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A B S T R A C T 

Around one-third of the point-like sources in the Fermi-LAT catalogues remain as unidentified sources (unIDs) today. Indeed, 
these unIDs lack a clear, univocal association with a known astrophysical source. If dark matter (DM) is composed of weakly 

interacting massive particles (WIMPs), there is the exciting possibility that some of these unIDs may actually be DM sources, 
emitting gamma-rays from WIMPs annihilation. We propose a new approach to solve the standard, machine learning (ML) 
binary classification problem of disentangling prospective DM sources (simulated data) from astrophysical sources (observed 

data) among the unIDs of the 4FGL Fermi-LAT catalogue. We artificially build two systematic features for the DM data which 

are originally inherent to observed data: the detection significance and the uncertainty on the spectral curvature. We do it by 

sampling from the observed population of unIDs, assuming that the DM distributions would, if any, follow the latter. We consider 
different ML models: Logistic Regression, Neural Network (NN), Naive Bayes, and Gaussian Process, out of which the best, 
in terms of classification accuracy, is the NN, achieving around 93 . 3 per cent ± 0 . 7 per cent performance. Other ML evaluation 

parameters, such as the True Ne gativ e and True Positive rates, are discussed in our work. Applying the NN to the unIDs sample, 
we find that the de generac y between some astrophysical and DM sources can be partially solved within this methodology. None 
the less, we conclude that there are no DM source candidates among the pool of 4FGL Fermi-LAT unIDs. 

Key words: astroparticle physics – methods: data analysis – methods: observational – methods: statistical – dark matter –
gamma-rays: general. 
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 I N T RO D U C T I O N  

strophysical and cosmological evidence suggests that non-baryonic
old DM constitutes 84 per cent of the matter density of the Universe
Ade et al. 2016 ; Aghanim et al. 2020 ). Although the nature of DM
s still unknown, weakly interacting massive particles (WIMPs) are
opular and well-moti v ated DM candidates, among others. In par-
icular, WIMPs are one of the most popular types of DM candidates
n the context of DM searches. The WIMP paradigm invokes the
ame thermal decoupling, which is enormously successful at making
etailed predictions for many observables in the early Universe,
ncluding the abundances of light elements and the CMB (Peebles
t al. 1991 ). Indeed, it is somewhat natural to invoke a similar
aradigm to infer the abundance of DM as a thermal relic from
he early Universe. The reason is that, in order to fill all the DM
ontent that we observe in the universe, WIMPs should have sizeable
nteractions with the Standar Model (SM) sector, thus ensuring
 rich phenomenology while still having a rele v ant part of their
arameter space allowed from all the available experimental data.
n the so-called indirect detection searches, and in particular those
 E-mail: viviana.gammaldi@uam.es (VG); b.zaldivar.m@csic.es (BZ); 
iguel.sanchezconde@uam.es (MAS-C) 
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elying on gamma-ray measurements in the Fermi-LAT’s energy
ange, WIMPs are the natural candidates to consider given their
xpected masses. In fact, WIMPs are predicted to annihilate or
ecay into SM particles, whose decay and hadronization processes
ould produce secondary particles, such as cosmic rays, neutrinos,

nd gamma-rays (Buckley & Hooper 2010 ; Zechlin et al. 2011 ;
eliko v, Buckle y & Hooper 2012 ; Zechlin & Horns 2012 ; Berlin &
ooper 2013 ; Bertoni, Hooper & Linden 2015 , 2016 ; Calore et al.
016 ; Schoonenberg et al. 2016 ; Hooper & Witte 2017 ). The flux
f secondary particles may be observed in ground-based or satellite
bservatories, laying the groundwork for the indirect searches for
M. Only an agreement of several hints in the observed flux of dif-

erent messengers – i.e. the multimessenger detection – would result
n a competitive claim of the indirect detection of DM (Bergstr ̈om
013 ; Gammaldi 2019 ). This includes the issue of disentangling the
M signal from the emission of well-known astrophysical sources or
iffuse astrophysical background. Indeed, DM-dominated systems –
.g. dwarf g alaxies, g alaxy clusters as well as the Galactic Centre –
re benchmark targets for indirect searches for DM (see e.g. Charles
t al. 2016 ; Conrad & Reimer 2017 ; Gammaldi et al. 2021 and refs
herein). Among others, gamma-rays are considered to be the golden

essenger: the y are (v ery-) high-energy neutral particles trav elling
ractically undeflected along straight paths in the local Universe. 
© 2023 The Author(s) 
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The Large Area Telescope (LAT) on-board the NASA Fermi 
atellite ( Fermi -LAT) (Atwood et al. 2013 ) has collected more than
3 yr of gamma-ray data of the full sky. Still in operation, Fermi -
AT is a pair conversion telescope capable to observe gamma-ray 
hotons from energies ∼20 MeV up to ∼ TeV. Several point-source 
atalogues have been released and contain thousands of gamma- 
ay objects, many of them previously unknown (The Fermi-LAT 

ollaboration 2015 , 2016 , 2017 ). Interestingly, around one-third of
he point-like gamma-ray sources in the 4FGL Fermi -LAT catalogue 
Abdollahi et al. 2020 ) as well as in other gamma-ray ground-based
elescopes (see e.g. Ahnen et al. 2019 ) remain as unidentified (unIDs)
oday. These unIDs lack a clear, univocal association with a known 
strophysical source. 

In the last few years, machine learning (ML) techniques have been 
pplied to many different fields of astrophysics and cosmology; e.g. 
pplied to the so-called Galactic Centre Excess (Caron et al. 2018 ),
o the search for dark matter in dwarf galaxies (Calore, Serpico &
aldi v ar 2018 ; Alv arez et al. 2020 ), as well as classification algo-

ithms that have been applied to the Fermi -LAT catalogues (see e.g.
irabal et al. 2016 ; Bartels & Edwards 2019 ; Kov a ̌ce vi ́c et al. 2019 ;
ui et al. 2020 ; Villacampa-Calvo et al. 2020 ; Germani et al. 2021 ;
hat & Malyshev 2022 ; and references therein). The latter works
ave been focused on classifying unIDs as different types of known 
strophysical sources (e.g. Active Galactic Nuclei, pulsars, blazars). 
one the less, if DM is made of WIMPs, there is also the exciting
ossibility that some of these unIDs may actually be DM sources,
mitting gamma-rays by WIMPs annihilation (Bertone & Merritt 
005 ). In fact, the nature of DM still represents an open question
n physics and cosmology, and many efforts have been devoted to 
nderstand its nature via the application of no v el ML techniques in
everal related fields 1 (e.g. Agarwal, Dav ́e & Bassett 2018 ; Bertone
t al. 2018 ; Morice-Atkinson, Hoyle & Bacon 2018 ; Feickert &
achman 2021 ; Spencer et al. 2021 ; Ullmo, Decelle & Aghanim
021 ; Bazarov et al. 2022 ; Holwerda et al. 2022 ). 
Around one-third of the point-like sources in the Fermi-LAT 

atalogues remain as unidentified sources (unIDs) today. Indeed, 
hese unIDs lack a clear, univocal association with a known astro-
hysical source. If dark matter (DM) is composed of WIMPs, there 
s the exciting possibility that some of these unIDs may actually be
M sources, emitting gamma-rays from WIMPs annihilation. We 
ropose a new approach to solve the standard, machine learning 
ML) binary classification problem of disentangling prospective DM 

ources (simulated data) from astrophysical sources (observed data) 
mong the unIDs of the 4FGL Fermi-LAT catalogue. Concretely, 
e artificially build two systematic features for the DM data which 

re originally inherent to observed data: the detection significance 
nd the uncertainty on the spectral curvature. We do it by sampling
rom the observed population of unIDs, assuming that the DM 

istributions would, if any, follow the latter. We consider different 
L models: Logistic Regression, Neural Network (NN), Naive 
ayes and Gaussian Process, out of which the best, in terms of
lassification accuracy, is the NN, achieving around 93.3. In this 
ork, we propose a new approach to solve the binary classification 
roblem of disentangling prospective DM-source candidates from 

strophysical sources among the unIDs in the 4FGL Fermi -LAT 

atalogue. We work on the derived parameter space defined by the 
nergy-peak E peak and curvature β of the gamma-ray spectra of 
ource in the catalogue: the so-called Fermi -LAT β-plot (Coronado- 
l ́azquez et al. 2019a ). The observational β-plot – composed of
 See e.g. darkmachines.org . 

2

L

oth identified and unidentified gamma-ray sources – will be here 
nriched by theoretically based DM parameters and (hereafter the 
o-called ‘DM- β’ plot). 

Many works have pointed out the spectral confusion between 
ulsars and DM annihilation signals in gamma-rays (e.g. The Fermi- 
AT Collaboration 2012 ; Mirabal 2013 ; Mirabal et al. 2016 ), which is
specially rele v ant when considering light, O ( 10 GeV ) WIMPs, and 
adronic annihilation channels such as b ̄b . Indeed, such a de generac y
s pictured as an o v erlapping re gion in the E peak − β plane. None
he less, in our work we will show that WIMP candidates co v er a
roader region in this parameter space. Hereafter, we refer to the
arameters of such a plot as features , by using the benchmark ML
omenclature. Because of the present de generac y in the E peak − β

lane, we introduce two systematic features for the DM sample, 
oti v ated by the systematic uncertainty of the Fermi -LAT detector,
hich would affect the detection of any DM source. This allow us

o train the classification algorithms with four features (4F) instead 
f 2F. Furthermore, we also discuss the possibility to adopt a three-
eature setup, by including the relative uncertainty on β ( β rel ) via
oth a sampled Gaussian distribution of the uncertainty itself (3F-A) 
nd in the statistical model (3F-B). 

We consider four classification algorithms, namely, Logistic 
egression (LR), Neural Network (NN), Na ̈ıve Bayes (NB), and 
aussian Process (GP). The LR and NN algorithms are built in

he scikit-learn library for data analysis with ML in python 
Pedregosa et al. 2011 ), while we implement our own python codes
or NB and GP models, the latter using tensorflow v1 , the open-
ource library for automatic differentiation and ML applications 
Developers 2022 ). 

These four classification models have been selected according 
o their different advantages and capabilities 2 : LR is arguably the
implest model (it gives linear decision boundaries among the classes 
f points) and consequently it is highly e xplainable, ev en though it
equires numerical optimization. NN on the other hand is, a priori,
rbitrarily e xpressiv e while at the same time being optimized v ery
fficiently, the reason for which it is one of the most popular ML
odels for problems in a wide range of domains. NB is a model

iving a priori a higher e xpressiv e power than LR (it can give non-
inear decision boundaries) while requiring analytical optimization. 
inally, a GP classifier (Rasmussen & Williams 2006 ) offers as well
 high expressivity with the added value of being a Bayesian model,
llowing us to report prediction uncertainties. 

This paper is organized as follows: in Section 2 we introduce the
ata. In Section 3 we introduce the systematic features that will be
sed by our algorithms. In Section 4 we introduce the methodology,
ith the classification algorithms and feature setups. In Section 5 
e compute the ‘DM-versus-astrophysics’ classification accuracy 

or the selected algorithms under different setups. In Section 6 
e provide the results of the classification of unIDs with our best

lassifier from the previous e x ercise, before concluding in Section 7 .

 EXPERI MENTAL  A N D  T H E O R E T I C A L  DATA  

he recent 4FGL Fermi -LAT catalogue (Abdollahi et al. 2020 ) is a
ollection of sources with associated gamma-ray spectra, containing 
mportant information about their nature. Somehow surprisingly, an 
mportant fraction of objects in the Fermi -LAT catalogues, ca. 1/3
f the total, remain as unIDs, i.e. objects lacking a clear single
MNRAS 520, 1348–1361 (2023) 

 See Bishop ( 2006 ), one of the standard reference books for Machine 
earning. 
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Figure 1. The ‘DM- β plot’, which includes information about the gamma- 
ray spectra of well-known astroph ysical g amma-ray sources (orange points), 
unIDs sources (red points), and theoretical WIMP DM sources data set 
(magenta points). 
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3 In some cases the lower mass is bounded by the mass of the particle itself, 
namely for the annihilation channels with W 

± ( m W 

± = 80 GeV), Z 0 ( m Z 0 = 

91 GeV), h ( m h = 125 GeV) and t/ ̄t ( m t/ ̄t = 173 GeV). 
4 Although the spectra from Cirelli et al. ( 2011 ) go to masses up to 100 TeV, 
the model-independent electroweak corrections used in these calculations are 
computed at leading order, while masses larger than ∼10 TeV, especially in 
leptonic channels, lack higher order electroweak corrections not included in 
the tables, which may be rele v ant (Ciafaloni et al. 2011 ; Cirelli et al. 2011 ). 
In any case, the LAT sensitivity quickly degrades at energies � 300 GeV. 
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ssociation to a known object identified at other wavelengths, or
o a well-known spectral type emitting only in gamma-rays, e.g.
ertain pulsars. Among other prospective sources of gamma-rays
rom DM annihilation events, dark satellites, or subhaloes in the

ilky Way, with no optical counterparts, are the preferred candidates,
s they are expected to exist in high number according to standard
osmology and they would not be massive enough to retain gas/stars,
his way being pristine DM annihilating sources free of gamma-ray
strophysical backgrounds. Many authors have already investigated
M subhaloes as prospective targets for indirect DM detection

Buckley & Hooper 2010 ; Zechlin et al. 2011 ; Belikov et al. 2012 ;
he Fermi-LAT Collaboration 2012 ; Zechlin & Horns 2012 ; Berlin &
ooper 2013 ; Belotsk y, Kirillo v & Khlopo v 2014 ; Bertoni et al.
015 , 2016 ; Calore et al. 2016 ; Schoonenberg et al. 2016 ; Hooper &
itte 2017 ; Coronado-Bl ́azquez et al. 2019a , b ; Coronado-Bl ́azquez

t al. 2022 ). 
The Fermi -LAT 4FGL catalogue (Abdollahi et al. 2020 ) adopted

n this work, is the result of 8 yr of telescope operation. It co v ers the
0 MeV–1 TeV energy range, and reports the detection of o v er 5000
amma-ray sources, almost doubling the previous 3FGL, and using
he latest instrumental response functions (IRFs) and Pass 8 events
Atwood et al. 2013 ), which optimize the instrument capacities, as
ell as an updated Galactic diffuse emission model. In particular,
e are interested in one of the parametrizations of the gamma-ray

pectrum used in the 4FGL, known as the Log-Parabola (LP): 

d N 

d E 

= N 0 

(
E 

E 0 

)−α−β·log ( E/E 0 ) 

, (1) 

here N 0 is the gamma-ray flux normalization, E 0 the pivot energy,
the gamma-ray spectral index, and β the curvature. Note that this

arametric form is reduced to a simple power law in the case of β =
. From this expression we can extract a useful parameter: the peak
ner gy, E peak , i.e. the ener gy at which the energy spectrum ( E 

2 d N /d E )
s maximum, by performing the consequent deri v ati ve, obtaining

 peak = E 0 · e 
2 −α
2 β , which represents a signature of different kind

f emitting sources. In this work, we do not perform the spectral
nalysis of the 4FGL catalogue sources by ourselves. Instead, we
se the parameters of the LP fit for each source published by the
ermi-LAT collaboration. 
Similarly, we can predict the gamma-ray DM spectrum by means

f Monte Carlo event generator softwares (see e.g. Cirelli et al. 2011 ;
embranos et al. 2013 ). In fact, WIMPs annihilate in different SM
hannels, whose hadronization and decay processes generate spectra
hat are footprints of both the annihilation channel and the energy
f the event, i.e. a signature of the DM candidate. In Coronado-
l ́azquez et al. ( 2019a ), the authors introduced the DM in the β −
 peak parameter space (i.e. the β-plot) by fitting the DM gamma-ray
pectrum, given by Cirelli et al. ( 2011 ), with the same LP functional
orm (equation 1 ). While in Coronado-Bl ́azquez et al. ( 2019a ) only
ure annihilation channels ( B r = 1) were studied, we now consider
ore general two-channel linear combinations, of the form 

d N 

d E 

= B r 

(
d N 

d E 

)
C 1 

+ (1 − B r ) 

(
d N 

d E 

)
C 2 

, (2) 

here C 1 and C 2 are the two considered channels. We per-
orm all possible combinations considering 10 branching ratios
rom 0 to 1 with a 0.1 step, for the annihilation channels
 ̄b , c ̄c , t ̄t , τ+ τ−, e + e −, μ+ μ−, W 

+ W 

−, Z 

0 Z 

0 , and hh , and masses
NRAS 520, 1348–1361 (2023) 
rom 5 GeV 

3 to 10 TeV. 4 As we are agnostic to the underlying particle
hysics model that generates the annihilation, we consider all points
s a ‘DM cloud’ – therefore being able to distinguish only between
he astrophysical and DM scenarios, which is the ultimate goal of
his paper. We generate a convenient number of DM points randomly
istributed within the boundaries of the DM parameter space. The
DM- β’-plot is shown in Fig. 1 . In this plot, the orange points are
stroph ysical g amma-ray sources, the red points are detected unIDs
nd the magenta points are the DM sample. The o v erlap between DM
nd astrophysical sources is for light WIMPs and pulsars mainly,
nd especially in the case of hadronic channels such as b ̄b and c ̄c ,
s expected (The Fermi-LAT Collaboration 2012 ; Mirabal 2013 ;
irabal et al. 2016 ). None the less, a good portion of the region of

he parameter space where the DM resides is radically different from
he one where astrophysical sources lie. 

 DA R K  MATTER  SYSTEMATIC  FEATURES  

n the previous section, we have summarized and generalized the
ethodology of Coronado-Bl ́azquez et al. ( 2019a ) in order to

ntroduce the WIMPs candidates in the β-plot parameter space,
hich allows us to train ML algorithms in order to distinguish

nd classify prospective DM-source candidates from astrophysical
ources, only based on their gamma-ray spectra. 

None the less, such a description of the DM sample with only the
wo features of the β-plot, represents a limitation in the framework
f ML. In fact, the collection of the unIDs sources we aim to classify
ncludes a plethora of information – in terms of data or number
f features – that are not considered in such a phenomenological
M data set. Among other observational features that are not yet

vailable for the DM sample, we will consider, on the one hand, the

art/stad066_f1.eps
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Figure 2. The same as Fig. 1 for 4FGL identified sources only and different 
cuts in detection significance σ d . Top panel: σ d > 4 (all sources). Middle 
panel: σ d > 10. Bottom panel: σ d > 50. Note the better separability of the 
classes as the cut is more stringent, at the cost of reducing the sample. 
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xperimental systematic uncertainty β rel = ε β / β, of the curvature 
arameter β, and on the other hand the detection significance of
he source, σ d . Both quantities are of course inherent to both the
dentified sources and the unIDs. We explain below our procedure to 
rtificially build such quantities for the DM sample. 

.1 Detection significance 

irst of all, it is phenomenologically interesting to note the different 
pread of the astrophysical classes in the β-plot. In Fig. 2 we show
ow the o v erlap between different astrophysical sources decreases 
y changing the cut applied on the detection significance, namely 
d ≥ 4 , 10 , 50: the larger the significance, the smaller the o v erlap. 
Generally speaking, the detection significance strictly depends 

n the data analysis. To analyse LAT data, the collaboration tools
onstruct the likelihood that is applicable to the LAT data, and 
hen use this likelihood to find the best-fitting model parameters. 
hese parameters include the description of a source’s spectrum, its 
osition, and even whether it exists. Once that a template model 
f all the other sources in the source region is provided, the Test
tatistic (TS) for adding an additional source at each grid point 

s calculated. The resulting significance is ∼( TS ) 1/2 σ d , and thus
S = 16–25 equi v alent to 4–5 σ d , is required for claiming the
etection of any source in the 4FGL Fermi-LAT catalogue adopted 
n this work. The new source is characterized by a source intensity
nd spectral index. 5 Hereafter, we will use the so-defined detection 
ignificance σ d as a systematic feature of our classification problem. 
ote that, the DM data set has been created based on the WIMP
henomenology and the procedure outlined in Section 2 , and thus, it
bviously lacks a detection significance, which is – by definition – an 
bservational feature. In order to exploit the additional information 
oming from the distribution of the detection significance of the 
etected astrophysical sources, our idea is to build this variable as a
ctitious feature of the DM class. The issue is not straightforward: 

n fact, the detection significance σ d for the prospective DM sources 
ould ultimately depend on many aspects, e.g. the WIMP mass, the 
M annihilation channel, the Monte Carlo event generator software 
Cembranos et al. 2013 ), the distance of the sources, the amount of
M in the source, as well as other hypotheses on the DM particle

see e.g. Visinelli 2018 ). If several DM subhaloes were discovered, 
his class of DM sources would follow its own σ d distribution (see 
.g. Section 3 of Gammaldi et al. 2021 ). 

As first hypothesis, we can assume that all the DM-source 
andidates are among the observed unIDs. We can therefore sample 
he unIDs σ d distribution to generate mock data for DM with a 
andom noise (Fig. 3 ), such that the distribution is statistically the
ame but a single DM point in the DM- β plot is assigned a random σ d .
n this way, we associate to the theoretical DM sample a systematic
eature, which reflects systematics related to the adopted instrument, 
s shown in Fig. 7 , first upper panel. 

.2 Uncertainty on β

he next step of this analysis relies on the intuition that higher
alues of the detection significance σ d correspond to better signal-to- 
oise ratio, i.e. to higher quality source spectra. When dealing with 
ctual sources, the Fermi -LAT standard analysis pipeline bins the 
pectral energy distribution (SED) and fits it with the corresponding 
arametric form (here, a log-parabola). The uncertainty in each bin 
MNRAS 520, 1348–1361 (2023) 

 In a first approximation, the spectrum is assumed to be a power law. 
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M

Figure 3. Detection significance ( σ d ) distribution for the real unIDs data 
(blue) and systematic sampling for DM (orange), with a random noise similar 
to the one seen in the unIDs sample. The brown colour only reflects the 
o v erlap of the previous two distributions. 

Figure 4. Same as Fig. 2 , by including the uncertainty on β for astrophysical 
data with σ d < 5 (upper panel) and σ d > 50 (lower panel). Let us stress as 
a lower detection significance corresponds to a worse characterization of the 
spectrum. Indeed, the classification is confused for data of lower σ d and 
impro v es for higher values of σ d also by eye. The colour code in the legend 
is the same for both panels. 
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significance σTS for the 4FGL unIDs. Lo wer panel: Relati ve error, ε β / β, 
versus the E peak for the 4FGL unIDs. Although there are sources with E peak 

< 0.3 GeV, no DM point lie below this value, as the lightest WIMP mass 
considered is 5 GeV and the softest channel is b ̄b , which roughly peaks at 
E peak ∼ m χ /20). 
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ill translate into an error in the parameters of the model. As a
onsequence, we expect a lower detection significance to correspond
o a worse characterized spectrum. This translates into a higher
ncertainty in the estimation of the spectral parameters ( E peak , β). We
ho w qualitati vely this property in Fig. 4 for astrophysical data with
NRAS 520, 1348–1361 (2023) 
d < 5 (upper panel) and σ d > 50 (lower panel). The correlation
etween the relative error β rel = εβ / β and the σ d is shown in the
pper panel of Fig. 5 for the unIDs population: clearly, the relative
rror β rel = εβ / β decreases by increasing the detection significance
d , 6 although they are not completely correlated. In the lower panel
f Fig. 5 we show the correlation between the relative error β rel and
 peak : in this case the correlation is slightly visible and it could be
ssociated to the sensitivity of the instrument to different energy
ins. In other words, there are more detected sources (with lower
d ) in the energy range where LAT is more sensitive ( ∼1 GeV), as
xpected. While partial correlations may exist among all the features
onsidered in our analysis, a generic property of typical ML models
s that they take them into account automatically (Bishop 2006 ).
his is exactly the kind of information that we aim to implicitly

nclude via the analysis of these data within a ML approach instead
f benchmark analyses. 
As in the σ d case, the DM data lack an observational β rel . Although

 purely theoretical β rel is given by the LP fitting of the simulated
amma-ray spectra expected by DM annihilation events (Cirelli et al.
011 ), we verified that such a theoretical error is below a few per cent,
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Figure 6. Upper panel: experimental versus theoretical βrel . Lower panel: 
relative error, βrel = ε β / β, versus the E peak for the DM data, sampled from 

the 4FGL unIDs. Three regimes are considered, E peak < 4 GeV, 4 < E peak < 

60 GeV, and E peak > 60 GeV. 
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7 See Rasmussen & Williams ( 2006 ) for the classical textbook about Gaussian 
Processes. 
8 Here modified to solve a binary classification problem. 
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nd can be neglected with respect to the much larger systematic β rel 

iscussed so far. Such comparison is shown in the upper panel of
ig. 6 . The adopted distribution is shown in the lower panel of Fig. 6
nd second panel of Fig. 7 . 

.3 βrel as systematic feature 

nalogously to the σ d feature, we can sample the distribution of β rel 

or the unIDs population to associate uncertainties on β to the DM 

ata. Here we consider a 2D sampling space, as the ε β depends also
n the E peak . Indeed, from Fig. 5 (lower panel), one can see that there
s a cluster at E peak ∼ 0.5–2 GeV, while for energies abo v e ∼60 GeV
he errors tend to be larger as the statistics of unIDs decreases. This is
ue to the LAT sensitivity, which reaches its maximum at 1–2 GeV. 
In order to assign the DM β rel systematic values, we will divide 

he distribution in three bins, E peak < 4 GeV, 4 < E peak < 60 GeV, and
 peak > 60 GeV. According to Fig. 5 , these boundaries approximately

eflect three different regimes in the data, with a cluster of objects
n the first one, a more spread distribution in the second and a third
ne where no source with ε β / β < 1 is found. Sampling directly
he unbinned distribution would lead to underestimated errors for 
he highest E peak values. As the points with E peak > 60 GeV are
ery scarce (just 7), we introduce a random Gaussian noise to a v oid
iscreteness in the distribution. For consistency, we do the same for
he other two bins. The result of this sampling is shown in the lower
anel of Fig. 6 . The last bin is the most populated one, as it is the one
hich contains more DM points (mostly due to hard channels such

s e + e − and μ+ μ−, which peak at E peak = m χ ). The pronounced
tep visible in the figure at E peak = 60 GeV is simply caused by the
inning choice, and can also be seen in the original unIDs distribution
f Fig. 5 . 
With these two samplings of σ d and β rel , we have generated two

qui v alent data sets consisting on { E peak , β, β rel , σ d } , both for the
FGL catalogue and DM. The systematic distribution for σ d and 
rel created for the theoretical DM sample (magenta histograms) are 
hown in the two lower panels of Fig. 7 – as well as the distributions
or the observed data, i.e. astrophysical sources (orange histograms) 
nd the unIDs (red histograms). Note also that, although we adopt in
ur analysis the LP parameters given by the Fermi-LAT collaboration 
or the full catalogue of detected sources, we take into account the
ossibility that any Fermi-LAT source could be not well fitted with an
P by including the β rel uncertainty in the 4F analysis. in Appendix A
nd Fig. A1 we show an example of the β-plot with the astrophysical
nd DM data set including the systematic uncertainty on β. 

 M E T H O D O L O G Y  

.1 Classification algorithms 

e interpret the problem as a standard binary classification task in
L. Data consists of D = { x i , t i } , being i = 1,.., N , where x =

 E peak , β, β rel , σ d } is the multi v ariate input and a label t i = { 0, 1 } ,
orresponding to astro or DM class, respectively. 

We study the performance of several ML models, coming from 

ifferent approaches and having different levels of expressiveness. 
hey are briefly specified next: 

(i) Probabilistic discriminative models. In order to estimate the 
xpected value y i of the label t i , we start with the simplest classifier:
he Logistic Regression (LR) model. Secondly, we use a fully 
onnected feed-forward neural network (NN) with one hidden layer. 
ee Appendix C for further technical details of the implementation. 
oth models aim at estimating the probability p ( C k | x ) of class C k 

iven the input x , which will depend on some parameters to be
ptimized. 
(ii) Generative model. We also consider the Na ̈ıve Bayes (NB) 

lassifier, where the likelihood p ( x i | C k ) of point i given a class
 k is taken as a multi v ariate Gaussian distribution, with diagonal
ovariance matrix. This is a common benchmark model, since even if
ot requiring numerical optimization, it is typically giving reasonably 
ood results also in real-world data sets. We have used our own
ython implementation of this model. 
(iii) Non-parametric model. Finally, we consider a specific Gaus- 

ian Process classifier, 7 namely Noisy Input Multi-class Gaussian 
rocess (NIMGP) 8 (Villacampa-Calvo et al. 2020 ), which was 
onstructed in such a way to incorporate the uncertainties of the
nput v ariables, either gi v en e xplicitly (say, from the e xperiment, as
t is our case at hand), or to be learned by the model itself. While

ore details are given in Appendix C3 , in short here the idea of such
odel is to assume that every observation x i is a noisy instance of

he true value (call it ˜ x i ), following a Gaussian distribution. 
MNRAS 520, 1348–1361 (2023) 
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Figure 7. Histograms of the four features of the balanced data 9 adopted. 
From upper to lower panel: emission energy E peak , curvature of the spectra 
β, detection significance σ d , relative error on β. In each panel, we show the 
histograms for the classified astrophysical sources (orange), unIDs (red), and 
DM data set (magenta). 
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 balanced data means that the number of data in different classes, here astro 
nd DM, is kept of the same order. 

 

t  

1

l 2024
.2 Setups 

n this work, we consider different setups for the classification task,
ith increasing level of complexity either from the data set itself as
ell as from the modelling part. They are described below: 

(i) ‘ 2F ’. A data set with only two features: E peak and β. This
s the minimum setup, not requiring the construction of additional
ariables beyond those coming from the fit of the spectrum for both
strophysical sources and DM. This setup does not take into account
he uncertainty on β when doing the classification. 

(ii) ‘ 3F-A ’. A first strategy for taking into account the uncertainty
n β is to follow an heuristic, by which the original data set is
rtificially augmented, assuming that every observation β i follows
 Gaussian, whose mean is given by the precisely observed value,
nd the standard deviation is the reported uncertainty on β i . Then
e augment the data set by taking each original point and sampling
0 times from it. Coincides an augmented data set containing three
eatures: E peak , σ d , and βsampled . More details can be found in the
ppendix Section B and Fig. B1 . 

(iii) ‘ 3F-B ’. The second strategy for incorporating the uncertain-
ies in β is inspired in a recent work by Villacampa-Calvo et al.
 2020 ), as commented abo v e and e xplained in more detail in the
ppendix. This is arguably the most formal procedure for taking into
ccount the input uncertainties, among all the setups we consider
ere. The data set here contains the three same features as abo v e,
.e. E peak , σ d , and β. Ho we ver, no w the uncertainties of β are just
ncluded in the statistical model. Concretely, this setup will concern
 xclusiv ely the NIMGP model mentioned abo v e. 

(iv) ‘ 4F ’. The last strategy for taking into account the uncertainties
f beta , is to include them as a separate feature (input variable). This
s a priori reasonable, since we have checked that there is only a
inor correlation between β and εβ . 10 The data set here contains

our features: E peak , σ d , β, and β rel . Note that, in the case of the
M class, both σ d and β rel have been constructed out of the unIDs
opulation, as discussed in Section 3 . 

.3 Data pr e-pr ocessing 

e pre-process the data as follows: 

(i) we apply a cut on 10 −3 ≤ E peak ≤ 10 6 , which is a reliable range
f energy due to the Fermi-LAT sensitivity; 
(ii) we create the DM data sample in order to have a balanced data

et, i.e. the same number of astrophysical (hereafter, astro) and DM
ata; 
(iii) we work in log-space, due to the broad range of values for

ach feature; 
(iv) we standardize data (see e.g. Shanker, Hu & Hung 1996 ;

ishop 2006 ), i.e. each feature is transformed to have zero mean
nd unit variance. For each classification run, the standardization
s done with respect to the training data set and testing data set,
ndependently. The unIDs sample has been also standardized. 

 ASTRO-VERSUS-DM  CLASSI FI CATI ON  

ESULTS  

n the following, we show the performance of different combinations
f the four ML algorithms and setups previously introduced. 
First, we consider three models: the LR, NN, and NB models for

hree of the different setups described in Section 4.2 (the 2F, 3F-A,
0 Actually, the Pearson correlation coefficient being equal to 0.4. 
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Table 1. Performances of the three different ML models LR, 
NN, NB in the 2F, 3F-A, and 4F setups compared with the GP 
in the 3F-B setup, as described in 5 . See the text for details. 
We highlight in bold face the results of the configuration 
giving the best performance. 

OA (per cent) TN (per cent) TP (per cent) 

LR 

2F 84.9 ± 0.8 85.4 ± 1.5 84.4 ± 1.4 
3F-A 83.0 ± 0.1 85.0 ± 0.2 81.0 ±.0.2 
4F 86.0 ± 0.9 86.7 ± 1.5 85.2 ± 1.3 

NN 

2F 86.2 ± 0.8 86.1 ± 3.0 86.4 ± 3.4 
3F-A 85.0 ± 0.2 87.9 ± 1.8 82.3 ±.1.8 
4F 93.3 ± 0.7 94.7 ± 1.7 91.8 ± 1.5 

NB 

2F 82.4 ± 1.5 83.9 ± 1.9 80.5 ± 2.5 
3F-A 82.5 ± 0.3 83.7 ± 0.4 81.6 ± 0.3 
4F 83.5 ± 1.0 86.2 ± 1.2 81.7 ± 1.2 

GP 
3F-B 88.1 ± 0.2 89.6 ± 0.3 84.9 ± 0.2 
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Figure 8. Probability distribution of the full sample of unIDs classified 
100 times. The histogram as 100 × N unids entries. The vertical lines 
correspond to different cut on p 

DM 

k , namely 0.50 (magenta-dotted line), 0.68 
(red-dotted-dashed line), 0.90 (blue-dashed line), 0.95 (black-dashed line), 
0.99 (grey-dashed line). Upper panel: NN classifier in the 2F setup. Lower 
panel: NN classifier in the 4F setup. 
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nd 4F) and the GP for the 3F-B setup. The results are shown in
able 1 , where the columns show the o v erall classification accurac y
OA), the True Ne gativ e (TN) rate, and the True Positive (TP) rate,
espectively, while noting that ‘negative’ here refers to the astro 
lass, while ‘positive’ refers to the DM class. The F alse ne gativ e
positive) rate can be simply obtained as 100 per cent − TP (TN) , 
eing these values normalized o v er the true. The reported value and
uoted uncertainty correspond to the mean and standard deviation 
f the OA, TN/P rate obtained after 100 splits (see Appendix D
or further details). The precision P = TP/(TP + FP) and the False
isco v ery Rate FDR = FP/(TP + FP) may be also deduced from

he table: for the NN-4F we have P = 0.94 ± 0.02 and FDR =
.06 ± 0.02. We find out that all the classifiers impro v e their OA,
N, and TP from the 2F to the 4F setup, by including the systematic

eatures. On the other hand, the accuracy decreases for the ‘3F-
’ configuration, for all the three classifiers. The reason for this is

imply that, in the augmented data set, the two classes will necessarily 
 v erlap more, quantitativ ely depending on the quoted uncertainty for
. We conclude that among the two strategies considered so far for

aking into account β rel , the 4F setup gives better performance. 11 We 
et OA = 93 . 3 per cent ± 0 . 7 per cent and we can correctly classify
4 . 7 per cent ± 1 . 7 per cent of astrophysical sources. Intuitively, we 
ive more importance to the correct classification of already well- 
nown astrophysical sources (TN) than to the one of prospective DM 

ources (TP), i.e. to a second level, our best classifier will be the one
hat maximizes not only the OA, but also the TN percentage. 

Finally, Table 1 also shows the result of the GP model (specifically,
he NIMGP implementation, see Appendix C3 ) using the 3F-B 

onfiguration. Even if this is the more complex model considered 
in number of the free parameters of the model to be optimized), we
ee that its performance concerning classification accuracy is smaller 
han for the NN model with the 4F setup. This is not surprising:
ndeed it is common that large Bayesian models may show an 
 v erall performance which is not higher than flexible models in a
requentist approach (as the NN). Instead, the advantage of using 
1 We hav e v erified that a further setup with 3F ( E peak , β, βrel ) returns 
A = 88 . 6 per cent ± 0 . 8 per cent , TN = 87 . 9 per cent ± 2 . 8 per cent , TP = 

9 . 2 per cent ± 2 . 8 per cent , indeed worst than the NN in the 4F setup. 
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ayesian inference comes mainly from its capability of providing 
stimates of prediction uncertainties, accounting for both statistical 
a.k.a aleatoric) and modelling (a.k.a. epistemic) uncertainties. The 
ay to do it is via the predictive distribution p( y ∗| x ∗, D), for the

lass y ∗ at a new input x ∗, given the already observed (training)
ata D. This is an intrinsically Bayesian quantity, and does not have
ounterpart with the frequentist implementation of the NN we have 
dopted in this work. 

 U N I D S  CLASSI FI CATI ON  

mong our algorithms, we select the one with the best performance
which is the NN with the 4F setup – to classify our unIDs sample

nd to search for prospective DM-source candidate. None the less 
in order to show the impro v ement in the classification obtained

y training the NN with the inclusion of the systematic features
in Fig. 8 we show the classification results obtained from both

he 2F and 4F setups. In particular, we show the distribution of
robabilities p 

DM 

k of the full sample of unIDs to be classified as
M in each of the k = 1....100 classification runs, corresponding

o different training/testing split and/or different random seeds. 
ig. 8 shows a clear trend in the astro-versus-DM classification of
nIDs. On the one hand, many unIDs are classified with probability
0 per cent ≤ p 

DM 

k ≤ 60 per cent in the 2F setup (upper panel in 
MNRAS 520, 1348–1361 (2023) 
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M

Table 2. Result of classifying the unIDs with the NN model, for the 4F 
setup considered in this work. The entries represent mean and standard 
deviation (across the splits) of the number of unIDS (out of 1125 consid- 
ered in our sample) whose prediction for the probability of being DM is 
greater than 50 per cent , 68 per cent , 90 per cent , 95 per cent , and 99 per cent , 
99 per cent respectively (see also Fig. 9 ). 

Setup 
p 

DM 

k ≥
50 per cent 

p 

DM 

k ≥
68 per cent 

p 

DM 

k ≥
90 per cent 

p 

DM 

k ≥
95 per cent 

p 

DM 

k ≥
99 per cent 

4F 162 ± 41 79 ± 35 37 ± 28 27 ± 25 14 + 20 
−14 

Figure 9. Mean number of unIDs with p 

DM 

k > 0 . 50 , 0 . 68 , 0 . 90 , 0 . 95 , 0 . 99 
in the NN-4F classification. The error bars are calculated as the standard 
deviation on 100 classifications. 
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Figure 10. Each point reflects how many times each unIDs is classified 
with p 

DM 

k ≥ 90 per cent . The best candidates in the run have been classified 
13 times o v er 100 classifications with p 

DM 

k ≥ 90 per cent . None the less, the 
small counts and the statistical fluctuations with other unIDs do not allow us 
to claim for a robust DM candidate. 
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ig. 8 ); this peak of probabilities spreads to 0 per cent ≤ p 

DM 

k ≤
0 per cent in the 4F setup, now suggesting that those sources are
ost probably astrophysical sources. The impro v ement in such a

e generac y represents a first partial result of this work. 
In Table 2 and Fig. 9 , we show the mean number of unIDs clas-

ified with p 

DM 

k ≥ 50 per cent , 68 per cent , 90 per cent , 95 per cent ,
9 per cent in each classification, and the standard deviation calcu-
ated on k = 1....100 classification runs. 

Finally, although the number of unIDs classified as DM with
 

DM 

k ≥ 99 per cent is compatible with zero, one may wonder which
nIDs of the sample has any p 

DM 

k ≥ 90 per cent . In Fig. 10 we show
he counting for each unIDs to be classified with p 

DM 

k ≥ 90 per cent
 v er 100 classifications. We observe that at most 13 out of the 100
lassifiers give a probability p 

DM 

k ≥ 90 per cent only for a few unIDs.
ue to both such a small counting and the statistical fluctuations, it

s indeed impossible to point out a specific best DM candidates
mong our sample of unIDs, our results being compatible with no
M sources among our unIDs sample. 

 C O N C L U S I O N S  

he main scope of this work was to study the possibility that some
f the unidentified gamma-ray point-like sources (unIDs) found at
he latest Fermi-LAT catalogue (4FGL) would actually shine due to

IMP DM annihilation. 
In order to do that, we first studied the differences between

bserved astrophysical sources (pulsars, blazars, etc.) and prospec-
ive DM candidates in a 2D parameters space which have been
ho wn to of fer good discriminatory po wer in pre vious studies
ith astrophysical sources only. Such parameters are E peak and β

Coronado-Bl ́azquez et al. 2019a , b ) – defining the so-called β-plot
which among others characterize the energy spectrum of the sources
NRAS 520, 1348–1361 (2023) 
hen fitted with a log-parabola shape. We interpreted this problem
s a standard machine learning (ML) binary classification task, and
onsidered four ML models for that purpose. In doing this, we found
hat the abo v e two parameters offered a limited discrimination power,
hile for the observed astrophysical sources there is much more

nformation available. In particular, two additional parameters, the
etection significance σ d and the uncertainty ε β associated to the β
arameter were promising for improving the classification task. In
rder to use those, we built fictitious values of these two additional
arameters for the DM simulated data. We did it by sampling the
orresponding distributions of the unIDs, under the main assumption
hat if WIMPs were actually present, they would show up among
he unIDs population. We suggest the inclusion of these synthetic
eatures as an heuristics to easily take into account some of the
eature uncertainties in the classification algorithms. 

The ML models considered in this work are: Logistic Regression,
eural Network (NN), Naive Bayes, and a particular implementation
f a Gaussian Process classifier. The first three models were trained
sing either two features ( E peak and β), three features (including
d ), or four features (including also ε β ). The three-feature setup

mplemented an augmented data set for taking into account ε β as part
f the data itself. The four-feature setup incorporated the information
bout ε β simply as an extra independent feature instead. The GP
odel on the other hand, used the same three features as abo v e,
hile incorporating ε β not as an augmented data set, but as part of

he statistical model. Overall, we found that the configuration giving
he best performance, in terms of classification accuracy, was the
N with four features (4F), giving a classification accuracy of about
3 per cent ±0 . 7 per cent . 
We selected such setup, NN-4F, as the one for the final task of

lassifying unIDs as either astrophysical sources or DM sources.
e created 100 versions of such a setup, by training the model

n 100 data splits (including different train + test partitions as
ell as random seeds for initializing the weights of the network),

hus ef fecti vely having 100 predictions for e very unID about the
robability of being DM. We found that in most cases the predicted
robabilities are smaller than 10 per cent, while there is a distribution
xtending to larger values (cf. Fig. 8 lower panel). Only few unIDs
re classified with a larger probability (greater than 90 per cent) to be
M, but only in at most 13 out of the 100 predictions (cf. Fig. 10 ),
hile subject to large statistical fluctuations. 
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We thus conclude that there is no significant evidence for WIMP
M among the unIDs analysed in this work. 
As a final word, we would like to remark that – although we

ound no DM candidates among our sample of LAT unIDs – the 
roposed methodology appears promising in order to include features 
ncertainties in classification problems, while with improving the 
 v erall performance. In a near future we aim to apply this new
ethodology. In fact, the proposed methodology is completely model 

ependent, both on the experimental and theoretical side. On the 
xperimental side, it depends on the characteristics of the instrument, 
.g. the energy range, on the theoretical side the WIMP hypothesis 
ould be relaxed searching for e.g. other DM candidates. 
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M

Figure A1. Same as Fig. 1 , by including the systematic features created for 
the DM data set. A cut on σ ≥ 20 is applied for abetter clarity of the plot. 
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Figure B1. DM- β plot (upper panel) and histograms of the three features of 
the augmented data set. From the second upper to lower panel: characteristic 
emission energy E peak , curvature of the spectra βsampled , detection significance 
σ d . In this set-up, the relative error is included as the standard deviation of a 
truncated Gaussian around the mean value β, i.e. we only have three features 
(3F-A, as explained in the B ). 
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PPENDIX  A :  D M  −β PLOT  WITH  SYSTEMATIC  

E ATURE  O N  β

n Fig. A1 we show an example of the β-plot with the astrophysical
nd DM data set including the systematic uncertainty on β. A cut on
≥ 20 is applied for the clearness of the plot. The uncertainty on

he data set is only partially correlated to the detection significance,
ccordingly with the observational sample of unIDs sources. 

PPENDIX  B:  SAMPLED  GUASSIAN  

ISTRIBU TION  O F  β U N C E RTA I N T Y  

n this Appendix we describe a different methodology to include
he uncertainty on β in the classification algorithm. Instead of
ncorporating the uncertainty of β as an extra feature, another option
s to include it implicitly in the data by creating an augmented
ata set βsampled . The strategy here is to augment the data set
or each observation i = 0,... N , we assume that the variable β
ollows a truncated Gaussian distribution, whose mean is precisely
he observed value β i , and the standard deviation is precisely the
bserved value εβi 

, but truncated such that 0 < β ≤ 1. We then
ample M = 60 points from such truncated Gaussian, such that we
btain an augmented data set of size M · N . This is an heuristic
ethodology for taking into account the uncertainties in the input

ariables, by using only three features (3F-A) E peak , βsampled , σ . We
how both the ‘DM- β’ plot and the final histograms for each feature in
ig. B1 . None the less, we found some issues with this methodology.
irst, the augmented number of data makes the classification slower.
econdly, the augmented data set imply a substantially larger o v erlap
etween the two classes of points (both in the DM − β plot and
istograms of each features, see Fig. B1 ), with the consequent loss in
iscrimination power. Thirdly, this method requires the use of only
hree features in the learning process. Indeed, the same algorithm
pplied to the unIDs classification, implies the use of only three
eatures, with two options: (1) neglecting the β rel for the unIDs
nd using only the mean value of β as feature, so preventing us
rom using the available information contained in the unID’s β rel ;
2) including β rel by augmenting the unIDs sample with the same
aussian sample methodology, which at the end will bring to an
 v erlapping of different unIDs that would be very hard to reconstruct.
or all these reasons, we do not use this methodology for the unIDs
lassification. 
NRAS 520, 1348–1361 (2023) 
PPENDI X  C :  T E C H N I C A L  DETA I LS  O F  T H E  

L  M O D E L S  

or the sake of reproducibility, we specify in this section the
mplementation details of some of the ML models considered in
his work. 
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Figure C1. Performance comparing 1-hidden-layer and 2-hidden-layer neu- 
ral network for the 4F data set. Upper panel: Ov erall accurac y as a function of 
the number of neurons in each layer. Lower panel: Time of the learning 
procedure as a function of the number of neurons in each layer. In the 
following, we use 1 layer and 21 neurons. 
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1 Logistic r egr ession 

e use the implementation of LR as given in the python library
cikit-learn (Pedregosa et al. 2011 ), indeed class: 
sklearn.linear model.LogisticRegression (penalty = ’l2’, ∗, 

ual = False, tol = 0.0001, C = 1.0, fit intercept = True,
ntercept scaling = 1, class weight = None , random state = None ,
olver = ’lbfgs’, max iter = 100, multi class = ’auto’, verbose = 0,
arm start = False, n jobs = None, l1 ratio = None) 

2 Neural network 

e use the implementation of NN as given in the python library
cikit-learn (Pedregosa et al. 2011 ). Specifically, we use the 
LPClassifier model, with the following setup: 
sklearn.neural network.MLPClassifier(hidden layer sizes = (21,), 

ctivation = ’relu’, ∗, solver = ’adam’, alpha = 0.0,batch size = 120,
earning rate = ’constant’,learning rate init = 0.0015,power t = 0.5
ax iter = 1000,shuffle = True ,random state = None ,tol = 0.0001,

erbose = F alse,warm start = F alse,momentum = 0.9, 
esterovs momentum = True,early stopping = False, 
alidation fraction = 0.1,beta 1 = 0.9, beta 2 = 0.999,epsilon = 1e-
8, n iter no change = 10,max fun = 15000) . 
In Fig. C1 we show the performance of the NN for one and two

ayers with different number of neurons. We choose to use a 1-
ayer configuration with 21 neurons, due to the combination of good 
ccuracy (upper panel) and low fitting time (lower panel). 

3 Gaussian process 

s for the previous models, in this case we also work in log-space
f the attributes. Ho we ver, care must be taken in this case, since then
he uncertainties of log β should be computed properly. This is a 
tandard procedure, which ho we ver is depicted next: 

The idea is to compute the uncertainties of a new variable 
 ≡
og β, where β ∼ N ( β| μβ, σβ ), while the given uncertainties in β
re assumed to be precisely its standard deviation, σβ . In order to
o this, we take as the 
 ’s uncertainties to be the square root of its
ariance, computed from its own pdf: 

( 
 | μβ, σβ ) = e 
 N ( e 
 | μβ, σβ ) . (C1) 

We have adapted to our case one of the variants of the Gaussian
rocess (GP) models presented in Villacampa-Calvo et al. ( 2020 ): 

he NIMGP NN model, which is roughly described next, while for 
urther details we refer the reader to Villacampa-Calvo et al. ( 2020 ).

The NIMGP NN model assumes a likelihood for the label y i of the
 -th point as follows: 

( y i | f i ) = (1 − ε) 
∏ 

c �= y i 

� 

(
f y i ( x i ) − f c ( x i ) 

)

+ 

ε

C − 1 

⎡ 

⎣ 1 −
∏ 

c �= y i 

� 

(
f y i ( x i ) − f c ( x i ) 

)
⎤ 

⎦ , (C2) 

here f i ≡ { f c ( x i ) } , c = 1,.., C , are the corresponding values of the
P for all C classes, e v aluated at the latent inputs x i (see below). We

ccount for the possibility of having mislabelled classes by having 
 small probability ε = 0.001 for mislabelling. Finally, � ( ·) is the
eaviside step function. Note that this is not the typical likelihood 

onsidered in popular classification tasks, which correspond to the 
ross-entropy loss function. Ho we ver, this is a common choice in
he GP classification context, with the added value of accounting 
or mislabelling errors, something which is typically not taking into 
ccount in the cross-entropy setup. 

In NIMGP NN , it is assumed that the observed input ˜ x i is a
oisy realization of the true (but latent) input x i , according to the
istribution: 

( ̃ x i | x i ) = N ( ̃ x i | x i , σi ) . (C3) 

As it is well-known, the posterior distribution p ( f | y ) of the GP
alues f has a computational cost of O( N 

3 ), where N is the number
f points, so this setup is not scalable to very large data sets. For
MNRAS 520, 1348–1361 (2023) 
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Figure D2. Performance comparing the ROC (Receiver Operating Charac- 
teristics) and AUC (Area Under the Curve) of the NN for different fivefolds, 
for the 4F data set. A model with perfect performance will have AUC = 

1, which means it has a good measure of separability. The red dashed line 
indicates the worst ROC situation, where the AUC = 0.5, the model has no 
discrimination capacity to distinguish between positive class and ne gativ e 
class. 
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hat reason the NIMGP NN adopts a ‘Sparse GP’ configuration where
nference is done only in a subset u of GP values at some given
nputs, called in the literature ‘inducing points’, and there are M <
 of them. Consequently, the latent variables of the model can be
rouped in three matrices: (i) F , the N × C matrix of process values
 i at the datapoints, (ii) U , the M × C matrix of process values u j at
he inducing points, and (iii) X , the N × D matrix of latent inputs x i .

The posterior distribution for the abo v e latent variables is in-
ractable, as typical in Bayesian inference, and NIMGP NN approxi-

ates it by Variational Inference, where the approximate distribution
 ( x i ) is taken as: 

( x i ) = N 

(
x i | μθ ( ̃ x i , y i ) , V θ ( ̃ x i , y i ) 

)
, 

here both μθ ( ̃ x i , y i ) and V θ ( ̃ x i , y i ) are obtained as the output of a
eural network with parameters θ . 
The final scope in Bayesian inference is to compute the predictive

istribution p( y ∗| x ∗, D), for the class y ∗ at a new input x ∗, given the
lready observed (training) data D, which in the case of GP binary
lassifier is given by: 

( y ∗| x ∗, D) = 

∫ 
df ∗p( y ∗| f ∗) p( f ∗| x ∗, D) , (C4) 

here f ∗ is the process value at the input x ∗, while 

( f ∗| x ∗, D) = 

∫ 
df p( f ∗| x ∗, f ) p( f | D) , (C5) 

eing p( f| D) the posterior distribution of the process values at all
he training points. 

As a final note, the NIMGP NN model is written in python 2
ith tensorflow 1 (see github repository at Villacampa-Calvo

t al. 2020 ). 

PPENDIX  D :  NUMBER  O F  F O L D S  

or the LR and NN, we use the Repeated Stratified K-Fold cross val-
dator, class RepeatedStratifiedKFold(n splits = 5,
 repeats = 20 ) defined in scikit-learn (Pedregosa
t al. 2011 ). By splitting the data in fivefolds, we take 80 per cent
f data for the training set and 20 per cent of data for the testing
et. This choice allows us to preserve the independence of the
ve testing sets, i.e. without any repetition of same data. In order

o preserve this characteristic, the ratio of testing/training data
ecreases by increasing the number of folds, while the accuracy
NRAS 520, 1348–1361 (2023) 

igure D1. Performance comparing the OA of the NN for different N -folds, 
or the 4F data set. See Section 5 for details. 
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f the classification decreases (Fig. D1 ). Such a split, is repeated
0 times with different random seeds. In this way we have a total of
00 classifications, which allow us to get the results with a reliable
tatistical uncertainty. 

The uncertainty related with the number of folds is also shown
n Fig. D2 , where we show the ROC (Receiver Operating Charac-
eristics) and AUC (Area Under the Curve) of the NN for different
vefolds, for the 4F data set. 

PPENDI X  E:  CLASSI FI CATI ON  WI TH  

-FEATURES  

n Figs E1 and E2 , we show the same analysis of the algorithm
erformances for the classification with two-features, indeed without
aking into account the systematic features. The performance of the
lgorithm impro v es from 2F to 4F both in terms of o v erall accurac y
nd ROC/AUC. 

In Table E1 and Fig. 8 of this Appendix we show the results of the
nIDs classification for the NN in the 2F setup. In Fig. 7 in the main
ext, we show the probability distribution for the full set of unIDs and
00 classification runs. The impro v ement in the o v erall classification
ehaviour of the 4F setup is visible by comparing this figure with
he same figure for the 4F setup, presented in the main text. In the
pper panel in Fig. E3 , we show the mean number of unIDs classified
ith p 

DM 

k > 0 . 5 , 0 . 68 , 0 . 90 , 0 . 95 , 0 . 99 and their standard deviation.
inally, in the last panel we showed the count for each unIDs to
e classified with p 

DM 

k ≥ 0 . 90. The best candidates are classified
ve times over 100 for the 2F setup (and 13 times o v er 100 in the
F setup presented in the main text). Although the number of unIDs
ith p 

DM 

k ≥ 50 per cent decreases a 27 per cent from the 2F to the
F setups, the number of unIDs with p 

DM 

k ≥ 68 per cent increases
y 50 per cent . Yet the number of unIDs with p 

DM 

k ≥ 99 per cent is
ompatible with zero for both the 2F and 4F setups. As in the 4F
etup, the statistical fluctuations prevent us from claiming any robust
M candidate among the unIDs of the 4FGL Fermi-LAT catalogue.
 24
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Figure E1. Same as Fig. C1 for the 2F classification. 

Figure E2. Same as in Fig. D2 for the classification without systematic 
features. 

Table E1. Same as Table 2 for the NN in the 2F setup. See also the upper 
panel in Fig. E3 . 

Setup 
p 

DM 

k ≥
50 per cent 

p 

DM 

k ≥
68 per cent 

p 

DM 

k ≥
90 per cent 

p 

DM 

k ≥
95 per cent 

p 

DM 

k ≥
99 per cent 

2F 215 ± 45 35 ± 21 6 + 10 
−6 3 + 7 −3 1 + 5 −1 

Figure E3. Same as Figs 9 , 10 for the NN-2F classification. 
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