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Abstract Earth observation from satellites offers the possibility to monitor
our planet with unprecedented accuracy. Radiative transfer models (RTMs)
encode the energy transfer through the atmosphere, and are used to model
and understand the Earth system, as well as to estimate the parameters that
describe the status of the Earth from satellite observations by inverse model-
ing. However, performing inference over such simulators is a challenging prob-
lem. RTMs are nonlinear, non-differentiable and computationally costly codes,
which adds a high level of difficulty in inference. In this paper, we introduce
two computational techniques to infer not only point estimates of biophysical
parameters but also their joint distribution. One of them is based on a vari-
ational autoencoder approach and the second one is based on a Monte Carlo
Expectation Maximization (MCEM) scheme. We compare and discuss benefits
and drawbacks of each approach. We also provide numerical comparisons in
synthetic simulations and the real PROSAIL model, a popular RTM that com-
bines land vegetation leaf and canopy modeling. We analyze the performance
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2 Daniel Heestermans Svendsen et al.

of the two approaches for modeling and inferring the distribution of three key
biophysical parameters for quantifying the terrestrial biosphere.

Keywords Variational Autoencoder · Expectation Maximization · Radiative
Transfer Model · Inverse modeling · Density estimation

1 Introduction

In many areas of science and engineering, systems are analyzed by running
computer code simulations, which act as convenient approximations to real-
ity. Depending on the body of literature, they are known as physics-based,
processed-oriented and mechanistic models, or simply just simulators [1, 2].
Simulators are ubiquitous in physics, brain, social, Earth and climate sci-
ences [3–5]. Model simulations are needed to understand system behaviour,
but also to perform counterfactual studies.

In Earth sciences the use of simulators is of paramount importance. Earth
observation (EO) from airborne and satellite remote sensing platforms along
with in-situ observations play a fundamental role in monitoring our planet [6–
8]. Remote sensing simulators of the involved processes are known as radiative
transfer models (RTMs). These models describe the complex interactions of
scattering and absorption of radiation with the constituents of the atmosphere,
water, vegetation and soils. RTMs are useful because they allow us to translate
(map) a set of parameter1 values describing the state of soil, leaf, canopy and
atmosphere to at-sensor reflectance or radiance. Such simulations allow for
modeling, understanding, and predicting parameters related to the state of
the land cover, water bodies and atmosphere.

While modeling and characterizing the involved processes is key, in practice
one is typically interested in solving the so-called inverse problem ; that is, for
example, inferring the set of atmospheric or canopy biophysical properties,
so that the computed reflectances best fit the remotely sensed ones [9–11].
The problem of inverting the forward model is in general highly ill-posed [12]:
Different sets of parameter values can map into the same reflectance, thus
making it difficult to recover the true set of parameters given a remotely sensed
reflectance. This issue has been largely reported in the literature [7,13,14] and
is, together with the complexity and computational cost of the RTMs as well
as the scarcity of labeled data, the main reasons why the inverse problem is a
difficult and unresolved one.

Many methods have been proposed for model inversion. Early approaches
considered minimizing the (e.g. least squares) error between observations and
model simulations stored in big Look-Up-Tables (LUTs). Comparing each ob-
served spectrum with all spectra stored in the LUT proved impractical, leading

1 Note that both the field of remote sensing parameter retrieval and the field of Bayesian
inference make heavy use of the word parameter. In the former case it refers to the physical
parameters over which we are inferring distributions in this work, and in the latter case it
refers to distribution parameters (mean, covariance, etc.). The meaning is always clear from
context, however.
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to gradient-descent techniques in combination with emulators to be proposed
in the literature [15]. More advanced approaches have recently exploited ma-
chine learning regression algorithms, such as random forests [16, 17], neural
networks [18,19] and Gaussian processes [5,10,20–22] to achieve improved mul-
tidimensional interpolation capabilities. Treating the inverse problem purely
as a regression problem, however, only leads to point-wise estimates, and not
a joint probability distribution of the parameters. We argue in this work that
when two or more physical variable configurations result in the same spectrum,
a conventional inversion method will perform poorly. Such methods that try
to predict the cause from the effect will simply predict something in between
the possible causes that gave rise to the effect. This problem corresponds to
having a multimodal posterior and can be addressed with one of the proposed
probabilistic frameworks in this paper.

A Bayesian formalism is useful in order to (1) generate probability density
functions (PDFs) of the parameters, and hence account for all moments and
uncertainty on the retrieved parameters [23,24], (2) to incorporate constraints
in the form of a-priori parameter distributions, which are often subject of
intense debate in the literature [12,18,25], and (3) to overcome the limited po-
tential of iterative steepest-descent optimization procedures to locate globally
optimal solutions [26,27]. Furthermore, deriving a generative model provides a
straightforward way to perfrom outlier detection, by measuring the probability
of the observed data under the fitted model.

Given some vector of physical causes c (atmospheric or canopy properties),
the forward RTM model induces a likelihood function p(e|c), which links the
causes with the physical effects e (reflectance spectra). In this work, we address
a general problem: Learning the distribution of the physical parameters or
causes, instead of only providing a pointwise estimation of these parameters
(by statistical or numerical inversion). Provided a dataset of observed effects
e′, our goal is twofold: learning the marginal density p(c) and obtaining an
approximation of the conditional distribution p(c|e′), which in a Bayesian
setting represents the posterior density of the causes given the effects. Note
that p(c|e′) also represents a probabilistic inverse model, i.e., given e′ we
can obtain a prediction of the causes c and related uncertainty measures.
Probabilistic inverse modelling, although not so widely used in Remote Sensing
applications, has proven to be a powerful tool, providing more general (and
hence potentially more valuable) solutions than point-wise approaches, and
can help in better understanding the problem itself [27–29].

Since RTMs are generally complex, non-differentiable (i.e. having non-
analytical Jacobian) and computationally costly models, mathematical tractabil-
ity is typically compromised, especially when the aim is to combine RTMs and
Bayesian methods. Here, we propose and compare two different approaches
which allows us to infer parameters for a non-differentiable simulator. One
approach is based on Monte Carlo Expectation Maximization (MCEM) [30]
and the other is based on Variational Autoencoders (VAEs) [31]. We will show
that each approach has different pros and cons. While the MCEM approach
is mathematically elegant, flexible and has good convergence properties, its
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application in practice is computationally demanding. On the other hand the
proposal based on a simple version of VAE obtains good results and is fast,
yet it is not able to describe multimodal distributions. While possible, its ex-
tension for multimodal distributions makes the approach more complicated,
reducing the good computational properties (see, e.g., [32]). We illustrate these
properties in several toy examples of varying sample sizes and complexity, as
well as with the PROSAIL RTM [33]. PROSAIL is the combination of the
PROSPECT [34] leaf optical properties model and the SAIL [35] (Scatter-
ing by Arbitrary Inclined Leaves) canopy reflectance model. In particular, we
compare the approaches for inferring the distribution of three key parameters
for quantifying the terrestrial biosphere.

2 Proposed methodology

2.1 Forward and inverse modeling

Notationally, an RTM f operating in forward mode generates a multidimen-
sional reflectance/radiance observation (or effect) e ∈ RDe as observed by the
sensor given a multidimensional parameter state vector (or cause) c ∈ RDc ,
see Fig. 1. Running forward simulations yields a look-up-table (LUT) of input-
output pairs, D = {(ci, ei)}ni=1. Solving the inverse problem using machine
learning implies learning the function g using D, to return an estimate c∗
each time a new satellite observation e∗ is acquired.

Inversion g(e, θ)

RTM f(c, φ)

Reflectances eParameters c

forward problem

inverse problem

Fig. 1: The forward problem in Earth observation involves taking the system’s structural
state as an input, defining representative bio-geo-physical parameters (e.g. vegetation canopy
or leaf characteristics), then propagating the solar energy through the atmosphere medium
and producing a simulated at-sensor reflectance. The inverse problem involves performing
inference over the forward model. We use c to denote the model parameters or causes, f is an
RTM or simulator, and e is the simulated output reflectance or effect. Both the forward RTM
f and the inverse model g are nonlinear functions parameterized by θ and φ, respectively.



Title Suppressed Due to Excessive Length 5

2.2 Problem setting

Notationally, let us consider then the vector of effects e ∈ RDe and vector of
causes c ∈ C ⊆ RDc , an RTM model represents the underlying mapping from
c to e, that we denote as f(c) : RDc → RDe . The complete observation model
is given by

e = f(c) + ε, ε ∼ N (ε|0, σ2I), (1)

where I is a unit De×De matrix. The observation model defines the likelihood
function as

p(e|c) = N (e|f(c), σ2I). (2)

Note that by fixing c, the conditional probability p(e|c) is Gaussian, but as a
function of c the likelihood is a highly non-linear function due to the depen-
dence on the RTM with the causes, i.e. f(c). We assume an Gaussian prior
over c’s,

p(c) = N (c|m,S) , (3)

where m ∈ RDc and the Dc × Dc covariance matrix S are considered un-
known. The posterior density given the observed data e over the causes can
be expressed as

p(c|e) ∝ p(e|c)p(c) = N (e|f(c), σ2I)N (c|m,S) (4)

Our goals are: (a) learn the prior parameters, vector m and matrix S, and (b)
obtain an approximation of the posterior p(c|e), which serves as an inverse
probabilistic mapping from e to c. We assume that some set of data e is given.
The two main ways of approaching this problem are a Variational inference
(VI2) scheme on the one hand, and an expected maximization method on the
other. For the VI method we follow the approach of Kingma and Welling [31]
and substitute the decoder network with the generative model of Eq. (1). For
the MC-based approach we use MC Expectation Maximization [30].

2.3 Variational inference method

The idea of variational inference is to optimize the parameters of a variational
posterior in order to come as close as possible to the true posterior. Following
[31] we choose a Gaussian variational posterior,

q(c|e) = N (c|µNN(e),ΣNN(e)), (5)

where µNN(e) and ΣNN(e) are obtained by tuning a Neural Network (NN)
with parameters φ. These parameters φ are also referred to as the variational

2 Please note that we use VI to abbreviate variational inference as in most machine
learning literature. This is not be confused with the abbreviation of vegetation indices in
the remote sensing literature.
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parameters. In order to tune the NN parameters φ, we minimize the Kullback-
Leibler (KL) divergence between q(c|e) and the true posterior p(c|e), i.e.,

KL [q(c|e)||p(c|e)] = −Eq(c|e)

[
log

p(c|e)

q(c|e)

]
= −Eq(c|e)

[
log

p(c, e)

q(c|e)
− log p(e)

]
= −L+ log p(e), (6)

where we have used Eq(c|e)[log p(e)] = log p(e). Since log p(e) is constant w.r.t.
the variational parameters, in order to minimize the KL divergence, we have
to maximize

L = Eq(c|e)

[
log

p(c, e)

q(c|e)

]
= Eq(c|e)

[
log

p(e|c)p(c)

q(c|e)

]
,

called the Evidence Lower Bound (ELBO). We can split the ELBO into two
terms: the first one represents the expected log-likelihood with respect to the
variational posterior and the second one is the KL divergence between the
variational posterior and the prior, i.e.,

L = Eq(c|e)

[
log

p(e|c)p(c)

q(c|e)

]
,

= Eq(c|e) [log p(e|c)]−
[
q(e|c)

p(c|e)

]
,

= Eq(c|e) [log p(e|c)]−KL [q(c|e)||p(c)] . (7)

As opposed to the approach in [31] we place a deterministic forward model in
stead of a decoder network and fix a low value of noise variance in the likelihood
(Eq. 2) in order to reflect the trust in the forward model. This approach is akin
to that of [36]. In order to optimize this expression, we perform a Monte Carlo
estimation of the expected value (i.e, the fist term) [37]. The second term has
a simple analytical form as it is the KL divergence between two Gaussians.

Importantly, maximizing L with respect to φ should make KL [q(c|e)||p(c|e)]
fairly small and hence L ≈ log p(e). The maximization of L with respect to the
prior parameters, θ = {m,S}, is hence expected to maximize log p(e), which
is the maximum likelihood principle for parameter estimation. In practice, we
maximize L simultaneously with respect to θ and φ.

The previous approach can be easily extended to the case of having several
observed data instances {ei}Ni=1. In that case the objective is simply the sum
of Li, for i = 1, . . . , N , where Li is the lower bound corresponding to ei,
i.e., the i-th data instance. This sum can be approximated using mini-batches
and optimized using stochastic optimization techniques such as the ADAM
algorithm [38]. In this study, we use a mini-batch size of 1 for all experiments.
For a proof of convergence of stochastic optimization see [39]. The variational
approach is expected to find reasonable values for the prior parameters θ, using
approximate maximum likelihood estimation, and to provide a recognition
model q(c|e) that can be used to infer the potential values of c given e.
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2.4 Monte Carlo expectation maximization

Another method which can be used to address the learning goals described in
Section 2, i.e. to infer the prior parameters from the observed data, and to
generate samples from the posterior distribution p(c|e), is the Monte Carlo
Expectation Maximization (MCEM) method [30].

We begin by briefly describing the Expectation Maximization (EM) algo-
rithm, which can be used to maximize the likelihood function in models that
involve latent variables [40]. This is precisely the scenario considered in Section
2. Namely, given some observed data {ei}Ni=1, we would like to maximize

N∏
i=1

p(ei|θ) =

N∏
i=1

∫
C
p(ei|ci)p(ci|θ)dci , (8)

as a function of the prior parameters θ = {m,S}. Direct optimization of (8)
is intractable, since we cannot marginalize the latent variables ci. The EM
algorithm uses the fact that the complete likelihood function p(ei, ci|θ) =
p(ei|ci)p(ci|θ) is tractable. Consider the following decomposition of the loga-
rithm of (8)

log

N∑
i=1

p(ei|θ) =

N∑
i=1

L(qi,θ) + KL(qi||pi) , (9)

where we have introduced an approximate distribution qi(ci) and

L(qi,θ) =

∫
C
qi(ci) log

p(ei, ci|θ)

qi(ci)
dci , (10)

KL(qi||pi) = −
∫
C
qi(ci) log

p(ci|ei,θ)

qi(ci)
dci . (11)

Note that (11) is the Kullback Leibler divergence between qi and the exact
posterior p(ci|ei,θ) for the instance ei.

The EM algorithm maximizes (9) in a two stage iterative process. As-
sume the current parameter vector is θold. In the E step, the lower bound∑N

i=1 L(qi,θ
old) is maximized with respect to each qi assuming θold to be

fixed. Because
∑N

i=1 log p(ei|θ) does not depend on each qi, the solution to
this problem consists in setting each qi(ci) equal to p(ci|ei,θ

old), minimizing
KL(qi||pi) in consequence. In the subsequent M step, each qi(ci) is held fixed,

and
∑N

i=1 L(qi,θ
old) is maximized with respect to θ, to give new prior pa-

rameters θnew. This will cause the lower bound
∑N

i=1 L(qi,θ
old) to increase,

which will in turn increase the log-likelihood
∑N

i=1 log p(ei|θ). Critically, qi(ci)
will be computed in this step using θold, which is fixed. Therefore, the only
required integral to evaluate in the M step is

L(qi,θ) =

∫
C
qi(ci) log p(ci|θ)dci + const. (12)
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A difficulty, however, is that the posterior p(ci|ei,θ
old) is intractable, which

makes computing qi and hence the integral in (12) challenging. Monte Carlo
EM (MCEM), provides a solution to this problem [30]. The intractable integral
in (12) is simply approximated by a Monte Carlo average over several samples
drawn from qi. Namely,

L(qi,θ) ≈ 1

S

S∑
s=1

log p(csi |θ) + const. , (13)

where csi has been generated from qi and S is the number of generated samples.
The convergence properties of MCEM are analyzed in [41].

Recall that the approximate distribution qi is targeting the exact pos-
terior p(ci|ei,θ

old). So ideally, we should generate the samples csi from the
exact posterior. For this, we use Hamilton Monte Carlo (HMC) [42] as in [31].
HMC is a Markov chain Monte Carlo (MCMC) method that can be used to
generate (correlated) samples from some target distribution [43]. More specif-
ically, a Markov chain is generated whose stationary distribution coincides
with the target distribution. By running the Markov chain for a sufficiently
large number of steps one can obtain an approximate independent sample
from p(ci|ei,θ

old). HMC has the advantage, when well-tuned, reduces sub-
stantially the correlation among samples [43]. For this, it simulates a dynam-
ical system that uses information about the gradient of the posterior, i.e.,
∇ci

log p(ci|ei,θ
old), to sample from regions of high posterior probability. In

our implementation of MCEM, the HMC procedure consists of 20 leapfrog
steps with small step-size (i.e., 5×10−4) which guarantees that the acceptance
rate is high enough. In practice, we only use just one sample to approximate
(13). Each time, the Markov chain is initialized at the mode of the posterior
distribution, which is found using quasi-newton optimization methods (i.e.,
L-BFGS). Of course, after optimizing the prior parameters θ using MCEM,
HMC can be used to generate samples from the approximate posterior distri-
bution p̂(c|e,θ) ∝ p(e|c)p̂θ(c).

2.5 Important considerations

Note that both, the variational and MCEM methods, provide an estimation of
the parameters θ of the prior. Thus, we obtain a Gaussian approximation of
the prior, which is denoted here as p̂θ(c). Therefore, both techniques provide
the following posterior approximation

p̂(c|e,θ) ∝ p(e|c)p̂θ(c). (14)

However, the variational algorithm provides another posterior approximation
given in Eq.(5), i.e.,

q(c|e) = N (c|µNN(e),ΣNN(e)), (15)
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which yields an important advantage with respect the previous one: given one
e, using q(c|e) we can easily, and at low computational cost, produce a pre-
dictive mean µNN(e) and covariance ΣNN(e). The approximation p̂(c|e,θ) on
the other hand would require the use of additional Monte Carlo schemes for
obtaining a predictive mean and variance, for each new observation vector e.
Another advantage of the variational approach is the computational speed
compared to the MCEM method. However, one advantage of the MCEM
scheme is that it can directly handle more practical scenarios (e.g., prob-
lems involving multiple posterior modes, heavy tailed distributions, etc.) lead-
ing to better performance in terms of smaller error in the parameter esti-
mation of the prior. The variational approach described here would require
a different and more general derivation for addressing these scenarios, see
e.g. [32]. These features of each method are confirmed by the results obtained
in our experiments. Implementations of the two approaches can be found at
github.com/dhsvendsen/rtm vi mcem inference.

3 Experiments

We illustrate the strengths and weaknesses of the two approaches, first by
means of informative toy experiments: One that studies the computational
efficiency of the respective methods, and another which analyzes their ability
to handle forward models leading to multimodal posteriors. Following this, we
show how these approaches can be used to perform inference over biophysical
parameters using an RTM as the forward model.

3.1 On the computational efficiency

In order to analyze the computational efficiency of the two approaches, we
consider a simple forward model

f(c) = f(c1, c2) = [2c1, 2c2],

for which both approaches converge to the true values of the parameters of
the prior. We draw the training data {cn}Nn=1 from the prior

p(c) = N
([

4
6

]
,

[
1 0.6

0.6 1

])
,

and pass it through the nonlinear mapping f in order to generate the training
data {en}Nn=1. Datasets of several sizes N = {50, 500, 1000, 2000} are used for
training the models. The model likelihood noise is in all experiments fixed at a
negligible value, with σ2 = 10−7, in order to reflect the trust in the knowledge
encoded in the RTMs.

In Fig. 2 we plot an estimate of the average log marginal likelihood of each
method on a test dataset as a function of training time (averaged over 40 repe-
titions). The marginal likelihood is computed using the estimator described in

https://github.com/dhsvendsen/RTM_VI_MCEM_INFERENCE
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Appendix A. Observing the test log-likelihood, which is computed after each
epoch, we see that the MCEM method convergences after 1 epoch (one itera-
tion of the E and M steps). With a training dataset of 50 points, each epoch
of training is sufficiently fast that a parallelized version of the MCEM method
(in which each E step is done in parallel) converges faster than the VI method.
For the non-parallelized algorithm, this is not the case. For larger datasets, VI
converges before the completion of 1 epoch of the MCEM algorithm. Since this
is a simple toy problem, larger learning rates can be used in the VI method,
leading to earlier convergence (just after 1 epoch) for datasets of 1000 and
2000 points. We can conclude from these experiments that the VI approach
(as a consequence of stochastic optimization) has a better scaling properties
with respect to the dataset size than MCEM.

Fig. 2: Marginal log-likelihood of test dataset as a function of training time for different
inference methods. Four different sizes of training datasets are used, showing that the VI
method is computationally more efficient than the MCEM method for larger datasets.

3.2 Dealing with multimodal posteriors

We have seen that when faced with sufficiently large amounts of training data,
variational inference performs faster than Monte Carlo sampling methods.



Title Suppressed Due to Excessive Length 11

However, since the form of the variational posterior assumed in Eq. (5) is
unimodal, we cannot expect it to be able to capture any multimodality in the
true posterior. Consider for instance the forward mapping (with c = [c1, c2]),

f(c) = [c21, c1c2].

For a given observed e = [e1, e2] ≥ [0, 0] there will always be two possible
solutions, namely c(1) = [

√
e1, e2/

√
e1 ] and c(2) = [−√e1,−e2/

√
e1 ] making

the posterior inherently multimodal. As stated in the previous sections, we
consider ε ∼ N (ε|0, 10−7I). In this example, the prior density is Gaussian
with parameters

p(c) = N
([

1
2

]
,

[
1 0.6

0.6 1

])
,

from which 500 samples are drawn and passed through f to generate the
training dataset.

Fig. 3: Contour plots of samples from the true posterior conditioned on the observation
e = [4, 4]>. HMC samples using the prior parameters learned by the MCEM method shown
in blue, and samples from the learned variational posterior in orange. The density (left) is
so sharply peaked around the two modes that it is more informative to study the log-density
(right).

In the process of maximizing the ELBO, the expected log-likelihood with
respect to the variational posterior is computed. We can see from Fig. 3,
however, that the variational posterior, upon convergence, only captures the
positive mode at c′ = [2, 2]> of the true posterior given the observation
e′ = [4, 4]>. On the other hand, the MCEM algorithm computes the expected
complete log-likelihood with respect to the true posterior as approximated
with HMC. As opposed to the variational posterior, HMC does manage to
capture both the modes of the true posterior as shown in Fig. 3. The learning
algorithm of the MCEM method is therefore more likely to converge to the
true parameters of the prior if the posterior is multimodal.

We can see the inability of the variational method to capture the multi-
modality of the problem from the results of the converged methods given in
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Table 1. The fitted parameters of the prior are far from the true ones when
compared to the results of the MCEM method which as also reflected in the
KL divergence between the fitted and true prior distributions. Multimodality
such as this is likely to be observed in the remote sensing experiment latter,
as it has been remarked before that different configurations of inputs can lead
to the same output making it an ill-posed inversion problem [44].

Method VI MCEM

Mean

[
1.20
1.76

] [
1.027
2.061

]

Covariance

[
0.619 0.682
0.682 1.600

] [
1.001 0.617
0.617 0.945

]

DKL 0.315 0.00581

Table 1: Comparison of methods for inference on a forward model which leads to a bimodal
posterior. The first and second columns show the estimated mean vector and covariance
matrix of the prior. The third column shows the KL divergence between the fitted and the
true prior.

3.3 PROSAIL experiment

We now turn to inference in a remote sensing setting using one of the most
widely used RTM over the last almost three decades in the field as our phys-
ical forward model [45]. PROSAIL is a canopy reflectance model which al-
lows us to relate fundamental vegetation canopy properties, such as, the Leaf
Area Index (LAI), and leaf chemical and structural properties, to the scene
reflectance for a given set of illumination and sensor (observation) geome-
try conditions [46]. To perform its simulations, PROSAIL combines two sub-
models: PROSPECT [47], which models the optical properties of the leaves;
and SAIL [35], which models bidirectional reflectances considering the scat-
tering by arbitrarily inclined canopy leaves in a turbid medium [48]. This
combination of models requires the following set of input parameters:

1) A set of leaf optical properties (PROSPECT), given by the mesophyll struc-
tural parameter (N), leaf chlorophyll (Chl), dry matter (Cm), water (Cw),
carotenoid (Car) and brown pigment (Cbr) contents.

2) A set of canopy level and geometry characteristics (SAIL), determined by
leaf area index (LAI), the average leaf angle inclination (ALA), the hot-
spot parameter (Hotspot), the solar zenith angle (θs), view zenith angle
(θv), and the relative azimuth angle between both angles (∆Θ).
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We consider PROSAIL for simulating Landsat-8 spectra. This satellite has
been widely used in many applications such as cryosphere monitoring, aquatic
science and surface water mapping, and vegetation monitoring [49]. Landsat 8’s
Operational Land Imager (OLI) includes nine spectral bands with wavelengths
ranging from 0.433µm to 1.390µm, leaving us with an output-dimension of
De = 9 for our problem. In our experimental setup, we have chosen to work
with the most relevant leaf-level parameters to monitor vegetation status and
functioning included in PROSAIL, namely Cw, Cm and Chl, resulting in an
input dimension ofDc = 3. The remaining parameters were set constant during
our experiments and their values were obtained from previous studies [5] to
be representative of realistic cases. Their values can be found in Table 2.

Table 2: Characteristics of the simulations using the PROSAIL model.

Leaf
N Car Cbr
1.5 8 g/cm2 0

Canopy
ALA Hotspot θs θν ∆Θ LAI

Spherical 0.01 30◦ 10◦ 0 4

Constraining the radiative transfer models with realistic and representative
distributions of their inputs is a key part of the RTM inversion process. To
facilitate this, in this work we relied on the largest global plant traits database
available, the TRY database [50, 51], which contains thousands of leaf data
records measured at unprecedented spatial and climatological coverage. Using
these data we computed the following empirical mean vector and covariance
matrix which was used to sample 2000 values of c and pass them through
PROSAIL to generate the training data. The empirical mean and covariance
(to be compared with the results in Table 3) of the samples are

m̂ =

9.76e93

1.77e92

46.2

 , Ŝ =

6.42e95 5.06e95 3.68e92

5.06e95 1.34e94 92.86e93

3.68e92 92.86e93 288

 .
The units of the parameters are g/cm2 for Cm and Cw, and µg/cm2 for Chl re-
spectively. Note that the ground truth prior estimated from the TRY database
has some probability density in the negative region of parameter space. This is
not physically meaningful, but serves the point of illustrating the capabilities
of the inference methods. We alter PROSAIL so that it sets every negative
parameter to 0 before mapping into spectral space to get a modified likeli-
hood that will lead to more multimodality (since all negative values in c will
be mapped into the same value, i.e. 0, and then through PROSAIL into a
spectrum).

The results of the variational approach to inference over PROSAIL are
summarized in Fig. 4. We see that the parameters of the prior are fitted well,
which can also be confirmed in Table 3 quantitatively, even though the varia-
tional posterior is not able to produce predictive means in the negative domain.

https://www.try-db.org/
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Fig. 4: Results of the variational approach to inference over PROSAIL. The blue points
are c’s from the training set, while the green points are draws from the fitted prior. The
orange points are draws from the variational posterior conditioned on the training e’s.
The diagonal shows KDE plots of c using samples from the ground truth prior (blue), the
variatonal posterior conditioned on training data (orange) and the fitted prior (green).

It is interesting to note that the modification of PROSAIL to truncate negative
data, which leads to multimodality, does not prevent the variational approach
from estimating the parameters of the prior well.

Nevertheless, the MCEM method is somewhat more accurate than the
VI method, obtaining a KL divergence with to the true prior of 1.23 × 10−2

compared to 2.08×10−2 obtained using the VI approach. This is to be expected
since, as we have seen, the MCEM approach handles multimodality better. We
especially foresee a clear difference in results in future work the LAI variable
which is difficult to estimate due to its multimodal posterior distribution as
pointed out elsewhere [44].

Once the VI method has converged, the neural network which parameter-
izes the variational posterior can be used as a fast inverse model that maps
from observed satellite spectra to biophysical variables. Using the mean out-
puts that model the mean value of the variational posterior we can obtain
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Method VI MCEM

Mean

 1.02e92

1.80e92

45.9

  1.01e92

1.81e92

46.6



Covariance

 5.32e95 4.31e95 3.52e92

4.31e95 1.19e94 2.18e93

3.52e92 2.18e93 280

  5.49e95 4.45e95 3.31e92

4.45e95 1.25e94 91.74e93

3.31e92 91.74e93 292


DKL 0.0208 0.0123

Table 3: Comparison of methods for inference on biophysical parameters using a radiative
transfer forward model. The first and second columns show the mean vector and covariance
matrix respectively of the true and the estimated prior over the causes, using e = ×10
notation for space. The third column shows the Kullback-Leibler divergence between the
fitted and the true prior.

good predictive accuracy on a test set as shown in the scatter plots of Fig.
5. Despite the promising results, it is very important to note that we run our
experiments using a simplified PROSAIL configuration, keeping some of the
input parameters static (see Table 2) and that results can vary greatly in more
realistic modeling scenarios.

Fig. 5: True values of RTM parameters in test dataset versus mean of variational posterior
conditioned on spectra in test dataset. The trained encoder network can thus be used as an
effective predictive model

4 Discussion and conclusions

In this work, we approached the long-standing inverse problem in remote sens-
ing of estimating biophysical parameters from observational reflectances. Un-
like previous works, we focus on estimating not only the particular parameter
point estimates but its full multivariate distribution. We evaluated two differ-
ent approximations that include an RTM forward model to enforce the inverse
estimations to be physically consistent.
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Both proposed techniques have different advantages and shortcomings that
we illustrated with toy examples and with simulations from the PROSAIL
RTM. The MCEM-based approach admits more flexible models while the VAE
is computationally more efficient. For instance, while MCEM deals easily with
multimodal distributions, this is a challenge for VAE. On the other hand, the
convergence time of VAE is orders of magnitude faster depending on the prob-
lem. Moreover, the VAE scheme provides a posterior approximation, with a
predictive mean and a covariance matrix, implicitly defined by the trained
neural network that can be readily evaluated. The experiment involving PRO-
SAIL shows that, while the accuracy of the VAE and MCEM are deemed
similar, the computational simplicity of the VAE approach is critical in this
problem. Note that including the RTM PROSAIL in the forward-inverse mod-
eling loop increases the time of computation and combining it with MCEM
makes it unfeasible especially for large data sets.

We anticipate a wide interest in these techniques for inferring the param-
eter densities from simulations and then, as further work, from observational
satellite data. This will require more accurate and realistic priors; for this we
plan to explore mixtures of Gaussians for modeling the prior of the causes as
a generalization of the simplified Gaussian model assumed in this work. Like-
wise, more sophisticated computational methods and variational approaches
(e.g., [32, 43,52]) could be explored in the future.

Finally, we are well aware of the fact that this problem is ubiquitous in other
domains of Earth observation and geosciences, and may have implications
in climate science too. Inferring parameters is a transversal important topic,
not only attached to terrestrial biosphere processes but to the atmosphere,
cryosphere and the ocean modeling too. For instance parametrization of small-
scale processes such as clouds or biological processes (that are important at
the land surface for the exchange of energy and carbon) cannot be explicitly
resolved. In this context, learning appropriate parametrizations directly from
data may reduce the sources of uncertainties in current models, eventually
leading to a deadlock in climate modeling.
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26. Cédric Bacour, Stéphane Jacquemoud, Marc Leroy, Olivier Hautecœur, Marie Weiss,
Laurent Prévot, Nadine Bruguier, and Habiba Chauki. Reliability of the estimation of



18 Daniel Heestermans Svendsen et al.

vegetation characteristics by inversion of three canopy reflectance models on airborne
polder data. Agronomie, 22(6):555–565, 2002.

27. Qingyuan Zhang, Xiangming Xiao, Bobby Braswell, Ernst Linder, Fred Baret, and
Berrien Moore III. Estimating light absorption by chlorophyll, leaf and canopy in a
deciduous broadleaf forest using modis data and a radiative transfer model. Remote
Sensing of Environment, 99(3):357–371, 2005.

28. Gabriele Coccia, Amanda L Siemann, Ming Pan, and Eric F Wood. Creating consistent
datasets by combining remotely-sensed data and land surface model estimates through
bayesian uncertainty post-processing: The case of land surface temperature from hirs.
Remote Sensing of Environment, 170:290–305, 2015.

29. Chunfeng Ma, Xin Li, Claudia Notarnicola, Shuguo Wang, and Weizhen Wang. Un-
certainty quantification of soil moisture estimations based on a bayesian probabilistic
inversion. IEEE Transactions on Geoscience and Remote Sensing, 55(6):3194–3207,
2017.

30. G. C. G. Wei and M. A. Tanner. A Monte Carlo implementation of the EM algorithm
and the poor man’s data augmentation algorithms. Journal of the American statistical
Association, 85:699–704, 1990.

31. D. P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

32. L. Mescheder, S. Nowozin, and A. Geiger. Adversarial variational Bayes: Unifying vari-
ational autoencoders and generative adversarial networks. In International Conference
on Machine Learning, pages 2391–2400, 2017.
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A Marginal likelihood Estimation by Reverse Importance Sampling

In order to evaluate the performance of the methods described in the paper, we use a estima-
tor of marginal likelihood on a test-dataset. More precisely, we use the Reverse Importance
Sampling (RIS) estimator [53] described below:

1. Sample L values {cl}Ll=1 from the posterior with an MCMC-method. We use Hamilto-
nian Monte Carlo.

2. Fit at density estimator q(c) to the samples {cl}Ll=1. In this work we fit a Gaussian
mixture model, doing cross validation in order to find the best number of components.

3. Sample M new values {cm}Ml=1 from the posterior to be inserted in the following esti-
mator:

p(e) '
(

1

M

M∑
m=1

q(cm)

p(cm)p(e|cm)

)−1

where cm ∼ p(c|e).

For the proof and more details see [53]. It is important to remark that the function q(c)
must be a valid probability density for which there are several possible choices. If one chooses
q(c) = p(c), RIS becomes the so-called harmonic mean estimator (this name is due to the fact
that the corresponding estimator is the harmonic mean of the likelihood values). However,
it has been shown that this does not lead to a good estimator. It is possible to show that, in
order to ensure finite variance of the resulting estimator, the density q(c) should have equal
or lighter tails than the posterior p(c|e) (e.g., see first numerical example in [53]). Gaussian
mixture approximations and kernel density estimators of p(c|e) are suitable choices for q(c).
Different alternative estimators of the marginal likelihood are possible mixing MCMC and
importance sampling schemes (see [53,54]).
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