 2010], problems arise when trying to
distinguish whether the user looks at an object to examine it or to interact with it
[Mollenbach et al., 2009]. This is known as the Midas touch problem [Jacob, 1991]
and it highlights the need for additional forms of interaction through gaze. Ideally,
selection should be performed with an external switch, decoupling pointing and se-
lections, in the same way as it is done with a mouse. However, people with severe
disabilities or users in certain environments are often unable to use an external se-
lection device, and must therefore rely on gaze-only activation techniques. Among
these, blinking and dwell-time activations are the most common. In the former, a
click command is issued when the system detects a blink with a predefined duration,
while in the latter the click command is issued when a fixation longer than a prede-
fined threshold is detected. Gaze gestures emerge as potential candidates to bridge
the gap between pointing and selection in gaze interaction systems by circumventing
the Midas touch problem.

A gaze gesture can be defined as a sequence of strokes. A stroke is an intentional
movement between two fixation points. Different patterns of strokes define different
gestures [Mollenbach, 2010]. Different gestures can then be mapped to issue different
commands for human-machine interaction purposes. Several types and modalities
of gaze gestures can be defined as we describe in the Methodology section.

Gaze gestures, when used in combination with other input devices, can provide
an additional input channel that augments and enhances the interaction with a
computer. This multi-modal interaction paradigm would not only benefit people
with disabilities, but it could also provide a new venue of interaction with small
screen size devices such as smartphones or tablets. Gaze gestures can be employed
by people with severe disabilities, who use gaze as a mono-modal input in their
human-computer interactions [Vickers et al., 2010; Reddy and Basir, 2010]. It could
also be beneficial in scenarios where traditional interaction methods such as key-
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board or mouse are out of reach or inconvenient to use. Gaze gestures differentiate
themselves from traditional control commands used in gaze-computer interaction
such as fixations and dwell times. Due to the fast nature of the saccadic move-
ments involved in gaze gestures, this selection technique can potentially be faster
and less stressful than dwell time. Moreover, gaze gestures can also be very robust
to inaccuracy problems and calibration shifts. However, there can be an overlap
between natural search patterns and the gaze patterns of a gesture, which could
lead to false positives, i.e. the accidental detection of an involuntary gaze gesture.
For gaze interaction purposes, it is desirable to minimize unintended gaze gestures
recognition [Mollenbach, 2010]. Increasing the complexity of the gaze gesture, i.e.
the number of strokes, minimizes the overlap between natural gaze patterns and
consciously performed gaze gestures and increases the interaction vocabulary, but
it also introduces a greater cognitive complexity and physiological load on the end
user.

The amount of research done on gaze gestures is rather limited since gaze ges-
tures are a relatively new concept. Authors in [Qvarfordt and Zhai, 2005] used gaze
gestures in a dialog system to facilitate communication. Their work studied gaze
patterns in human-human interaction and used the results to mediate a human-
machine dialog. It is important to notice that users did not learn a set of gaze
gestures to operate the system nor were they aware they were performing gaze ges-
tures. Some research has been done on using gaze gestures for gaze-based input of
characters [Wobbrock et al., 2007; Bee and André, 2008; Isokoski, 2000]. The work
from [Mollenbach, 2010] constitutes one of the most elaborate and comprehensive
analysis of gaze gestures to date exploring the interaction possibilities of single stroke
gaze gestures. The work from [Isokoski, 2000] represents one of the first attempts
to employ gaze gestures to issue commands, in particular to enter characters. Here,
the author proposes an eye-typing system that requires the user to look at off-screen
targets in a certain order to input characters. The approaches in [Wobbrock et al.,
2007] and [Bee and André, 2008] allow an experienced user to enter characters at up
to 7.99 words per minute. Increasing the set of gaze gestures so that each gesture
represents one symbol could potentially increase the text-entry performance. How-
ever, a study by Wobbrock et al. in [Wobbrock et al., 2008] demonstrated that a
smaller set of symbols is preferable. In their work, they proposed EyeWrite, a gaze-
based text-entry system where each letter is mapped to a gesture performed looking
at the four corners of the screen. The average typing speed was only around 2 words
per minute, and the complexity of the alphabet was reported to be too high. Fur-
thermore, recognizing an extensive symbol alphabet is a challenging computational
problem in the realm of pattern recognition.

In this work, we present and evaluate two alternative modalities of gaze gestures
execution and two algorithmic methods of gaze gestures detection:

• Gaze gestures consisting on gliding the gaze along a pre-defined path and
detected with traditional Hierarchical Temporal Memory (HTM) networks.

• Gaze gestures consisting on performing a pre-defined sequence of saccadic
movements and detected by the Needleman-Wunsch algorithm for sequence
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alignment.

The reason to use different algorithms for the recognition of each gaze gesture
modality was the fact that each modality of performing the gestures generated
markedly different data structures that required specialized algorithms for detec-
tion. The gliding gaze gestures generated 2 dimensional spatial patterns that de-
velop over time while the saccadic gestures generated a sequence of spatial positions
on the screen.

Our results suggest that natural eye movements during computer usage can be
robustly separated from intentional gaze gestures when using the appropriate gaze
gesture modality (saccadic gestures) and pattern recognition algorithm (sequence
alignment with the Needleman-Wunsch algorithm). We also learnt that users adapt
quickly and comfortably to this somehow counter-intuitive modality of human-
machine interaction. Therefore, saccadic gaze gestures recognized through sequence
alignment constitutes an innovative, robust, easy-to-learn and viable approach to
human-machine interaction for several environments and device combinations.

9.2 Methodology

We have created a gesture recognition engine conceptually placed between the gaze
tracker and the application a user would wish to control. Figure 9.1 illustrates
the architecture of our system. In the following subsections, we elaborate on the
methodology used in our experiments.

Figure 9.1: System architecture. For application purposes, our gaze gesture
recognition engine is conceptually placed between the Gaze Tracker engine and the
applications that we wish to control. The gesture recognition engine receives the gaze
tracking data through a customized client and carries out recognition to discriminate
between gaze gestures performed on purpose by the user and otherwise normal gaze
activity. Finally, the gesture recognition system maps a recognized gesture to a
specific key combination, script or macro that is then sent to a particular application.
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9.2.1 Eye tracking

The eyes represent the main organ that humans employ to perceive and interact
with the world. We use our eyes to obtain information about our surroundings by
directing our gaze to objects of interest. When something attracts our attention, we
position our gaze on it, thus performing a fixation. A fixation usually has a duration
of at least 100 to 150 ms. The fast eye movements that occur between fixations are
known as saccades, and they are used to reposition the eye so that the object of
interest is projected onto the fovea. The direction of gaze thus reflects the focus of
our attention. When we interact with the world, we look at the objects to examine
their characteristics. For instance, before grabbing a cup of coffee we will glance at
it and then we will move the arm to grab it. Therefore, eye gaze also provides a
sense of our intention.

A video-based gaze tracking system seeks to find where a person is looking, i.e.
the Point of Regard (PoR), by means of information obtained from the eye by one
or more cameras that record the user’s eye region. Most systems employ infrared
illumination to improve the quality of the image and to estimate gaze. Since infrared
light is invisible for the human eye, it is not distracting nor annoying to the user.

Depending on the hardware configuration of the different components, gaze track-
ing systems can be classified as either remote or head-mounted. In remote systems,
the camera and the light sources are placed at a distance from the user, normally
around the computer screen, whereas in head-mounted systems the components are
placed on the user’s head, usually mounted on a helmet or a pair of safety glasses [Li
et al., 2006; San Agustin et al., 2010]. In our experiments we use a head mounted
configuration using the low cost ITU gaze tracker [San Agustin et al., 2010].

Interactive gaze-controlled applications use the user’s eye gaze as an input to
control an interface, employing a gaze tracking system that detects and tracks the
point of regard (PoR) of the user over time. This type of gaze-based applications
allow the user to look around and select objects on the screen, and the interface
reacts in real time upon the user’s eye movements. By substituting or complementing
the mouse, the user’s PoR can be employed to control a graphical user interface.
Ideally, selections should be performed with an external switch, therefore decoupling
pointing and selections, in the same way as it is done in a mouse. However, people
with severe disabilities are often unable to use an external selection device, and
must therefore rely on gaze-only activation techniques. Among these, blinking and
dwell-time activations are the most common. In the former, a click command is
issued when the system detects a blink with a duration in a predefined range (usually
longer than 1 second), while in the latter the click command is issued when a fixation
longer than a predefined threshold (usually in the range of 300 to 3000 milliseconds)
is detected.

9.2.2 Gaze Gestures

A gaze gesture is defined in [Vickers et al., 2010] as “a definable pattern of eye
movements performed within a limited time period, which may or may not be con-
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strained to a particular range or area, which can be identified in real time, and used
to signify a particular command or intent”.

Different conceptualizations of gaze gestures exist. Gaze gestures can be rela-
tive, i.e. they can be performed anywhere on the screen, or absolute, requiring the
user to direct gaze to a sequence of absolute positions on the screen. Due to the
limited accuracy of eye tracking technology, fine discrimination between close points
on the screen is often not possible. This technological limitation and the fact that
it is uncomfortable for users to accurately generate sequences of micro-movements,
advocates the merits of performing gaze gestures by using absolute positions on the
screen. Gaze gestures can also be classified as single stroke, when composed of just
one saccadic movement, or complex, when they involve more elaborate paths [Mol-
lenbach et al., 2010]. The main advantage of simple gaze gestures is that they are
easy to memorize and perform by users. Yet they markedly overlap with normal
gaze activity when interacting with a computer, thus limiting their applicability as
an input channel since normal inspection and navigation patterns might acciden-
tally be confused with gaze gestures. Complex gaze gestures have the advantage of
greatly increasing the vocabulary size of gaze interaction. However, complex gaze
gestures generate a cognitive and physiological load on the user. Cognitively it is
difficult for users to remember a large set of complex gestures, and physiologically
it is tiring and challenging to complete them [Mollenbach, 2010]. Finding the right
trade-off between simple and complex gaze gestures is therefore paramount to suc-
cessfully use gaze gestures as an input channel. Furthermore, gaze gestures can be
classified as saccadic gaze gestures, when the movements between fixation points are
saccadic (ballistic) or gliding gaze gestures, where the gaze is glided along the whole
trajectory of the gesture. In this work, we used absolute saccadic gaze gestures of
intermediate complexity consisting on performing a sequence of saccades (strokes)
between different areas of the screen.

Two different modalities of performing a gaze gesture have been considered in this
paper: gliding the gaze along a predefined path, and performing saccades (strokes)
between a sequence of different areas of the screen. Gliding the gaze along a path
without performing a smooth pursuit of a moving target is physiologically impossible
[Robinson, 1965]. Users can instead perform short saccades following the path of
the gesture, employing the cursor position as feedback to ensure that the path is
correct.

Due to the different nature of the two types of gaze gesture methods under
analysis, two different algorithms for recognition of gaze gestures were used. Each
algorithm was matched in its learning and inference capabilities to the particular
type of gaze gesture modality (gliding or saccadic) it had to recognize. We used
HTM networks to detect the gliding gaze gestures and sequence alignment to detect
the saccadic gaze gestures.

9.2.3 Hierarchical Temporal Memory

The algorithm employed in this work to detect the type of gestures performed by
gliding gaze along a predefined path was Hierarchical Temporal Memory. HTMs
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are specifically design to learn models of spatio-temporal data. Since a gaze gesture
consists of a 2 dimensional shape constructed over time, HTMs were considered
suitable for recognition purposes.

For the purpose of training the HTM network, the raw data was transformed
into an m × n two-dimensional matrix representing the screen on which the gaze
gesture was performed. The matrix was initially filled with 0s and represented a
linear mapping with the screen. To codify the spatial structure of a gesture, those
areas of the screen/matrix scanned by gaze during the performance of a gesture
were assigned a number. This number codified the time dimension of the gaze
gesture. To codify the temporal structure of a sign, we divided evenly the total time
employed in performing the gesture in 3 slices: beginning, middle, and end, and
assign correspondingly the numbers 1, 2, 3 to the coordinates of the matrix over
which the gaze hovered at a particular time instant as shown in Figure 9.2. Hence,
this data structured contained both the spatial representation of the gaze gesture
and its temporal structure. During real time recognition, the HTM would received
a continuous updated representation of this matrix and perform inference every 500
milliseconds over the activity occurred during the last 5000 milliseconds.

We created a three layers HTM network composed of 5 nodes and 30 sensor
nodes as illustrated in Figure 9.2. The bottom layer nodes received their input data
from the 30 channels of input data coming from the 2D matrix. Several topologies
were tried out varying the number of layers, nodes, fan-in edges, fan-out edges,
spatial-pooler specificity coefficients and clustering coefficients for the nodes. The
topology shown in Figure 9.2 was selected by manual curation after it proved to
be the one that optimized the performance of the network, during inference, over
several alternative network designs.

9.2.4 Sequence Alignment and Dynamic Programming

For the recognition of gaze gestures performed by a sequence of saccadic movements
over different areas of the screen, we used a measure of similarity between sequences.
Sequence similarity was calculated using the Needleman-Wunsch algorithm of dy-
namic programming for sequence alignment.

Sequence alignment is a method used to identify the similarity between two or
more sequences. Sequence alignment is commonly used in analysis of sequences
present in natural language, financial data and biological sequences such as DNA,
RNA or protein sequences from which to infer functional, structural or evolutionary
relationships between the sequences.

In sequence alignment, the degree of similarity between two sequences can be
inferred from the number of similar elements occupying the same position in a
sequence (matches), the number of dissimilar elements (mismatches) and the number
of gaps needed to make the sequences align. The overall score can be interpreted as
a measure of how similar both sequences are. Aligned sequences can be represented
as rows within a matrix. Gaps can be inserted between elements to allow similar
elements to be aligned in successive columns.

Sequence alignment can be divided into two categories: global alignments and
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Figure 9.2: HTM topology for recognizing gliding gestures. Bottom level
nodes are fed with input from a matrix codifying the spatio-temporal structure of
a gaze gesture. A 0 element codifies that the gaze was not determined to hoover
over that area of the screen during the performance of a gaze gesture, “c”. A 1, 2
or 3 codifies the spatial positions of gaze during the beginning, middle and end of a
gesture. The lack of a perfect representation of the idealized gesture in the matrix
illustrates eye tracking’s accuracy limitations and the presence of noise.

local alignments. Global alignment forces the alignment to span the entire length of
the sequences in a search for global optimization, while local alignment searches for
regions of similarity within longer sequences that overall may not be very similar.

Dynamic programming is an optimization algorithm that can produce high-
quality sequence alignment, guaranteeing to find the optimal alignment through
an exhaustive search of the alignment space. Dynamic programming is an NP hard
algorithm. Heuristic algorithms exist that, while not guaranteeing finding the best
possible alignment, are more efficient in terms of the computational resources that
they require.

Sequence alignments can be represented both graphically and in text format.
Generally, sequences are written in rows arranged so that aligned elements appear in
successive columns. In text formats, aligned columns containing identical or similar
elements are indicated with a system of symbols indicating matches, mismatches
and gaps.

A widely used global alignment technique is the Needleman-Wunsch algorithm
[Needleman and Wunsch, 1970], based on dynamic programming. Its implemen-
tation consists on the usage of a substitution matrix to assign scores to elements
matches, mismatches and gaps (Equation 9.1). A scoring scheme is used by as-
signing a positive score to a match, a negative penalty score for a mismatch and a
smaller penalty for a gap. A standard extension to linear gaps cost is to modify the
algorithm and assign different scores for opening and extending gaps. Figure 9.3
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shows the results of pairwise global alignment between two artificial gaze gestures,
according to the Needleman-Wunsch algorithm.

Equation 9.1 is the mathematical formalism of the Needleman-Wunsch algo-
rithm: i, j are the indexes of rows and columns in the matrix, g is the gap penalty,
and s(i, j) is the match/mismatch score for residues i and j. Although dynamic
programming is extensible to more than two sequences, its computational costs
make it unsuitable for multiple sequence alignment, with heuristic algorithms be-
ing the appropriate choice. For short sequences and pairwise linear alignment, it
remains a valid choice since it guarantees to find the best possible alignment. Since
we were performing short, pairwise linear alignments, the Needleman-Wunsch al-
gorithm seemed like an appropriate choice. Figure 9.3 shows a sequence alignment
calculated with the Needleman-Wunsch algorithm for two sequences of gaze gestures.

|D(i, j)| = max


D(i− 1, j − 1) + s(xi, yj)

D(i− 1, j) + g

D(i, j − 1) + g

(9.1)

The score at the bottom right of the matrix in Figure 9.3 indicates the degree of
similarity between both sequences for the global alignment. The alignment can be
traced back (highlighted in bold in Figure 9.3) using a traceback matrix, T, starting
from the bottom right element and traveling backwards according to:

T (i, j) = argmax


D(i− 1, j − 1)

D(i− 1, j)

D(i, j − 1)

(9.2)

In order to carry out the recognition of gaze gestures based on sequences of sac-
cadic gaze gestures, our gesture recognition engine carried out the following proce-
dure. The computer monitor was divided into 9 different spatial areas, named from
A to I, as represented in Figure 9.4. The recognition engine constantly updated
which area of the screen the user was looking at and kept a pipe of the previous 6
areas. This pipe of spatial areas over which the user’s gaze hoovered was constantly
being updated every time a change of area was detected. During normal use of
the computer, this stream or pipe containing the present and previous 6 areas over
which gaze hoovered was aligned against the set of predefined gaze gestures in order
to find degrees of similarity above a threshold that would indicate that a conscious
gaze gesture had just been performed.

9.3 User Study

A user study consisting of two parts was carried out to test the performance of
the two different gesture modalities and the two methods used to detect them.
First, a pilot experiment with 7 participants was used to gather preliminary results
about the gaze gesture modality that provided the best performance in terms of
accuracy, speed and low degree of false positives. A second experiment with 20
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Figure 9.3: Dynamic programming matrix used for the alignment of sac-
cadic gaze gestures. Two sequences conforming a gaze gestures: Seq A and Seq B
are aligned using the following scoring scheme: match=3, mismatch=−1, gap=−1.
Each element of the sequences represents an area of the screen. The top global align-
ment can be found in the bottom right box of the matrix. The actual alignment is
show in the bottom right of the Figure.

participants was then carried out in order to measure the performance differences
and user preferences of saccadic gaze gestures performed with or without dwell time
to indicate the beginning and end of a gesture.

9.3.1 Pilot Experiment

Experimental Setup

Several participants took part in the pilot experiment. All of them were male and
were familiar with gaze tracking technology. The experiments were carried out using
the open source ITU Gaze Tracker [San Agustin et al., 2010] in a head-mounted setup
to perform gaze tracking as the one shown in Figure 9.5. The eye image data was
captured using an off-the-shelf webcam (Sandberg Nightcam 2), which was mounted
on a cap. Contrary to most webcams in the market, this webcam model does not
include an infrared filter, thus permitting the use of the infrared spectrum. The
camera contains a set of 6 infrared LEDs that improve pupil-to-iris contrast. Its
resolution was set to 640×480 pixels, and the frame rate was set to a value of 30
frames per second. In our head-mounted setup, the distance from the eye to the
camera was approximately 5 cm. The gaze accuracy of the setup was about 1◦.

The ITU Gaze Tracker streamed all calculated gaze coordinates through a TCP/IP
server. This raw data was accessed by an in-house developed client. The gaze ges-
tures data used for training the HTM networks was stored in text files.

During the generation of the data set and during the evaluation of the ability of
the recognition algorithms to correctly classify unseen instances, we did not use a
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(a) (b)

Figure 9.4: Computer screen and gaze gestures sequences. Panel a shows
how the screen real state was partitioned in 9 areas and given letter names from
“A” to “I” for the saccadic gestures modality and the sequence alignment method
for detection. Panel b shows how a predefined sequence of areas over which a user’s
gaze hoovered while performing a gaze gesture was monitored and transformed into
a sequence.

black or special purpose background, nor markers to attract or better position the
gaze in specific coordinates of the screen. The performance of the gaze gesture was
always measured over a normal desktop, with open windows, panels, programs, etc.
This was done to recreate the possible scenario in which potential applications of
gaze gestures would take place. It also underlines one of the intrinsic advantages of
gaze gestures: they do not take screen real estate.

The objective of the pilot experiment was to obtain preliminary results on the
performance of the two different gaze gestures modalities, i.e. gliding gestures, where
HTMs were used for detection, and saccadic gestures, where sequence alignment
with the dynamic programming Needleman-Wunsch algorithm was employed for
detection. For each gaze gesture modality, we measured the performance of two
different techniques: in one, users had to perform a dwell in the beginning and in
the end of the gaze gesture; with the other technique users had to perform the gesture
without the need to perform dwell. The dwell time was set to 800 ms. The user
was notified when a dwell was detected by audio feedback. In total, four different
experimental conditions were studied in the pilot experiment: gliding without dwell,
gliding with dwell, saccadic without dwell, and saccadic with dwell.

Participants completed 3 different tasks, an accuracy task, a browsing task, and
a velocity task. In the accuracy task, users had to perform the sequence of 10 gaze
gestures shown in Figure 9.6 for each experimental condition.

In the accuracy task, participants were instructed to complete the gestures as
fast and as accurately as possible. The user was notified with audio feedback every
time the system detected a gesture, regardless of whether the detected gesture was

128



CHAPTER 9. GAZE GESTURES RECOGNITION IN REAL TIME

(a) (b)

(c) (d)

Figure 9.5: Experimental setup. Panels a, b, c and d show the experimental
setup and hardware used to generate gaze gestures and to evaluate the performance
of different gaze gestures modalities and recognition algorithms.

correct or not. When a gesture was detected, the user had to proceed to perform the
next gesture. For each trial, we measured the accuracy if terms of the percentage of
correct gestures detected from the total.

The browsing task required participants to browse the Internet during 5 minutes
in each of the 4 experimental conditions. During this time, the number of involuntary
gaze gestures detected, i.e. false positives, was measured.

To obtain a measure of the time per gesture, participants carried out a velocity
task in which they were instructed to perform a gesture indicating with a switch
the beginning and end of the gesture. The time of the gesture was considered to be
the interval between both switch activations. We refer to that quantity as Time per
gesture or TPG. Three gestures were chosen for this task, one with three strokes
(c), one with 4 strokes (j ) and one with 5 strokes (hook), see Figure 9.6.

Results of the Pilot Experiment

The pilot experiment consisted on 3 different tasks: accuracy, browsing, and velocity.
Figure 9.7 shows the results obtained for the accuracy task. The gliding modality
with no dwell and using HTMs for detection obtained an average accuracy of 62%.
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Figure 9.6: Gestures set. Set of 10 gaze gestures employed in the user study to
evaluate the performance of different gaze gestures modalities.

Using dwell improved the accuracy, 74%. The saccadic modality using the sequence
alignment algorithm had a notably better performance, with an average accuracy
of 92% with no dwell, and 95% accuracy with dwell. As can be seen in Figure 9.7,
the gliding modality presented a higher variability in the data than the saccadic
modality.

Figure 9.7: Accuracy test in pilot experiment. Average accuracy for each of
the four conditions in the pilot experiment. Error bars show the standard error of
the mean.

Figure 9.8 shows the results for the browsing task. The number of involuntary
gaze gestures per minute was 2.5 for gliding without dwell and less than 1.5 for the
gliding with dwell condition. The saccadic without dwell had 0.8 involuntary false
positives and the saccadic with dwell modality 0.2.

In the velocity task, participants performed gaze gesture c, j and hook and the
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Figure 9.8: Browsing test in pilot experiment. Average number of involuntary
gaze gestures during 5 minutes of Internet browsing for each of the four conditions
in the pilot experiment. Error bars show the standard error of the mean.

time from beginning of the gesture to completion was the result of the subject
pressing the Enter key at the beginning and end of the gesture. Figure 9.9 shows
the results obtained. The average TPG for the gliding modality without dwell for
c, j and hook were 4.5, 5.3 and 5.6 seconds respectively. The average TPGs for the
gliding modality with dwell were 5.7, 6.2 and 6.5 seconds. The average TPGs for the
saccadic modality without dwell were 1.8, 2.1 and 2.5 seconds. Finally, the average
TPGs for the saccadic modality with dwell were 2.6, 3.0 and 3.4 seconds.

Discussion of Pilot Experiment

The gliding modality showed a significantly worse performance compared to the
saccadic modality in the pilot experiment both in terms of recognition accuracy
and TPG. For that reason, only the modality based on saccadic gaze gestures was
considered for further study in a main experiment with a larger set of participants.

9.3.2 Main User Study

Experimental Setup

The main experiment was carried out by 20 participants. All of them were male,
with ages ranging from 20 to 59 years old. All of them used computers regularly, but
only five of them were familiar with eye tracking. All participants had a European
cultural background and all of them but two had an academic education.

The hardware employed was the same as that described in Section 9.3.1. Par-
ticipants completed the same 3 tasks as in the pilot experiment: an accuracy task,
a velocity task and a browsing task. The procedure of both tasks is the same as
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Figure 9.9: Velocity test in pilot experiment. Average TPG and accuracy for
each of the four conditions in the pilot experiment. Error bars show the standard
error of the mean.

described in Section 9.3.1. The experiment was conducted using a 2×5 within sub-
jects design. Factors were gesture technique (saccadic without dwell and saccadic
with dwell) and block. The dependent variables measured were TPG and accuracy
in the velocity and accuracy tasks, and number of involuntary gaze gestures in the
browsing task. Prior to the experiment, participants were given a brief verbal intro-
duction to the experiment and some time to get acquainted with the system. After
completing both tasks, they filled out a questionnaire rating speed, accuracy, fatigue
and ease of use for saccadic gaze gestures technique with or without dwell.

Results

Figure 9.10 shows the accuracy rates of gaze gestures recognition with dynamic
programming for the conditions with and without dwell time: 95 and 92%.

Figure 9.11 shows the TPGs for gaze gestures c, j and hook, performed with and
without dwell time.

Figure 9.12 shows the number of involuntary gaze gestures per minute detected
by the system, i.e. false positives, while the users were browsing the Internet. The
condition in which a dwell time was employed had a significantly lower average value.

A group of 10 users repeated the accuracy and velocity tasks over 5 trials to
study learning effects, see Figure 9.13 and Figure 9.14.

Upon completing the experiments, participants filled up a questionnaire to give
their subjective report on each of the experimental conditions. Figure 9.15 shows
the average scores reported by participants for ease of use, speed, tiredness and ac-
curacy of each modality. The gaze gesture technique without dwell obtained a better
score in all categories, except in accuracy where both techniques obtained a similar
value. Furthermore, when asked which technique would they choose for accessibility
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Figure 9.10: Accuracy test in main experiment. Average accuracy for each
condition in the main experiment. Error bars show the standard error of the mean.

purposes, all 6 participants reported a preference for the saccadic technique without
dwell, and claimed that the gaze gesture recognition engine did not interfere with
their normal use of the computer.

9.3.3 Recognition Scores Overlap of Intended and Non-Intended
Gestures

An additional experiment was carried out to gain more insight into the reasons for
the differential performance of each algorithm method and gaze gesture modality.
We investigated the recognition scores overlap between intended gaze gestures and
normal gaze activity for both recognition algorithms.

During real time recognition, in addition to intended gaze gestures, the recog-
nition engine is exposed to the normal gaze activity performed by the user while
using a computer. These patterns are constantly being fed to the recognition al-
gorithms, which, on the search for an intended gaze gesture, perform inference on
them. That is, the task of the real-time recognition algorithm is to segment natural
eye movements from gaze gestures performed on purpose.

An experiment was designed in which 200 instances from voluntarily performed
gaze gestures and 200 instances of normal gaze activity were generated with the ex-
perimental conditions of gliding gaze gestures with no dwell and saccadic gaze ges-
tures with no dwell. The recognition scores generated by each recognition algorithm,
HTM and Needleman-Wunsch, for each condition were plotted in a histogram.

In the case of the HTM algorithm, the range of scores of normal gaze activity
overlaps over a significant subrange with the range of scores obtained by intentional
gaze gestures. This is represented in Figure 9.16.

Figure 9.17 shows the range of scores for the sequence alignment algorithm for
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Figure 9.11: Accuracy test in main experiment. Average velocities for each
condition in the main experiment. Error bars show the standard error of the mean.

saccadic gaze gestures. As can be observed, in this case there is a clear separation
between alignment scores obtained for intended gaze gestures and the rest of gaze
activity.

9.4 Discussion

The data provided by the gaze tracker and used during the experiments had a
relatively high amount of noise and around 1◦ accuracy. The lack of perfect accuracy
is due to the physiological and optical limitations of video-oculography gaze tracking
[San Agustin, 2010]. Furthermore, the accuracy deteriorated markedly over time due
to the lack of head movement invariance in head-mounted eye tracking setups. The
noisy nature of the data constituted a challenge for the recognition engines. In our
experiments, the two different modalities of performing a gaze gesture (gliding and
saccadic) were recognized with two different algorithmic methods.

We used HTM networks on gliding gaze gestures. HTMs are a conexionist pat-
tern recognition algorithmic optimal for handling data with complex spatio-temporal
structures [Hawkins, 2006]. The gliding gaze gesture instances generated noisy and
high-dimensional data as can be seen in Figures 9.2 and 9.18, which justified the
usage of HTM networks.

The Needleman-Wunsch algorithm was chosen for the recognition of saccadic
gaze gestures sequences for its ability to measure sequence similarity. The saccadic
gaze gestures generated small sequences of data, 7 elements long. The elements of
the sequence represented screen areas over which a subject had scanned his or her
gaze over time, see Figure 9.4. High similarity among these gaze sequences indicates
high-likelihood of them belonging to the same gesture category.

As shown in Chapter 8, recognition of isolated saccadic or gliding gaze gestures
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Figure 9.12: Browsing test in main experiment. Average number of involuntary
gaze gestures per minute detected for each condition in the main experiment. Error
bars show the standard error of the mean.

is a relatively trivial task for both our conexionist approach with HTM networks
and our sequence alignment approach with dynamic programming. The challenge
is gaze gesture recognition in real time. That is, to distinguish intentional gaze ges-
tures intertwined with typical gaze activity during normal operation of a computer
through gaze or traditional input methods. This requires finding the right trade-off
between sensitivity and specificity of the recognition algorithms. On the one side, we
aim to detect the maximum amount of intentionally performed gestures, that is, to
maximize sensitivity. On the other hand, it is essential to minimize false positives,
that is, to maximize specificity. This challenge was only partially overcome by the
HTM recognition engine, but it was consistently overcome by the sequence align-
ment methodology as shown by the accuracy, velocity and browsing tasks results of
both modalities and recognition methods in Figures 9.7 and 9.10.

The suboptimal performance for HTM recognition of gliding gaze gestures was
due to several factors. First, the noisy nature of the raw data generated by the
eye tracker and the low resolution of the data structure representation matrix, 6×5,
created a significant degree of overlap between several instances from different cat-
egories of gaze gestures. This could be empirically confirmed as observed in Figure
9.18. An obvious solution that could partially solve the problem would consist on
increasing the granularity of the data structure by increasing the dimensions of the
matrix structure encoding the sign, see Figure 9.2. However, this would require
gathering more training data from users since the degree of overlap among different
instances within a category with increased granularity would decrease, and therefore
clustering same category instances would be harder for the HTM algorithm. Due to
our limited resources to gather additional training data, we constricted ourselves to
30 training instances per category of gliding gaze gesture and the 6×5 matrix data
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Figure 9.13: Accuracy learning curve. Average TPG for each condition over 5
blocks. A learning effect can be noted for both conditions.

structure.
Another reason for the suboptimal performance of HTM recognition of gliding

gaze gestures is the pervasive trade-off that emerges between sensitivity and speci-
ficity. Decreasing the detection threshold of the similarity score produced by the
recognition algorithm increases the chances of detecting a gesture when it is per-
formed but also increases the amount of false positives generated by the algorithm.
On the other hand, increasing the detection threshold of this similarity score pro-
duced by the recognition algorithm increases the strictness of the similarity, lowering
the number of false positives produced, but also missing some true positives that
are noisy or not accurate enough. A naive solution to circumvent this problem is to
impose on the user the need to indicate through an external switching action, the
beginning and end of a gaze gesture. This adds a load on the user and increases
the time needed to perform a gesture but also simplifies the task of recognition for
the algorithm, which obtains the segmentation values of where a gaze gesture starts
and ends. This solution is not always appropriate since the amount of switching
channels available to persons with disabilities is markedly limited and in some cases
(locked-in patients) non existent. A switch can be simulated by a fixation detec-
tion algorithm and dwell time. In this way, the user indicates the beginning and
the end of a gaze gesture through dwell activation at the beginning and end of a
conscious gaze gesture. As Figures 9.7 and 9.9 show, this strategy improves perfor-
mance significantly but also increases the amount of time the user needs to perform
a gesture.

Finally, the main reason for the suboptimal performance of the gliding gaze
gestures recognized with the HTM algorithm was the range of overlap in recognition
scores or inference values generated by the algorithm for both the normal gaze
activity and the scores obtained by intentional gaze gestures. This is represented
in Figure 9.16. For the offline recognition of isolated gaze gestures, the value of the
similarity score [George and Jarosy, 2007] produced by the HTM algorithms for the
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Figure 9.14: TPG learning curve. Average TPG for each condition over 5 blocks.
A learning effect can be noted for both conditions.

top guess is not critical, as long as it is the largest of all the algorithm guesses for
all categories. During inference on different instances of consciously performed gaze
gestures, a wide dispersion of similarity scores, several orders of magnitude (Figure
9.16), emerges. That range partially overlaps with inference values from normal
gaze activity. Due to this overlap, certain gaze activity unrelated to gestures can
be mistaken with an intentional gaze gesture. This region of overlap explains to a
great extent the suboptimal performance of HTM algorithms to successfully perform
real-time recognition of gaze gestures.

The sequence alignment algorithm used to recognize the saccadic gaze gestures
performed very robustly under high levels of noise. The Needleman-Wunsch algo-
rithm is a computationally expensive algorithm, yet we were working with very small
sequences, 7 elements long, and small data sets, 10 categories, so this did not consti-
tute a problem. The recognition of saccadic gaze gestures with sequence alignment
was very accurate and generated very few false positives during normal browsing of
information by a user on the computer, see Figures 9.7 and 9.8. Furthermore, these
types of gestures were also much faster to perform by the users than the gliding ges-
tures, as observed in Figures 9.9 and 9.7. This good performance was due in part to
the inherent ability of dynamic programming algorithms to warp time and become
invariant to sequences that can be performed over different time scales. The reason
for this good performance was the clear distinction of alignment scores obtained by
conscious gaze gestures and the rest of gaze activity, as shown in Figure 9.17. The
clear partition between both distributions results in a significantly lower number
of false positives compared to the HTM algorithms employed to recognize gliding
gestures. The performance of the sequence alignment algorithm on saccadic gaze
gestures improved even more in terms of accuracy and a reduced false positives rate
when an artificial beginning and end of a gesture through dwell time was provided
by the user, Figures 9.7, 9.8, 9.9, 9.10 and 9.12. Yet, this strategy also increased
the time needed to perform a gesture, as shown in Figures 9.9, 9.7 and 9.10.
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Figure 9.15: Subjective results in main experiment. Average score given by
the participants rating the ease of use, speed, tiredness and accuracy of each exper-
imental condition. Error bars show the standard error of the mean.

An additional advantage of the saccadic modality has to do with the low vari-
ability in terms of accuracy performance and completion velocity that emerged from
the pilot experiment results. As can be seen in Figures 9.7 and 9.9, the error bars
are markedly larger for the gliding modality in comparison to the saccadic modal-
ity. Analysis of the experimental data pointed at a higher intrinsic intra-personal
variability of the results obtained, i.e. the experimental results in terms of accuracy
and velocity differ significantly within the same user during different trials. The
lower dispersion in terms of performance of the saccadic modality highlights again
the superiority of this modality over the gliding gaze gestures.

In terms of the actual users of the system, see Figure 9.15, all reported that the
saccadic gaze gestures were more intuitive, faster, less straining for eye muscles and
less frustrating since, when using the sequence alignment algorithm for detection,
it provided a high degree of accuracy. We did encounter some initial reluctance
from some users to the idea of using gaze gestures to control a computer since
normally the eye is not used to trigger actions. This was due to the counterintuitive
nature of employing gaze gestures as control commands. Human beings in general
are not used to employ gaze as an output actor; rather, gaze is normally employed
for pointing and targeting and then as an input sensor. However, with a bit of
training an adaptation, this issue can be easily overcome in a couple of sessions to
the extent of becoming a relatively straight forward way of emitting commands. The
performance improvement in terms of speed after just 5 short (less than 10 minutes
each) experimental sessions is clearly visible in Figure 9.13 and Figure 9.14.

Even though the saccadic gaze gestures with no dwell generated some false pos-
itives (Figure 9.12), users reported to prefer not to use dwell because of the faster
nature and less stressful condition of not using dwell-activated fixations to signal
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Figure 9.16: HTM recognition scores distribution for gliding gaze gestures
and rest of gaze activity. The dark grey bars correspond to the histogram
distribution of inference values generated by HTM networks when fed with normal
gaze activity generated during standard user-computer interaction. The white bars
correspond to the distribution of inference values generated by the HTM networks
when fed with a wide array of consciously performed gaze gestures. Light grey areas
correspond to a significant region of overlap between both distributions.

the start and end of a gesture (Figures 9.10 and 9.15). In a real scenario, users
should be able to set their preferred dwell time to signal the beginning and end of
a gesture. In this case, users might trade off a decrease in speed for a lower rate of
false positives. The proper approach should in any case find a balance between the
costs of making an error with the likelihood of making one [Mollenbach, 2010].

At the current state of the technology, the use of gaze gestures is constrained to
a limited group of users or environments. For normal users that can employ their
hands in standard environments, traditional devices to generate commands such as
keyboard and mouse offer superior performance in terms of robustness and intu-
itiveness. Nonetheless, we believe that as mobile electronic devices become more
pervasive and powerful, their inherent reduced display size holds great potential for
using gaze gestures to generate control commands. Also in certain environments
where use of the hands may be limited, such as a surgery room, eye tracking tech-
nology and gaze gesture recognition as a sub-application of the field might be useful.
But probably the field where gaze gestures can have its most immediate impact is as
an input channel for users with severe disabilities, such as those with high vertebrae
spinal cord injuries and particularly locked-in patients who have lost the ability to
speak and move and whose gaze constitutes the only output communication channel
available. Video-based eye tracking technology has so far allowed these users to po-
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Figure 9.17: Needleman-Wunsch sequence alignment scores distribution
for saccadic gaze gestures and rest of gaze activity. The dark grey bars
correspond to the distribution of inference values generated by the sequence align-
ment methodology when fed with normal gaze activity generated during standard
user-computer interaction. The white bars correspond to the distribution of infer-
ence values generated by the sequence alignment methodology when fed with a wide
array of consciously performed gaze gestures. Almost imperceptible light grey areas
correspond to a minimal region of overlap between both distributions.

sition a cursor on the screen with 0.5◦ accuracy [Hennessey et al., 2008]. However,
the emission of switching actions are challenging for this group of users. Hence,
using gaze gestures to generate commands, such as “Enter”, “Next Page”, “Escape”
or even whole macros/scripts, constitutes a valuable information channel asset. Us-
ing gaze gestures as a communication channel between users and computers offers
several advantages in terms of speeding up command completion, freeing up on-
screen real-estate and avoiding the stressful Midas Touch problem inherent to dwell
selection in gaze interaction.

9.5 Conclusion

In this work we have proposed and compared two different modalities of perform-
ing gaze gestures, gliding gestures and saccadic gestures, in the context of human-
machine interaction. Each modality of gaze gesture was recognized by an appro-
priate machine learning algorithm: HTMs and the Needleman-Wunsch algorithm,
respectively. Based on the results of experiments and users reports, we conclude that
gaze gestures consisting of sequences of saccades recognized by a sequence alignment
algorithm are far superior to performing gaze gestures by gliding the eyes along a
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Figure 9.18: HTM data structure overlap for different categories. Different
categories of gliding gaze gestures generate very similar data structures due in part
to their geometric similarity, the noise present in the data, and the physiological
limitations on accuracy of eye tracking technology.

predefined path and using an HTM conexionist algorithm for recognition. The four
dimensions used to compare both methods, performance of the recognition algo-
rithm, speed of gaze gesture completion, false positives rate and user satisfaction,
show that the saccadic sequences recognized by dynamic programming outperform
significantly the gliding gestures recognized with HTMs by being faster to perform,
less error prone and lighter on the subject while preventing accidental algorithmic
recognition of unintentional gaze gestures. Hence, we have shown that the com-
bination of saccadic gaze gestures recognized by sequence alignment holds great
potential to reliably convey information from the eyes to a computer. We therefore
conclude that saccadic gaze gestures constitute an emerging approach to traditional
gaze-computer interaction that is worth of increasing attention.

The motivation for our work has been to build a system able to robustly recognize
gaze gestures in real time. The purpose of such system would be to constitute a
communication channel between humans and computers, targeting specifically either
people with disabilities or environments where traditional input channels are not
suitable or could be augmented. For accessibility purposes, our system strives for
providing severely motor impaired users with as much autonomy as possible in the
areas of communication, environmental control and mobility.

Gaze gestures are not intrinsically intuitive since humans rarely use their eyes
for conscious effector purposes beyond gaze pointing. Yet, our experiments prove
that it only requires a few minutes of practice to memorize a small set of gestures
and perform them repetitively to emit control commands without suffering from eye
strain. An advantage of using gaze gestures for human-machine interaction is that
gaze gestures are not affected by the low accuracy problems intrinsic to eye tracking,
since they do not require a high accuracy resolution and can even be detected in
the absence of a calibration procedure. In addition, the 6 muscles involved in eye
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movements are known to be particularly resistant to strain and degenerative condi-
tions [Mollenbach, 2010; Drewes, 2010]. Furthermore, gaze gestures do not occupy
real estate on the screen. Hence, freeing up space for other purposes.

For all the above mentioned reasons, we conclude that gaze gestures constitute
an innovative way of human-machine interaction. One that can be used by severely
paralyzed individuals unable to use a switch but still able to control their gaze as
a mono-modal input to control a computer. This group would include people with
ALS, brain-stem stroke, or high vertebrae spinal cord injuries. Environments where
traditional input devices are out of reach (media centers) or the hands can not be
used (surgeons controlling a computer during surgery) could also benefit from gaze
gestures for interaction purposes. In addition, situations in which calibration is not
possible, such as interactive displays in buildings for random users walking by, rep-
resent another potential setup where gaze gestures could be of use. Moreover, gaze
gestures could be used in the context of multi-modal input constituting an additional
information channel between users and mobile devices with limited screen real es-
tate such as smartphones, projected displays or tablet computers. It is important
to notice that many of these devices are already being manufactured with a built-in
camera, which paves the way for gaze interaction features to be easily integrated in
these apparatus. Summing up, we postulate that gaze gestures as implemented in
this work represent a useful addition to the toolbox of utilities being developed for
gaze interaction.

In the next chapter, we evaluate the performance of our extended HTM algorithm
in comparison to traditional HTMs in the real time recognition of gaze gestures using
again a low cost eye tracking but this time on a remote setup.
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Chapter 10

Extended HTMs in the Real Time
Recognition of Gaze Gestures

10.1 Introduction

In this chapter we explore the performance of our extended HTM in comparison
to traditional HTMs in the real time recognition of gaze gestures [Rozado et al.,
2011a]. We use the same extended top node described in Chapter 7. In contrast to
Chapters 8 and 9, we employ in this experiment a remote eye tracking setup instead
of the previously used head mounted setups. A remote setup increases the noise
of the gaze tracking data and decreases the accuracy of the calibration but it also
increases the comfort of the user which does not have to wear any head gear and has
some room for slight head movements. Hence, in the present Chapter as in Chapter
9, we continue exploring the feasibility of gaze gestures as an input modality to
control a computer by carrying out sequences of gaze positions, tracking them using
remote video oculography and comparing their real time recognition with traditional
and extended HTM.

As discussed in Chapter 9, the potential of gaze gestures as a form of HCI relies

143



CHAPTER 10. EXTENDED HTMS IN THE REAL TIME RECOGNITION OF
GAZE GESTURES

heavily on the ability of machine learning algorithms to properly discriminate inten-
tional gaze gestures from otherwise normal gaze activity during HCI. Gaze gestures
can be described in terms of their spatio-temporal structure. The recognition of time
series consisting of a spatio-temporal structure unfolding over time is a challenging
pattern recognition problem. Spatio-temporal encoding of the features to be learned
in a hierarchical system can be a successful approach to solve this type of problems.
In this work, we present an extension of an existing pattern recognition algorithm,
Hierarchical Temporal Memory, HTM, to improve its performance in real time gaze
gestures recognition. Hence, we suggest an extended HTM algorithm to improve
traditional HTM performance on this type of problems.

Gaze gestures are composed of a spatial shape that renders itself very suitable
to the data structure that HTMs are designed to encapsulate in their hierarchy.
However, the temporal evolution of the gaze gesture pattern creates difficulties for
traditional HTMs to properly separate the input space into categories as shown in
Chapter 9. Our extended Top Node and its inherent ability to warp time, expands
the ability of HTMs to handle instances where sequences unfold over time at different
speeds and with considerable levels of noise.

Even though remote eye tracking systems are prohibitively expensive for main-
stream users (with prices ranging anywhere between 5000$ and 50,000$), in this
work we have employed an open source eye tracking algorithm [San Agustin et al.,
2010; San Agustin, 2010] and off-the shelf components to build the gaze tracking
hardware. Hence, our gaze gesture recognition setup is extremely low cost (less
than 50$) but more noisy that commercial systems. Its big advantage is that, due
to its low cost, it is widely accessible to most computer users. This shows that gaze
gesture recognition does not need expensive high-end hardware and that already
built-in cameras on consumer devices such as smartphones or tablets could easily
be used for gaze gesture recognition. The ability of our extended HTM system to
flexibly learn a wide range of spatio-temporal patterns and its tolerance to noise
make it specially appropriate to handle noisy gaze gestures recognition. Our results
demonstrate that the extended HTM algorithm can robustly separate natural eye
movements during computer usage from intentional gaze gestures. This indicates
that using gaze gestures and recognizing them with our extended HTM algorithm
constitutes an innovative, robust, easy-to-learn and viable approach to HCI for sev-
eral environments and device combinations.

10.2 Methods

In our experiments, we compare the performance of two modalities of gaze gestures:
those performed using dwell times at the beginning and at the end of the gesture to
signal the gaze gesture boundaries and those performed without dwell times. Ad-
ditionally, we compared the performance of two recognition algorithms: traditional
HTM and extended HTM.
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10.2.1 Eye tracking

Eye tracking technology is briefly discussed in Chapters 5, 8 and 9. The main
difference in terms of hardware setup between the experiments in this Chapter and
the experiments in Chapter 9 is that here gaze tracking was carried out in a remote
setup as shown in Figure 10.3, while in Chapter 10 a head mounted setup was used.

10.2.2 Gaze Gestures

Gaze gestures were defined an described in length in Chapters 5, 8 and 9.
We carried out preprocessing of gaze gesture data as shown in Figure 8.2 for

feeding data to traditional HTMs. The preprocessing consisted on transforming
the time series of (x, y) gaze coordinates into a spatio-temporal code in a 6×5 2-
Dimensional matrix. This matrix represents the screen over which the gaze gesture
was performed and the elements in the matrix indicate both the temporal and spatial
structure of the gaze gesture on the screen. Several temporal codifications of the
gaze gestures where tried out, as described in Chapter 8, namely: no temporal
codification, temporal codification in seconds and three temporal stages codification
Due to the noise presented in the gaze tracker data, the mapping from the intended
gaze gesture to the streamed gaze data is not perfect as can be observed in Figure
8.2. This constitutes and additional challenge for the recognition algorithm.

For the extended HTM, input data consisted on a matrix representation con-
taining the gaze trajectory over the previous 300 milliseconds.

10.2.3 HTM Formalism

HTM theory has been described in Chapters 4, 6 and 7. We used Numenta’s Nupic
package (v1.7.1) [George and Hawkins, 2009] which is an implementation of a tra-
ditional probabilistic HTM to run our experiments.

10.2.4 Extended HTM

The extended HTM model has been described in Chapter 7. Gaze gestures are
composed of sequences of spatial arrangements over time that together constitute
a sign. At any given time, t, the complete representation of the gesture is not
available, just a particular spatial PoR of the eyes. It is the temporal sequence of
PoRs what constitutes a gesture. The different nature of this kind of problem and
the sub-optimal performance of traditional HTM networks to deal with it, justified
the usage of the extended HTM to adjust recognition to the temporal requirements
of multi-variable time series and in particular gaze gesture recognition.

Figure 10.1 shows an illustration of the extended top node we referred to as “se-
quential pooler”. On it, we can observe how as time passes, our extended top node
threads sequences by incorporating in a linear array the spatio-temporal arrange-
ments of the eyes over time. In this fashion, whole sequences capture the entire
spatio-temporal structure constituting a gaze gesture from beginning to end.
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Figure 10.1: Extended HTM formalism to capture the temporal structure
of gaze gestures data. Traditional top nodes receive binary vectors representing
the temporal groups active in the nodes underneath in the hierarchy and map this
incoming vectors to categories. Our extended top node instead stores sequences
of incoming vectors in an abstraction we referred to as sequential pooler and maps
whole sequences to single categories. These sequences represent the “utterance” of
a sign over time.

Topologically, our extended top node sits at the top of the HTM network, re-
ceiving its inputs from a traditional top node underneath serving the purposes of
its unique children node, see Figure 10.2. For the real time recognition of gaze ges-
tures, we compared the performance of traditional HTM and the extended HTM
topologies shown in Figure 10.2. As can be seen in Figure 10.2, traditional HTM
require a data structure containing the complete spatio-temporal characterization of
a gaze gesture over time. The extended HTM however, receives the data structure
of a gaze gesture as it evolves over time.

10.2.5 Experimental Setup

For the reasons explained in Chapters 8 and 9, neither black or special purpose
background, nor markers to attract or better position the gaze in specific coordinates
of the screen were used during experimental work.

The remote eye tracking system setup is shown in Figure 10.3. Experiments
were carried out using the open source ITU Gaze Tracker [San Agustin et al., 2010]
in a remote setup to perform gaze tracking, Figure 10.3. The eye image data was
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Figure 10.2: Traditional and extended HTM topologies employed during
experiments. In the traditional HTM, the bottom level nodes are fed with a sensor
matrix containing a complete spatio-temporal codification of a gaze gesture. The
extended HTM contains, in addition to a traditional HTM network, our customized
extended top node. The data structures fed to the extended HTM are the paths
scan by gaze over time (t1, t2, t3. . . ) during the performance of a gaze gesture.

captured using an off-the-shelf webcam (Sandberg Nightcam 2), mounted under the
computer monitor. One infrared lamp was used to improve pupil-to-iris contrast and
to create a glint on the cornea that the gaze tracking algorithm uses as reference
to measure pupil center displacements during calibration and tracking. Camera
resolution was set to 640×480 pixels, and the frame rate oscillated between 15
and 30 frames per second. In this remote setup, the distance from the eye to the
camera was approximately 50-60cm. The gaze accuracy of the setup was about
1.5o, with marked oscillations among different users. Some users achieved up to 0.7o

accuracy while others could not achieve better accuracy than 2o. These differences
are attributable to individual eye shape, degree of concentrations during calibration,
tracking elements arrangement, and light conditions.

The user study was carried out by 15 participants. 13 of them were male and
2 female, with ages ranging from 20 to 59 years old. All of them used computers
regularly, 5 of them were already familiar with eye tracking and 10 of them had
never used a gaze tracking system before. All of them were regular computer users.
The subset of 10 participants with no previous gaze tracking experience was involved
in an experiment about learning effects. All participants had a European or Latin
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(a) (b)

Figure 10.3: Experimental setup. Panels a, and b show the low cost experimen-
tal setup and hardware used to carry out remote eye tracking and the subsequent
generation of gaze gestures data. The webcam used has a cost of less than 30$ and
simply lacks an infrared filter. The infrared lamp costs less than 5$ and part of it
has been covered to decrease the intensity of the illumination.

American cultural background and academic education.
In our experiments, we measured the performance of two different modalities of

performing the gaze gesture: in one, users had to use dwell time at the beginning
and at the end of the gesture to signal the segmentation of the gesture within other
types of gaze activity; This requirement obviously makes recognition easier for the
algorithm but increases the load on the user and the time required to carry out
the gesture. In the alternative modality, users had to perform the gaze gesture
without using dwell time to indicate beginning and end of a gesture, making it
more comfortable and faster to carry out the gesture by the user, but making the
recognition more challenging. The dwell time threshold was set to 400 ms. In the
dwell time modality, the user was notified by audio feedback when the dwell time
threshold was surpassed. In summary, two different experimental conditions were
studied in the experiment: saccadic gaze gestures without dwell time, and saccadic
gaze gestures with dwell time.

We measured the performance of traditional and extended HTMs by measuring
after training each network, what percentage of unseen signs’ instances from the
experimental subjects were assigned to their proper categories using the inference
scores provided by the corresponding algorithm during inference.

Participants were asked to complete 3 different tasks, an accuracy task, a velocity
task and a browsing task. In the accuracy task, users had to perform the sequence
of 10 gaze gestures shown in Figure 8.1 for each experimental condition. Partici-
pants were instructed to complete the gestures as fast and as accurately as possible.
Users were notified with audio feedback every time the system detected a gesture,
regardless of whether the detected gesture was correct or not. When a gesture was
detected, the user had to proceed to perform the next gesture. For the accuracy
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task, we measured the accuracy (percentage of correct gestures detected).
In the velocity task, participants were instructed to perform the same gesture 10

times as fast and as accurately as possible. Three representative gestures were se-
lected for this task: “c”, “j” and “hook” These gestures were chosen for representing
gestures with 3, 4 and 5 strokes, see Figure 8.1. In each velocity trial, the approxi-
mate time per gesture, or TPG, measured in seconds was calculated by dividing by
10 the total time taken to perform 10 repetitions of the same gesture.

A subset of 10 participants with no previous eye tracking experience, repeated
the accuracy and velocity task over 5 blocks to study learning effects.

The browsing task required participants to browse the Internet during 5 min-
utes. During this time the number of involuntary gaze gestures detected, i.e. false
positives, was measured for each of the 2 experimental conditions.

10.3 Results

The data set of gaze gestures to train the HTM networks was generated by 1 user
who performed 50 instances of each category. The aggregated sum of all instances
for each category reflects that the training data contained a certain amount of noise
as can be seen in Figure 10.4.

Figure 10.4: Gaze gestures instances. Visualization of the degree of overlap
of the 50 instances per category of gaze gestures data used for training the HTM
networks. A certain degree of noise is clearly visible in the data.

A user study with 15 participants was carried out to determine the performance
during inference of our extended HTM system in comparison to traditional HTMs
for detection of gaze gestures in terms of accuracy, time per gesture and amount of
false positives. The motivation for the modification of traditional HTMs lie on the
limited accuracy of traditional HTM to solve the problem of gaze gesture recognition
in real time.

HTM theory predicts the ability of HTM networks to warp time by increasing the
number of layers in the topology [George and Jarosy, 2007]. That is, a higher number
of layers in the topology should extend the temporal invariance of the algorithm at
the higher nodes of the network and hence, the HTM algorithm should perform
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learning and inference on problems where data structures slowly unfold over time.
To test this theoretical prediction, we carried out a number of simulations testing
the recognition accuracy of traditional HTM networks with increasing number of
layers in their topology to determine how increasing the number of layers affects
the performance of traditional HTM networks on a problem where instances unfold
over time. As can be seen in Figure 10.5, increasing the number of layers improves
performance on the problem at hand for traditional HTMs but only up to the 2
Layers level. Increasing the number of layers further does not improve recognition
performance. This optimal low number of layers is good in terms of maintaining to
a minimum the computational complexity of the algorithm. Still, the recognition
accuracy of traditional HTM even at the optimal 2 Layers level is not satisfactory,
see Figure 10.5. This first experiment highlighted the necessity for HTM algorithms
to be modified in order for them to better accommodate recognition problems where
instances unfold over time. Further experiments were all carried out with 2 Layer
network topologies as the ones shown in Figure 10.2. Recognition was carried out
with traditional HTM and with the extended HTM.

Figure 10.5: Optimal topology search. Gaze gestures recognition accuracy for
traditional HTM networks with different number of layers for the experimental con-
ditions: with and without dwell. The bars show the percentage of correct classifica-
tions achieved by 1, 2, 3, 4, 5 and 6 Layer networks. As can be seen in the graph,
best performance for traditional HTMs is achieved by topologies with 2 Layers.

Our main experiment consisted on 3 different tasks: accuracy, browsing, and
velocity. Figure 10.6 shows the results obtained for the accuracy task. The extended
HTMs with no fixations had an average accuracy of 94% and the extended HTMs
with fixations had an average accuracy of 98%. As can be seen in Figure 10.6,
the extended HTM algorithm clearly outperforms the traditional HTM in terms of
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accuracy.

Figure 10.6: Accuracy experiment. Average recognition accuracy for each of the
four conditions in the experiment. Error bars show the standard error of the mean.

To obtain measurement of TPG, 3 representative gestures with 3, 4, and 5 strokes
were selected from the data set from Figure 8.1, namely “c”, “j” and “hook”. The
average TPG for each was inferred by measuring the time required to complete 10
repetitions of each and deriving the average TPG. The results are shown in Figure
10.7. Average TPG for gestures “c”, “j” and “hook” with no dwell time were 0.8,
1.3 and 1.9 seconds respectively. Using dwell times to signal beginning and end of
gestures generated TPGs of 2, 2.4 and 3.1 seconds respectively.

Figure 10.8 shows the results for the Browsing Experiment, plotting the number
of involuntary gaze gestures per minute for the extended and traditional HTMs with
and without dwell during 5 minutes of Internet browsing. The best performance (less
false positives detected) was obtained by the gesture modality with fixations and
recognized with the extended HTM.

A sub-study with 10 participants with no previous eye tracking experience was
carried out to study learning effects. Learning effects were studied for both accu-
racy and TPG. There was no clear learning effect in terms of accuracy over the 5
experimental blocks (Figure 10.9), but there is a noticeable, albeit slight, learning
effect in terms of TPG over the 5 experimental blocks (Figure 10.10).

We also studied the impact of vocabulary size on recognition accuracy, i.e. how
increasing the number of categories to be recognized negatively affects performance
for the different algorithms being compared. As can be seen in Figure 10.11 the
effect is more noticeable for traditional HTMs.

HTM requires training sets where each category to be classified is represented
by several instances. To determine the effect on recognition accuracy of increasing
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Figure 10.7: Velocity experiment. Average TPG for 3, 4 and 5 stroke gestures
recognized with the Extended HTM algorithm. Error bars show the standard error
of the mean. Note that the modality with dwell includes the time needed for the
two long fixations to signal beginning and end of a gesture (400ms each).

the number of training instances for each method being compared, we plotted the
results of simulations in which we increased the number of training instances in
discrete steps for the methods being compared. As can be observed in Figure 10.12,
increasing the number of training instances improves performance in general but the
extended HTM always outperforms the traditional HTM methodology.

Even though our extended HTMs achieved better recognition accuracy for gaze
gestures than traditional HTMs, the inference time of our extended HTM algorithm
was worse than traditional HTMs. This is due to the heavy demands in terms of pro-
cessing power of the Needleman-Wunsch algorithm [Needleman and Wunsch, 1970]
for sequence alignment employed by our extended top node. Still, given the short
character of the sequences generated during gaze gesture performance, the recogni-
tion time during inference was still in the order of milliseconds. This fast inference
capability of our extended HTM algorithm is important for real time applications.

An experiment was designed in which 150 instances from voluntarily performed
gaze gestures and 150 instances of normal gaze activity were generated. The recog-
nition scores generated by the traditional and extended HTM algorithm during
inference under the experimental condition of saccadic gaze gestures with no dwell
time were plotted in a histogram. Figure 10.13 shows how the range of scores ob-
tained by normal gaze activity overlaps over a significant sub-range with the range
of scores obtained by intentional gaze gestures when using the traditional HTM as
recognition algorithm.

Traditional HTMs are very good at detecting gaze gestures offline [Rozado et al.,
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Figure 10.8: Browsing experiment. Average number of involuntary gaze ges-
tures detected during 5 minutes of Internet browsing for each of the experimental
conditions. Error bars show the standard error of the mean.

2011b]. For different gestures and degrees of noise, traditional HTM almost always
gets the proper category of the instance being shown correct. The problem is that
the range of scores for different instances varies considerably (from 0.1 × 10−12 to
3) and during normal gaze interaction with a computer, standard gaze activity is
wrongly identified as a gaze gesture since the algorithm often assigns to non-gaze
gestures activity patterns an inference score also within the (0.1× 10−12 to 3) range
obtained by consciously performed gaze gestures. Therefore, it is not possible to find
a proper threshold for the inference scores in terms of what it is a gaze gesture and
what it is not. This inability of traditional HTMs to properly discriminate conscious
gaze gestures from standard gaze activity can be visualized in Figure 10.13. There
is not a proper threshold on the inference score axis to determine what is a gaze
gesture and what is standard gaze activity since the scores for both types of gaze
movements clearly overlaps. A low threshold would be very sensitive but would
generate many false positives. A higher threshold would not generate as many false
positives but it would miss a lot of true gaze gestures.

Figure 10.14 shows the range of scores obtained for saccadic gaze gestures and
standard gaze activity using the extended HTM algorithm. As can be observed,
there is a clear separation between scores obtained for intended gaze gestures and
the rest of gaze activity. This means, that with the extended HTMs a clear cutoff
threshold for inference values exists that is able to discriminate most intentional
gaze gestures from non-gaze gestures activity. Hence, the extended HTM and its
ability to warp the temporal unfolding structure of a gesture is able to robustly dis-
criminate conscious gaze gestures from standard gaze activity during gaze computer
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Figure 10.9: Learning curve on accuracy. Average recognition accuracy for each
experimental condition over 5 blocks for 10 users with no previous gaze tracking
experience.

interaction.

10.4 Discussion

The spatio-temporal characteristics of gaze gestures require specific features of the
recognition engine. The low cost hardware employed in the experiments generated
noisy data that demanded a robust and noise-tolerant recognition engine. In this
paper we have presented an alternative approach to how HTMs handle data at the
top node in order to improve their performance on machine learning tasks in which
instances are composed of a noisy sequence of patterns that unfold slowly over time.
As a proof of principle, we have used a data set of gaze gestures, an innovative form
of HCI.

Our extension of a traditional HTM system consists of a reformulation of the
network’s top node that allows it to store sequences of input patterns constituting
whole instances of the data set and to map these sequences to categories from the
category space. Doing this, the top node is able to warp time and create temporal
invariance.

In gaze gesture recognition, it is the orderly sequence of gaze vectors arriving
over time what constitutes a gesture, as oppose for instance to image recognition,
where at any time point, the input vector represents a complete characterization of
an image category. As can be seen in Figure 10.6, the extended HTM algorithm
clearly improves the performance of traditional HTMs for gaze gesture recognition.
Although in this work we have focused on input data coming from an eye tracker,
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Figure 10.10: Learning curve on TPG. Average TPG for each experimental
condition over 5 blocks for 10 users with no previous gaze tracking experience.

HTM theory in general and the extended HTM approach in particular are very
flexible in terms of accepting input data streams from a variety of sensors. As
long as the data representations in the input contains a spatio-temporal structure,
our extended HTM approach, after training with a sufficient number of training
instances, can achieve good recognition accuracy (e.g up to 98% in our experiments).
The method is also light on computing resources during inference, requiring only
milliseconds, which makes it easily applicable to real-time requirements contexts.

Recognition of isolated gaze gestures is a relatively trivial task for both tradi-
tional HTMs and our extended HTM system [Rozado et al., 2011b]. The challenging
problem is gaze gesture recognition in real time. That is, to distinguish intentional
gaze gestures intertwined with typical gaze activity during normal gaze interaction
with a computer. This requires finding the right trade-off between sensitivity and
specificity of the recognition algorithms. On the one side, the aim is to detect the
maximum amount of intentionally performed gestures, that is, to maximize sensi-
tivity. On the other hand, it is essential to minimize false positives, that is, to
maximize specificity. This challenge was only partially overcome by the traditional
HTM in our experiments, but it was robustly overcome by our extended HTM as
shown by the accuracy, velocity and browsing tasks results in Figures 10.6, 10.7 and
10.8.

The suboptimal performance of traditional HTM recognition of gaze gestures
was due to several factors. First, the noisy nature of the raw data generated by
the eye tracker and the low resolution of the data structure representation matrix,
6×5, created a significant degree of overlap between several instances from different
categories of gaze gestures, see Figure 10.4. This constitutes a challenge for any

155



CHAPTER 10. EXTENDED HTMS IN THE REAL TIME RECOGNITION OF
GAZE GESTURES

Figure 10.11: Decreasing performance with increasing vocabulary size. The
recognition accuracy for each method being compared decreases as the vocabulary
size of the sign gestures data set to be learnt increases. Yet, this effect is more
noticeable for Traditional HTMs.

type of recognition algorithm. A naive solution would be to increase the granularity
of the data structure. However, this would require gathering more training data
from users since the degree of overlap among different instances within a category
with increased granularity would decrease, and therefore, clustering same category
instances would be harder for the HTM algorithm. Due to our limited resources
to gather additional training data, we constricted ourselves to 50 training instances
per category of gaze gestures and the 6×5 matrix data structure.

Gaze gesture recognition is no stranger to the pervasive trade-off between sen-
sitivity and specificity. Decreasing the detection threshold of the similarity score
produced by the recognition algorithm increases the chances of detecting a gesture
when it is performed but also increases the amount of false positives generated by
the algorithm. On the other hand, increasing the detection threshold of this sim-
ilarity score produced by the recognition algorithm increases the strictness of the
similarity, lowering the number of false positives produced, but also missing some
true positives that are noisy or not accurate enough and hence only obtain a low
similarity score. An obvious solution to circumvent this problem is to impose on the
user the need to indicate through an external switching action, the beginning and
end of a gaze gesture. This adds a load on the user and increases the time needed
to perform a gesture but also simplifies the task of recognition for the algorithm,
which obtains the segmentation values of where a gaze gesture starts and ends. This
solution is not always appropriate since the amount of switching channels available
to persons with disabilities is markedly limited and in some cases, such as locked-in
patients, non existent. A switch can be simulated by a fixation detection algorithm
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Figure 10.12: Improving performance with increasing number of training
instances. The recognition accuracy for each method being compared increases as
the number of training instances gets larger.

and dwell time. In this way, the user indicates the beginning and the end of a gaze
gesture through dwell activation at the beginning and end of a conscious gaze ges-
ture. As Figures 10.6 and 10.7 show, this strategy improves accuracy performance
significantly but also increases Time per Gesture, TPG.

The suboptimal performance of traditional HTM algorithms on real time gaze
gesture recognition is mainly due to the degree of overlap between the range of
inference scores generated by the algorithm for the non-gesture gaze activity and
the range of inference scores generated by the algorithm for intentional gaze gestures,
as illustrated by Figure 10.13. For the offline recognition of gaze gestures, the value
of the inference score [George and Jarosy, 2007] produced by the HTM algorithms for
the top guess is not critical, as long as it is the largest of the list of category guesses
that the algorithm generates. During inference on different instances of consciously
performed gaze gestures, a wide dispersion of similarity scores emerges, see Figure
10.13. That range partially overlaps with inference values from normal gaze activity.
Hence, it becomes impossible to determine a threshold able to discriminate gaze
activity unrelated to gestures with an intentional gaze gesture for the range of scores
generated by the traditional HTM.

The recognition of saccadic gaze gestures with our extended HTM algorithm was
very accurate and generated very few false positives during normal browsing of in-
formation by a user, see Figures 10.6 and 10.8, clearly outperforming the traditional
HTM approach. The Needleman-Wunsch algorithm [Needleman and Wunsch, 1970]
employed by the top node for sequence alignment, is a computationally expensive
algorithm, yet we were working with very small sequences, 5-7 elements long, and
small data sets, 10 categories, so computing power was not a limiting factor. This
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Figure 10.13: Traditional HTM recognition scores distribution for gaze
gestures and standard gaze activity while browsing the Internet. The dark
grey bars correspond to the histogram distribution of inference values generated by
a traditional HTM network when fed with normal gaze activity generated during
standard user-computer interaction. The white bars correspond to the distribution
of inference values generated by the HTM networks when fed with a wide array
of consciously performed gaze gestures. Light grey areas correspond to a region of
overlap between both distributions.

good performance was due to the inherent ability of dynamic programming algo-
rithms in the top node to warp time and become invariant to sequences that can
be performed over different time scales. This translated on a clear distinction of
alignment scores obtained by conscious gaze gestures and the rest of gaze activity,
as shown in Figure 10.14. The clear partition between both distributions results in
a straight forward way to discriminate normal gaze activity from consciously per-
formed gaze gestures by choosing a threshold in the middle of the overlapping range
of scores as a way to minimize false positives and maximize the sensitivity of gaze
gesture detection.

Additional advantages of the extended HTM over traditional HTM is the recog-
nition accuracy robustness of the former to increasing data set vocabularies, i.e.
number of recognition categories, see Figure 10.11, and lesser requirements in terms
of number of training instances in the training set, see Figure 10.12.

The performance improvement in terms of TPG after just 5 short (less than
10 minutes each) experimental sessions is clearly visible in Figure 10.10 for gaze
gestures with and without dwell time and illustrates the fast assimilation of gaze
gestures as a form of output communication.

Even though the saccadic gaze gestures with no dwell time generated some false
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Figure 10.14: Extended HTM recognition scores distribution for gaze ges-
tures and standard gaze activity while browsing the Internet. The dark grey
bars correspond to the distribution of inference values generated by our extended
HTM fed with normal gaze activity generated during standard user-computer inter-
action. The white bars correspond to the distribution of inference values generated
by the extended HTM algorithm when fed with consciously performed gaze ges-
tures. The light grey areas correspond to a minimal region of overlap between both
distributions.

positives (Figure 10.8) users reported to prefer not to use fixations because of the
faster nature and less stressful condition of not using dwell-activated fixations to
signal the start and end of a gesture. The dwell threshold time used in our experi-
ment was fixed. In a real scenario, users should be able to set their preferred dwell
time to signal the beginning and end of a gesture.

10.5 Conclusion

In this work we have proposed and extension of the traditional HTM paradigm
to improve its performance in the real time recognition of saccadic gaze gestures
generated with a low cost and relatively noisy open source eye tracking system. The
hardware/software approach used in this work has used extremely low cost hardware
and software components, making it easily adoptable for all types of users regardless
of financial situation.

The two dimensions used to compare the traditional and extended HTM meth-
ods, recognition accuracy of the algorithm and false positives rate show that the
extended HTM method outperforms significantly traditional HTMs by being less
error prone while preventing accidental algorithmic recognition of unintentional gaze
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gestures in the context of real time gaze computer interaction.
The motivation for an extended HTM was two-fold. First we wanted to adapt

HTM algorithms to problems where the spatio-temporal structure of instances slowly
unfolds over time. Second, we wanted to build a system able to robustly recognize
gaze gestures in real time. The purpose of such system would be to constitute
a communication channel between humans and computers, targeting specifically
either people with disabilities or environments where traditional input channels are
not suitable or could be augmented.

Last but not least, our extended HTM approach is not specifically designed
to deal with gaze gestures specifically, since it is highly independent of hardware
and preprocesssing of data. In fact, it is applicable to a wide array of problems
whose instances consist of a spatio-temporal structure unfolding in time. Hence, it
possesses a high degree of flexibility and can be easily adapted to other machine
learning applications where the patterns to be learned are multi-variable time-series
unfolding slowly over time.
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Chapter 11

Summary of Results

In this thesis we have studied and extended an emerging computational paradigm
known as hierarchical temporal memory (HTM). In particular we have developed
an extension that optimizes the performance of the algorithm for multivariable time
series. The specific landmarks and results achieved by this thesis are the following:

• Chapter 6: We have developed an in-house version of HTM by implement-
ing the theoretical principles of the paradigm. We have tested our in-house
version on a simple two dimensional image recognition problem to replicate
the results of the authors of the theory and as a proof of principle for the
validity of our implementation. After training the system with movies of
the images moving along the vertical and horizontal directions and presented
over different discrete sizes, the system became invariant to translations and
size variations. We achieved recognition performance of up to 93% accu-
racy on a dataset of 48 2-dimensional binary images that underwent distor-
tions, translations, occlusions, noise and slight rotations (The code and data
sets employed in this work are available at http://www.ii.uam.es/~gnb/

drfthesis/htmimagerecognition.rar).
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• Chapter 7: We have tested our in-house version, and the standard HTM re-
lease from Numenta on a problem of Australian Sign Language recognition
using data capture by a data glove. The results of these tests reflected the
limitations of HTMs to deal with problems where instances unfold slowly over
time. We have developed an extension of the HTM theory to optimize its per-
formance on multivariable time series. Our extension consists on a customized
top node that is able to store sequences of input data and compare them us-
ing the Needleman-Wunsch algorithm of dynamic programming for sequence
alignment. Dynamic programming allows time warping thus providing the al-
gorithm with the ability to recognize sequence generated at different speeds.
Our extended HTM algorithm reaches a recognition performance of 91% on a
dataset of 95 categories of Australian sign language in comparison to the 61%
achieved by traditional HTM. Each category in the vocabulary, was composed
of 27 instances, 24 of which were used for training the system and three for
testing its inference abilities. Recognition accuracy was similar to well estab-
lished methods in the literature for sign language recognition such as hidden
Markov models and Metafeatures Tclasses. Our algorithm outperform meth-
ods in the literature on aspects such as the requirement of a low number of
training instances, tolerance to increasing vocabulary sizes, degree of supervi-
sion requirements during training, lack of features models to detect and lack of
language or grammar models (The code and data sets employed in this work
are available at http://www.ii.uam.es/~gnb/drfthesis/htmslr.rar).

• Chapter 8: We have also explored a new interaction paradigm with comput-
ers through the usage of gaze gestures tracked by low cost and open source
eye tracking technology. Due to the spatio-temporal structure that compro-
mises a gaze gesture, HTMs that are specifically designed to capture the
spatio-temporal structure of the parameter space that are exposed to dur-
ing training seemed an appropriate machine learning algorithm to tackle the
problem. We have determined that offline gaze gesture recognition is rela-
tively simple to be carried out by traditional HTM algorithms. Real time
recognition of gaze gestures is however more challenging due to the diffi-
culty to discriminate consciously performed gaze gestures from standard gaze
activity. (The code and data sets employed in this work are available at
http://www.ii.uam.es/~gnb/drfthesis/htmggroffline.rar).

• Chapter 9: We have explore different modalities of performing a gaze gesture:
gliding gestures and saccadic gestures. We have found out through a user
study the superiority of the saccadic gestures modality both in terms of user
preferences as well as recognition performance and time requirements to carry
out the gesture. We have compared the performance of different algorithms
for the real time recognition of gaze gestures in head mounted setups. We have
illustrated the limitations of traditional HTM to carry out this task. We have
also shown how a very simple sequence alignment algorithm using dynamic
programming performs very well and it is very light on computer resources for
the recognition of gaze gestures in real time reaching up to 95% recognition
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accuracy in comparison to the 74% accuracy reached by the traditional HTMs
(The code and data sets employed in this work are available at http://www.

ii.uam.es/~gnb/drfthesis/htmggr.rar).

• Chapter 10: We have used our extended HTM algorithm for the successful
recognition of real time gaze gestures using a low cost remote setup reaching
up to 98% recognition accuracy. The ability of our algorithms to successfully
distinguish in real time consciously perform gaze gestures from normal gaze
activity during usage of a computer shows the potential of these new form of
human computer interaction. Gaze gestures possess several advantages: they
do not occupy screen real state, they do not require calibration process, they
circumvent the Midas touch problem pervasive to gaze interaction, they elimi-
nate the necessity of dwell time and they increased the interaction vocabulary
of gaze interaction (The code and data sets employed in this work are available
at http://www.ii.uam.es/~gnb/drfthesis/htmggr.rar).
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Chapter 12

Conclusions

In this thesis, we have explored an emerging pattern recognition paradigm known
as Hierarchical Temporal Memory (HTM). The approach is a connectionist, Bayesian
and bio-inspired set of algorithms which try to model the topology and functionality
of the neocortex, namely a hierarchical organization, spatio-temporal coding of the
features to be learned and the usage of time as a supervisor to cluster instances into
a category.

HTMs are structured as a hierarchical network of individual units called nodes.
Each node implements the same learning algorithm. A node learns the spatio-
temporal patterns of its inputs and clusters them into “causes”. A Node’s output at
one level in the hierarchy is the input to a node in a higher level of the hierarchical
structure. Nodes at the bottom level of the hierarchy receive their inputs from
sensory systems.

The usage of a hierarchy is important for generalization and storage efficiency.
The hierarchy also matches to spatial and temporal hierarchy of the real world
[Hawkins, 2006]. A technique of Bayesian theory known as belief propagation [Pearl,
1988] searches for the optimal set of mutually compatible beliefs among nodes. The
hierarchical representation also affords a mechanism for attention.

Although, in this thesis, we have just focused on the first two capabilities of the
following list, HTMs are able to [Hawkins, 2006]:
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1. Discover causes in the world.

2. Infer causes of novel input.

3. Make predictions.

4. Direct behavior.

Hierarchical temporal memory works very well on problems where the spatial
structure is fully represented at any time instant. Multivariable time series, where
the structure of instances representing categories unfold over time represent a chal-
lenging problem for existing HTM Networks.

We have presented an extension of Hierarchical Temporal Memory, by adding
and extended top node that is able to store complete sequences of its input. These
sequences represent the whole spatio-temporal codification of an instance represent-
ing a category from the whole set of categories to be learnt. This extended top node
uses the Needleman-Wunsch algorithm to perform sequence alignment and measure
sequence similarity in order to cluster sequences belonging to the same category
together. The Needleman-Wunsch algorithm is just an instantiation of the wider
optimization concept of dynamic programming.

As proof of principle of our extended HTM system, we applied it to the recog-
nition of sign language from data captured with an electronic data glove. This
type of glove provided information about hands position in space, wrist angle and
finger position as the hands “utters” a word from Sign Language. Our extended
HTM matched the recognition performance of state of the art machine learning ap-
proaches for the sign language recognition problem: namely, Hidden Markov Models
and Metafeatures Tclasses. In some performance aspects, the extended HTM even
outperformed existing approaches.

In this thesis we have also explored a new interaction paradigm in the realm of
human computer interaction or HCI, namely we have explored the usage of gaze
gestures to control a computer within the realm of gaze tracking technology.

Gaze tracking technology is very convenient for substituting the mouse and using
gaze as a pointing device. However, the problem of distinguishing whether gaze over
an object targets examining the object or interacting with it pervades the field giving
rise to the term “Midas touch problem” to refer to the difficulty of discriminating
between interaction for examination purposes from intention to generate switching
actions.

In our work, we have explored the usage of gaze gestures to control a computer.
Offline recognition of gaze gestures is a trivial task with traditional HTM and many
other types of machine learning classifiers, with most algorithms getting very con-
sistent and robust results. However, gaze gesture recognition in real time is more
challenging. This has to do with the difficulty that intentional gaze gestures have to
be distinguish from standard gaze activity during normal gaze computer interaction.
Our extended HTM however, is able to handle the spatio-temporal data structure of
gaze gestures and properly discriminate them from other types of gaze activity. We
obtain high accuracy rates, low false positives and a reportedly ease of use by users
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of this innovative interaction paradigm. The ability to recognize gaze gestures in
real time using low cost eye tracking technology opens interesting interaction pos-
sibilities for the realms of new electronic devices such as smartphones or projected
displays.

In this work we have explored and extended a bioinspired pattern recognize en-
gine. We believe it is important to study and apply concepts from information pro-
cessing extracted from neuroscience to recognition problems where machine learning
approaches have traditionally struggle. Beyond the scope of the results of this thesis,
the extended HTM can be applied to any type of multivariable time series whose
instances are composed of spatio-temporal structure unfolding over time.
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Conclusiones

En esta tesis, hemos explorado un paradigma emergente de reconocimiento de pa-
trones conocido como Memoria Jerárquica Temporal (HTM por sus siglas en inglés).
Este paradigma es un algoritmo conexionista, con bases Bayesianas y bioinspirado
que trata de modelar la topoloǵıa y la funcionalidad de la neocorteza. El algoritmo
utiliza una organización jerárquica, codificación espacio-temporal de los patrones
a aprender y emplea la información temporal para agrupar instancias en grupos
representativos de una categoŕıa.

Las HTMs están estructurados como una red jerárquica de unidades individuales
llamadas nodos. Cada nodo implementa el mismo algoritmo de aprendizaje. Un
nodo aprende el patrón espacio temporal de sus inputs y los agrupa en “causas”.
El output de un nodo a un nivel de la jerarqúıa es el input del nodo en un nivel
superior de la estructura jerárquica. Los nodos en el nivel inferior de la jerarqúıa
reciben sus inputs de sistemas sensores.

El uso de una jerarqúıa es importante para la generalización y el almacenamiento
eficiente. La jerarqúıa también se corresponde con la jerarqúıa espacio-temporal
del mundo real. Una técnica de teoŕıa Bayesiana conocida como “propagación de
creencias” busca el grupo óptimo de creencias mutualmente compatibles entre los
nodos. La representación jerárquica además también permite un mecanismo para la
atención.
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A pesar de que en esta tesis nos hemos centrado sólo en las dos primeras capaci-
dades de la lista siguiente, los HTM son capaces de:

1. Descubrir causas

2. Inferir causas de inputs novedosos

3. Hacer predicciones

4. Dirigir comportamiento

La memoria jerárquica temporal funciona muy bien en problemas donde la es-
tructura espacial está totalmente representada en cualquier instante de tiempo. Las
series temporales multivariables donde la estructura espacial de las instancias que
representan a categoŕıas se desarrollan en el tiempo suponen un reto para las HTM
tradicionales.

En esta tesis hemos presentado una extensión de la memoria jerárquica temporal,
añadiendo un nodo superior extendido que es capaz de almacenar secuencias comple-
tas de inputs que componen en su totalidad una categoŕıa. Estas secuencias imple-
mentan la codificación espacio temporal completa de una instancia que representa
a una categoŕıa del conjunto de categoŕıas a aprender. El nodo superior extendido
utiliza el algoritmo de Needleman-Wunsch para realizar alineamiento de secuencias y
medir la similitud entre secuencias para agrupar las secuencias que pertenezcan a la
misma categoŕıa. El algoritmo de Needleman-Wunsch es simplemente una instancia
de un concepto de optimización mas amplio denominado programación dinámica.

Como prueba de concepto de nuestro sistema HTM extendido, hemos estudi-
ado el reconocimiento de lenguaje de signos con datos capturados con un guante
electrónico. Este tipo de guante ofrece información sobre la posición de las manos
en el espacio, los ángulos de rotación de la muñeca y la posición de los dedos mien-
tras la mano “pronuncia” una palabra de lenguaje de signos. Nuestro sistema HTM
extendido alcanza el rendimiento, en términos de reconocimiento, de los métodos
de aprendizaje automático que representan el estado del arte para el problema del
reconocimiento de lenguaje de signos: Hidden Markov Models y las Metafeatures
Tclasses. En algunos aspectos relacionados con la comparación de rendimiento,
nuestro sistema HTM extendido supera a dichos métodos.

En esta tesis también hemos explorado un nuevo paradigma de interacción con
máquinas electrónicas consistente en el uso de gestos pupilares dentro del campo de
seguimiento de la mirada.

El seguimiento de la mirada es muy conveniente para sustituir al ratón como un
sistema de puntero. A pesar de todo, esta tecnoloǵıa tiene un problema a la hora
determinar si el usuario utiliza su mirada para examinar un objeto en el interfaz o
para interactuar con él.

En nuestro trabajo, hemos explorado el uso de gestos pupilares para controlar un
ordenador. El reconocimiento de gestos pupilares offline es trivial tanto para HTM
tradicionales como para otros tipos de clasificadores automáticos con muchos algorit-
mos obteniendo resultados consistentes y robustos. Sin embargo, el reconocimiento
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de gestos pupilares en tiempo real es más dif́ıcil. Esto es debido a la dificultad de
distinguir gestos pupilares de otro tipo de movimientos pupilares realizados durante
la interacción normal con un ordenador. Nuestro sistema HTM extendido sin em-
bargo es capaz de lidiar con la estructura de datos espaciotemporal de los gestos
pupilares y discriminar correctamente estos de otro tipo de movimientos pupilares.
En nuestros experimentos, obtenemos altas tasas de reconocimiento, bajo número
de falsos positivos y retroalimentación positiva por parte de los usuarios que afirman
estar satisfechos con esta nueva forma de interacción. La capacidad de reconocer
gestos pupilares en tiempo real utilizando un sistema de seguimiento pupilar de bajo
coste abre interesantes paradigmas de interacción para el campo de los dispositivos
electrónicos tales como los smartphones, las tabletas o los displays proyectados.

En este trabajo, hemos explorado y extendido un algoritmo bioinspirado de re-
conocimiento de patrones. Creemos que es importante estudiar y aplicar conceptos
de procesamiento de la información extráıdos de la neurociencia a problemas de
reconocimiento automático donde los algoritmos tradicionales tienen habitualmente
problemas. Más allá de los resultados de esta tesis, el sistema HTM extendido
propuesto puede ser aplicado a cualquier tipo de serie temporal multivariable cuyas
instancias están compuestas de estructuras espacio-temporales que se desarrollan el
tiempo.
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