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ABSTRACT ECGs have shown unique patterns to distinguish between different subjects and present
important advantages compared to other biometric traits. However, the lack of public data and standard
experimental protocols makes the evaluation and comparison of novel ECG methods difficult. In this study,
we perform extensive analysis and comparison of different scenarios in ECG biometric recognition. We con-
sider verification and identification tasks, single- andmulti-session settings, and single- andmulti-lead ECGs
recorded with traditional and user-friendly devices. We also present ECGXtractor, a robust Deep Learning
technology trained with an in-house large-scale database, and evaluate it with detailed experimental protocol
and public databases. With the popular PTB database, we achieve Equal Error Rates of 0.14% and 2.06%
in single- and multi-session verification. The results achieved prove the soundness of ECGXtractor across
multiple scenarios and databases. We release the source code, experimental protocol details, and pre-trained
models in GitHub to advance in the field.

INDEX TERMS Biometrics, deep learning, ECG, recognition, verification.

I. INTRODUCTION
Biometric data are widely used in recognition systems due
to their ability to uniquely identify subjects through their
biological or behavioral traits [1], [2], which are intrinsic to
human beings, differently from traditional recognition tools
such as passwords and tokens. Among the most popular bio-
metric traits, we encounter facial features [3], fingerprints [4],
iris [5], gait [6], handwriting [7], and speech [8]. How-
ever, these traditional biometric traits are vulnerable against
Presentation Attacks (PAs) [9], [10], [11], [12] and digital
manipulations [13].

The electrocardiogram (ECG) is a graph that reproduces
the electrical activity of the heart, obtained by placing elec-
trodes over suitable parts of the body. Even if its deploy-
ment in real applications is not as popular as most estab-
lished biometric traits, ECG presents interesting advantages
for biometric recognition. First of all, ECGs provide higher
security as the signal is measured inside the body, which is
therefore difficult to simulate or copy [14]. ECGs allow live-
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ness detection, as they can be captured from living subjects
only, and provide useful additional information related to psy-
chological states and clinical status [15]. Recently, it has been
claimed that unconcious patients can be identified by their
cardiac activity [16]. The possibility to capture ECGs from
fingers [17] or through wearable devices [18] simplifies their
acquisition and increases the acceptability of ECG signals for
commercial and public applications [19].

However, biometric systems based on ECG have not yet
reached the same level of technological maturity and accep-
tance compared to other biometric traits, mainly because of
the lack of public databases [20], [21]. In a comprehensive
survey that includes 45 ECG public databases, only 7 of them
are suitable for the application of biometric recognition, and
most of them contains a limited number of recording [22].
In addition, it is difficult to evaluate the improvements of
novel proposed approaches, as different databases and exper-
imental protocols are considered in the literature. Beyond
that, multiple ECG signals collected over time from the same
subject present a certain variability between them, e.g., due
to mental, emotional, or physical changes, or permanently
due to changes in lifestyle or individual characteristics [23].
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Extensive studies recognize that heart rate variability may
be induced by heart diseases, mental and physical variations,
and other factors including drugs, medications, and diet [24].
Hence, experimental protocols that evaluate the intra-user
variability over time of the ECG signals are necessary to
assess effectiveness and robustness of ECG-based recog-
nition systems [22]. However, a large number of previous
studies performs experiments based on single-session anal-
ysis [19], [25], [26], which are not very informative of the
system performance in realistic scenarios. In this study we
address the problem of ECG variability over time, investi-
gated through multi-session experiments where we specify
the distance in time between ECGs belonging to the same
subjects and recorded in different sessions.

In this study we consider two different biometric recog-
nition scenarios based on ECG signals: i) verification and
ii) identification. We develop a comprehensive technology,
ECGXtractor, based on Deep Learning (DL) systems and
trained with a large-scale in-house database, to investigate
both scenarios. In particular, we make use of an Autoen-
coder to extract discriminative features from ECG signals.
The Autoencoder is successfully applied to a variety of ECG
signals featured with different properties. It is important to
note that our Autoencoder is not specifically trained to extract
features suitable for biometric recognition tasks. Hence, the
extracted features may also be used in additional applications,
e.g., the prediction of health conditions.

The main contributions of this study are:
• In-depth analysis of state-of-the-art DL approaches
for ECG biometric recognition, highlighting the key
aspects of the scenarios considered in current real
applications.

• Proposal of ECGXtractor, a new DL-based system
suitable for different tasks based on ECG time signals,
composed of a general feature extractor that can be used
for different recognition tasks, i.e., identification and
verification. The feature extractor consists in an Autoen-
coder trained with a large set of 166,932 heartbeats
collected in an in-house database and extracted from the
ECG signals belonging to 55,967 subjects.

• Extensive analysis and comparison of different biomet-
ric recognition scenarios based on ECGs. To evaluate
the overall impact of different conditions and experi-
mental settings, both verification and identification tasks
are investigated, as well as single- and multi-session
acquisition scenarios. We evaluate our proposed ECGX-
tractor with different ECG databases, that may contain
single- or multi-lead ECG signals, recorded with ‘‘on-
the-person’’ or ‘‘off-the-person’’ technologies, i.e., sen-
sors that require conductive paste or gel when attached to
body surfaces, or do not require any special preparation
of the subject with objects or surfaces [21]. We present
to the research community a clear and structured exper-
imental protocol and benchmark, that allows to easily
reproduce our experiments and overcome some draw-
backs existing in other studies.

• We release the source code, experimental protocol
details, and the trained weights of the ECGXtractor
approach in GitHub1 to advance in the field.

To the best of our knowledge, this study simultaneously
addresses for the first time a variety of key aspects, which
includes: i) the specific recognition task, ii) the variability of
ECG signals over time, iii) the number of leads available, and
iv) the modality of recording. About the last point, we inves-
tigate how well state-of-the-art methods perform when tested
on ECG signals recorded with novel modalities, as suggested
in [22].

The remainder of the paper is organized as follows. Sec. II
summarizes previous studies carried out in the field of ECG
biometric recognition. Sec. III explains the details of our
proposed approach: ECGXtractor, which set the foundations
for our experiments. Sec. IV describes the main details of the
databases considered in the study. Sec. V and Sec. VI respec-
tively refer to the tasks of verification and identification,
including both experimental protocols and results. Finally,
Sec. VII draws the conclusions of this study and points out
some lines for future work.

II. RELATED WORKS
Many studies have been conducted on ECG biometric recog-
nition, considering different experimental settings depending
on the task (i.e., verification or identification), the number
of ECG recordings per user and leads available, the type
of recorder (i.e., ‘‘on-the-person’’ or ‘‘off-the-person’’), and
other additional aspects related to data pre-processing and
feature extraction. Because of that, standard experimental
protocols are missing and difficulties arise when comparing
novel approaches with the state of the art.

In this sense, Ingale et al. evaluated withmultiple databases
the effectiveness of various techniques applied in different
phases of ECG biometric recognition, i.e., feature extraction,
signal filtering, segmentation, and matching. This study was
motivated by the fact that most of the methods proposed in
the literature fails to report standard metrics [21].

With regard to the properties of ECG signals, a variety of
lead configurations and modalities of recording have been
considered. According to [23], a single lead contains suffi-
cient information to support biometric recognition. However,
some studies adopted multiple leads in an effort to improve
performance [30], [31]. Furthermore, an increasing number
of portable devices, such as fingertips or wearable devices
with dry electrodes, allows to record ‘‘off-the-person’’ ECG
signals in a non-intrusive way. ‘‘Off-the-person’’ recording
provides more noise and variability compared to traditional
‘‘on-the-person’’ recording [21], but it is considered more
reasonable and aligned with industrial requirements when
using ECG signals for biometric recognition [32], [33].

In this section, we analyze state-of-the-art ECG biometric
systems based on DL technologies. In general, DL systems
extract features fromECG signals in a convenient and reliable

1https://github.com/BiDAlab/ECGXtractor
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TABLE 1. Comparison of different deep learning approaches for ECG biometric recognition. Some studies do not specify if their experiments are
conducted according to single- or multi-session acquisition analysis. In such cases, we expect that multi-session is not considered. It is also possible that
for some subjects only a single ECG signal is available in the database. Acc = accuracy, CWT = Continuous Wavelet Transform, EER = Equal Error Rate.

manner, and provide better results compared to traditional
handcrafted systems [34], [35], [36]. Further feature extrac-
tion methods proposed in the literature include the estimation
of information theory indices based on mutual information
between characteristic ECG points [37], and the application
of wavelet transforms to ECG signals [38].

In Table 1 we summarize the DL based studies dis-
cussed here, reporting their main characteristics and perfor-
mances. We observe that PTB [39] and ECG-ID [40] are the
most popular databases and, for the former, several studies
only focus on its subset of healthy subjects. In addition,
multi-session acquisition analysis is not always addressed
in the literature: some studies fail to report any informa-
tion about it, or consider subjects provided with single ECG
signals.

The first DL system that we consider is the Cascaded
Convolutional Neural Network (CNN), proposed in [25]. This
system is composed of two CNNs: i) F-CNN, for feature
extraction, and ii) M-CNN, for feature comparison. Single
heartbeats extracted from single-lead ECG signals were given
as input to the F-CNN. Match/non-math binary outcomes
were provided by M-CNN for the comparison of features
extracted from paired ECG signals. For each heartbeat in
evaluation, the subject whose template provided the highest
matching scores was the predicted identity. The Cascaded
CNN was evaluated on five databases and achieved up to
100% of accuracy when trained and tested with the FAN-
TASIA database [41], which contains single-session ECG
signals from 40 healthy subjects. This architecture is
more scalable than other identification systems, as it does

not require to re-train the model when new subjects are
considered.

In [28], a Residual CNN was separately trained twice for
identification with two different sets of 90 and 48 subjects.
Single-lead databases and single-session (ormulti-session but
recorded during the same day) ECG signals were employed.
Accuracy of 100% was achieved when considering multi-
ple heartbeats for each subject. The limitations of studies
that only consider single-session databases were pointed out
in [19]. In that study, single segments were extracted from
single-lead ECG signals and provided as input to different
CNNs. The accuracy decreased from single- to multi-session
analysis: accuracies of 100% and 99.33% were achiev-
able with two different databases in single-session, whereas
97.28%was the highest accuracy achievable in multi-session.
Finally, an ensemble of state-of-the-art pre-trained deep neu-
ral networks for identification was proposed in [29]. Seg-
ments of three consecutive heartbeats were extracted from
ECG signals and provided as input to the system. By taking
advantages of both transfer learning and ensemble learning,
such system achieved an accuracy of 99.66%, also consider-
ing multi-session recordings.

Regarding verification, we have already described the
work of Ingale et al. [21]. In that study, some databases pro-
vided single ECG signals for their subjects and multi-session
acquisition was not taken into account. In [26], a system com-
posed of a CNN extracting features from multiple single-lead
QRS complexes combined together was proposed. Equal
Error Rates (EERs) of 1.05% and 2.26% were achieved when
considering QRS complexes extracted respectively within
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FIGURE 1. Graphical representation of the pre-processing operations of ECGXtractor performed on ECG signals to obtain template segments,
single segments, and summary segments for ECG biometric recognition with normalized amplitude. Template segments are generated from all the
single segments identified in the original ECG signal. Summary segments are generated from blocks of ten consecutive single segments (color
image).

300 s and 150 min from a 24 hour-long recording. Finally,
we consider the parallel multi-scale one-dimensional residual
network proposed in [27], trained with a special loss function
to extract features that improve the generalization ability and
achieve more stable results across databases. In that study,
the input data of the neural network were heartbeat vectors,
composed of two single-lead heartbeats randomly selected
from each subject. The authors achieved a 0.59% EER on
the subset of healthy subjects contained in the PTB database.
For most of these subjects, only a single ECG recording was
provided and, hence, multi-session experiments could not be
performed.

As emerged in this section, there are no common
experimental protocols to realize and compare state-of-the-
art technologies for ECG biometric recognition. The various
DL systems proposed require as input heartbeats segmented
and/or combined according to different procedures. Some
of these procedures may be particularly suitable for spe-
cific databases and do not generalize well with others. Also,
DL systems are evaluated on different scenarios featured with
proper experimental settings, which makes any comparison
difficult. Furthermore, to the best of our knowledge, the most
realistic scenario ofmulti-session biometric verification is not
sufficiently investigated in the literature. Existing studies on
biometric verification do not specify whether the processed
ECG samples are recorded in the same or in different ses-
sions [21], [27], or consider databases providing only a single
ECG signal for each subject [26].

To overcome all these problems, we provide in this
study an in-depth analysis and benchmark of different
experimental settings for ECG biometric recognition.

We propose ECGXtractor, a DL method able to successfully
perform biometric recognition in multiple scenarios, and with
multiple databases. We make our system publicly available,
so that it will be easy for the research community to reproduce
our experiments. Moreover, a significant focus of our study is
dedicated to the relevant scenario of multi-session biometric
verification.

III. PROPOSED METHOD
Fig. 1 and Fig. 2 describe the pre-processing and feature
extraction of ECGXtractor, our proposed approach for ECG
biometric recognition. The source code and pre-trained mod-
els are available in GitHub.2 Multiple ECG databases have
been considered in this study to investigate how ECG signals
with different properties may affect performance in ECG
biometric recognition. For this reason, a set of preliminary
operations is required to mitigate the discrepancies exist-
ing between ECG time signals recorded with different sen-
sors. In particular, these preliminary operations allow us to
train our DL system with a large-scale in-house database,
and exploit the generated knowledge with multiple smaller
databases.

A. PRE-PROCESSING
ECG signals from different databases are recorded with
frequencies of 1 KHz or 500 Hz. We downsample all of
them to 500 Hz. We also apply Finite Impulse Response
Filters to our ECG signals, to maintain frequencies between
0.7 and 90 Hz and remove those frequencies around 50 Hz,

2https://github.com/BiDAlab/ECGXtractor
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FIGURE 2. Graphical representation of the feature extraction considered in ECGXtractor, performed on the different types of segments to
carry out ECG biometric verification and identification. Features are extracted from the latent feature representation of an Autoencoder
and, in case of verification, the creation of pairs of features (i.e., genuine-genuine and genuine-impostor pairs) is required before any
further operation (color image).

noisy due to power supply. Subsequently, for each ECG
signal we identify its r-peaks through the reliable method
ecg_peaks, implemented in the neurokit2 toolbox [42], and
discard its first and last r-peaks. Then, we build single seg-
ments, i.e., single heartbeats centered around each r-peak.
According to a previous work [25], and considering the aver-
age heartbeat length of 0.8 s, we fix the length of our single
segments to 0.32 s before and 0.48 s after the r-peak. In case
of multi-lead ECG signals, we identify r-peaks on the signal
recorded with Lead I and build single segments containing
the multi-lead recording of single heartbeats. In our proposed
method, the following approaches are studied:

• template segments (templates along the paper), i.e., ECG
segments with the shape of single heartbeats, obtained
from the processing of all the single segments contained
in an ECG signal.

• summary segments, i.e., ECG segments with the shape
of single heartbeats, obtained from the processing of ten
consecutive single segments contained in an ECG signal.

For template generation, we adopt a procedure similar to
the one presented in [25], here described for a generic ECG
signal:

1) At first, all the segments representing single heartbeats
are identified by means of the segmentation described
above. These single segments contain 400 time samples
for each lead.

2) The element-wise average of the identified single seg-
ments is computed, separately for each ECG lead
acquired.

3) The five single segments presenting the smallest
Euclidean distance from the element-wise average seg-
ment are identified.

4) The five identified single segments are element-wise
averaged, separately for each lead, to obtain the final
template.

This procedure aims to minimize the noise that may be
contained in single segments. The same steps are applied to
generate summary segments, with the only difference that
blocks of ten consecutive single segments are considered in
step 2) instead of entire ECG signals. As a consequence,
multiple summary segments and only one template can be
obtained from single ECG signals.

Finally, the amplitude of the ECG segments, regardless
of whether they are templates, single segments, or summary
segments, is normalized to a fixed value of 2 mV, multiply-
ing every time sample by the ratio between 2 mV and the
current amplitude of the segment. The operation, performed
separately for each lead, aims to eliminate the amplitude
variability existing between the different databases. In Fig. 1
we provide a summary of the described operations.

B. FEATURE EXTRACTION
To extract features from ECG segments (i.e., template, single
segment, and summary segment), we consider a DL-based
Autoencoder, i.e., a neural network composed of two parts: i)
an encoder, that reduces the size of the input data and learns
their encoded representation, and ii) a decoder, that attempts
to reconstruct the input data from the encoded representa-
tion. In the context of ECGs, Autoencoders can be applied
to many tasks, such as noise reduction and heartbeat type
classification [43] or lower dimensional representation and
biometric recognition [44]. In this study, we make use of the
Autoencoder for the latter task.

Our Autoencoder (Fig. 3) consists in a modified version
of the Variational Autoencoder proposed in [45] for feature
extraction and synthetic heartbeats generation.We onlymain-
tain the convolutional layers from the original architecture,
applying small changes to them and discarding the fully
connected and variational components. We observed that the
features extracted with the original architecture were not
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FIGURE 3. Architecture of Autoencoder. l = leads, BN = Batch
Normalization, ReLU = Rectified Linear Unit (color image).

intended for biometric recognition [45]. Our Autoencoder
requires as input a time signal that represents an ECG seg-
ment, i.e., template, single segment, or summary segment.
Our encoder is composed of four groups of convolutional,
batch normalization, ReLU activation, and max pooling lay-
ers. After the last max pooling layer, a further convolutional
layer with two output channels is added, to reduce the size of
the latent features that will be extracted. Our decoder presents
an almost symmetric architecture, to reconstruct the ECG
segment provided as input to the encoder. It is important to
point out that features are extracted independently from each
lead, i.e., numerical values from different leads are never
combined to generate features. Hence, the same pre-trained
Autoencoder is applied for feature extraction for both 1-Lead
and 12-Lead ECG segments, which is a considerable advan-
tage for real applications.

We exploit the Autoencoder to extract features from each
segment of interest, i.e., templates, single segments, and
summary segments. According to the architecture of our
Autoencoder, two channels of 25 temporal features each are
extracted from each lead of the segment provided as input.
Experimental trials showed the advantages of considering
two channels instead of one. Hence, the size of the features
generated from each segment is 25 × l × 2, where l is the
number of leads considered. In our experiments, we consider
single-lead segments (l = 1) and 12-lead segments (l = 12).
We observe that, by building templates or summary segments
and extracting features from them, we achieve a considerable
data minimization compared to the size of original ECG
signals, without losing data usefulness. The extracted fea-
tures are considered in both recognition tasks investigated
in the study: verification and identification. In Fig. 2, the
key aspects of both ECG biometric recognition tasks are
presented.

C. ECG BIOMETRIC VERIFICATION
In ECG biometric verification, features extracted from dif-
ferent leads are combined together during their processing.
For this reason, two Siamese Convolutional Neural Networks
(Siamese CNNs) are trained for the task of verification, one
for single-lead ECG signals (1L-Siamese CNN) and one for
12-lead ECG signals (12L-Siamese CNN). In case of single-
lead ECGs, we consider signals recorded with Lead I, as this

FIGURE 4. Architecture of 1L- and 12L-Siamese CNN. l = leads, BN =

Batch Normalization, FC = Fully Connected, ReLU = Rectified Linear Unit
(color image).

is the typical lead available in ECG databases and the most
basic lead measured by smartwatches and other wearable
devices [46]. The two Siamese CNNs require as input pairs of
feature vectors extracted from two different ECG segments,
and predict if such segments belong to the same subject or not.
1L- and 12L-Siamese CNNs are depicted in Fig. 4. For each
pair of feature vectors, the Siamese component generates two
vectors of 1024 features. The Euclidean distance is calculated
for each of the 1024 features, and the resulting vector is
processed to provide final match/not-match decisions.

The two Siamese CNNs are trained and evaluated with
genuine and impostor pairs of features extracted from dif-
ferent ECG segments. For each subject considered during
training, we build their template with the first available ECG
and extract single segments from their remaining ECGs.
By matching templates with single segments of same and
different subjects, we generate genuine and impostor pairs
for training. We consider single segments less reliable than
templates and summary segments to represent the intra-
user variability. For this reason we employ single segments
only during training, to provide our system with the knowl-
edge derived from potentially more challenging pairs, and
not during evaluation, where summary segments and tem-
plates are considered respectively in single- andmulti-session
scenarios.

We evaluate 1L- and 12L-Siamese CNNs in both single-
andmulti-session acquisition scenarios. In single-session sce-
nario we have the constraint to dispose of only one ECG
signal for each subject. Hence, we divide the considered
ECG signal in blocks of ten consecutive single segments, and
generate a summary segment from each block. By randomly
matching summary segments of same and different subjects,
we create genuine and impostor pairs for evaluation. We con-
sider multi-session verification the most important scenario
of this study, as it represents the most realistic situation for
commercial and widespread biometric recognition technolo-
gies. In multi-session verification the system performance
may be negatively affected by intra-user variability, occurring
when biometric traits of the subject change over time [47].
To investigate this aspect, we generate enrolment templates
with the first ECG signal of each subject, and probe templates
with the other available ECGs acquired in other time sessions,
to create realistic genuine/impostor pairs for evaluation.
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TABLE 2. Summary of the main characteristics of the considered
databases. On-TP = ‘‘on-the-person,’’ Off-TP = ‘‘off-the-person,’’ SR =

Sinus Rhythm.

D. ECG BIOMETRIC IDENTIFICATION
To assess the validity of the features extracted with our
Autoencoder and compare our DL system with others studies
in the literature, we also design experiments in the scenarios
of single- and multi-session identification. We consider the
same trained singular Siamese component of our 1L- or
12L-Siamese CNN for the verification task as described
in Sec. III-C, according to the number of leads of input
data, and include at the end a new fully connected layer
with output dimension that varies according to the num-
ber of subjects considered in each experiment. This is the
only layer to train for the identification task. For all the
experiments of identification we consider summary segments
generated from blocks of ten consecutive single segments,
so that we have enough samples to train and evaluate our
system.

IV. DATABASES
Four different databases have been considered in this study.
They contain single- and multi-lead ECG signals, recorded
with ‘‘on-the-person’’ or ‘‘off-the-person’’ modality. With
these four databases, we evaluate the impact of different
ECG properties on biometric recognition.We use an in-house
database [15], [48], and three public databases widely used in
the literature, to compare the performances achieved in our
experiments with other studies. The main characteristics of
the databases are reported in Table 2.

A. IN-HOUSE DATABASE
The first database is an in-house collection of 295,649
12-lead ECG signals recorded with the Philips 12-lead
machine (https://philips.to/36CPabZ) from a
cohort of 122,622 subjects at La Princesa University Hospital
(Madrid, Spain), with approval by the Clinical Ethics Com-
mittee. We exclude from the study all the ECGs not recorded
during ‘‘sinus-rhythm.’’ Then, we divide the 138,706 remain-
ing ECGs in two groups: i) those belonging to subjects
with only a single ECG recorded (single-session acquisition,
55,967 ECGs from 55,967 subjects, age 54.88 ± 20.15,
52.92%women), and ii) those belonging to subjects with two
or more ECGs recorded (multi-session acquisition, 82,739
ECGs from 26,007 subjects, age 64.44 ± 17.90, 49.74%
women, average distance of 559.65 ± 626.68 days between
the first two ECGs).

B. PTB
This database is collected from Physikalisch-Technische
Bundesanstalt (Germany) with a non-commercial prototype
recorder [39]. The database contains between one to five ECG
signals from 290 subjects (209 men, mean age 57.2). In our
experiments, we consider signals related to both 12 standard
leads and single Lead I. We identify two not-disjoint sets of
subjects: i) those with multiple recordings (113 subjects), and
ii) those considered healthy (52 subjects). In the literature,
both sets have been considered for experiments. PTB is one
of the biggest public 12-lead ECG databases suitable for
multi-session acquisition analysis.

C. ECG-ID
This single-lead (Lead I) database is collected with limp
clamp electrodes that imitate the scenario of user interaction
with practical identification systems [40]. ECG signals are
recorded from 90 volunteers (44 men, aged from 13 to 75).
The number of ECGs for each subject varies from 2, collected
during one day, to 20, collected over 6 months, except for
a subject with a single ECG signal that we exclude from
the analysis. In multi-session analysis, we consider the first
two ECGs for each subject to compare our results with other
studies.

D. CYBHi
This is an example of ‘‘off-the-person’’ database, where ECG
signals are recorded with dry Ag/AgCl electrodes [49]. ECG
signals present virtually the same morphology of Lead I
derivation of a standard 12-lead medical ECG. The database
contains two datasets: i) short-term, with multiple ECG
signals recorded in a five minutes-period from 65 healthy
participants (49 men, age 31.1 ± 9.46) subject to differ-
ent external stimuli, i.e., low and high arousal videos, and
ii) long-term, with two ECG signals recorded with three
months-distance from 63 healthy participants (14 men, age
20.68 ± 2.83). We consider ECG signals from the long-term
dataset to address the most challenging scenario. CYBHi
presents numerous challenges compared to other databases,
due to the lower signal-to-noise ratio of its ECG signals.

V. EXPERIMENTAL WORK: VERIFICATION TASK
A. EXPERIMENTAL PROTOCOL
We consider our large-scale in-house database, divided in
two groups as specified in Sec. IV. Data from the first group
(single-session acquisition) are used to train the Autoencoder.
Data from the second group (multi-session acquisition) are
used to perform experiments in ECG biometric recogni-
tion, as they provide multiple ECG signals for each subject.
In this study we perform cross-dataset evaluation, as we train
ECGXtractor with the in-house database and evaluate it with
several additional databases.

At first, we train our Autoencoder with the single segments
extracted from the ECG signals contained in the first group,
composed of 55,967 ECGs that we divide into training and

VOLUME 11, 2023 15561

https://philips.to/36CPabZ


P. Melzi et al.: ECG Biometric Recognition: Review, System Proposal, and Benchmark Evaluation

TABLE 3. Experimental protocol considered for the training of the Siamese verification system, and the final single- and multi-session evaluation.

validation sets, with 80:20 ratio. Up to three single segments
of each ECG signal have been considered, having in total
133,575 single segments in the training set and 33,357 single
segments in the validation set. We use mean squared error
as loss function, with Adam optimizer and initial learning
rate of 0.001. At each epoch we evaluate the loss function on
the validation set. We halve the learning rate if the function
does not decrease for two consecutive epochs, andwe stop the
training if the function does not decrease for six consecutive
epochs.

Then, we focus on the training and evaluation of our
1L- and 12L-Siamese CNNs, for which we consider the same
settings specified for the training of the Autoencoder, with
cross-entropy as loss function. We employ the ECG signals
contained in the second group, composed of 26,007 subjects
that we divide into training, validation, and test sets, accord-
ing to 70:10:20 ratio. The same test subjects are considered
for both single- and multi-session acquisition scenarios.

Given that subjects are randomly selected to generate
impostor pairs, we evaluate our two Siamese CNNs ten
times for each scenario and database considered. The results
reported in this study are the averages of the values obtained
in the ten executions of each specific scenario and database.
Details of the experimental protocol considered for the train-
ing of the Siamese verification system, and the final single-
and multi-session evaluation are provided in Table 3 and
discussed in the following. We note that in single-session
evaluation, enrolment and probe segments are obtained from
the second session of each subject, for a better comparison
with multi-session scenario. Also, in multi-session evaluation
we consider only one genuine comparison for each subject,
as many subjects only have two ECG signals, and both enrol-
ment and probe templates are obtained from whole signals.
We provide next more details regarding the training of the
Siamese verification system and the final single- and multi-
session evaluation:

• Training: In total, we consider 54,351 genuine and
271,755 impostor pairs to train our two Siamese CNNs
(i.e., 1-Lead and 12-Lead scenarios). We use the same
pairs for both Siamese CNNs, with the only difference
consisting in the number of leads.

• Single-session Evaluation: For each subject, three gen-
uine pairs and fifteen impostor pairs are generated by
randomly matching summary segments of the same and
different subjects. We verify that each generated pair
contains different summary segments, and that the same
pair is not considered multiple times. To evaluate our

TABLE 4. Description of the different evaluation sets and performances
achieved in the scenario of single-session ECG biometric verification.
EER = Equal Error Rate.

Siamese CNNs with the in-house database, we consider
the test subjects not previously used for training and
validation.With the in-house and PTB databases, we can
evaluate both 1L- and 12L-Siamese CNNs. To obtain
comparable results, the same genuine and impostor pairs
are considered for the two Siamese CNNs. Additionally,
we also take into account the subset of healthy subjects
in the PTB database. Given that 38 of the 52 healthy sub-
jects are provided with a single ECG signal, we consider
the subset only for single-session scenarios.

• Multi-session Evaluation: For each subject we select
two distinct ECG signals and generate an enrolment tem-
plate from the first session, and a probe template from
the second one. Then, we create genuine pairs by match-
ing the two templates of each subject, and impostor
pairs bymatching the enrolment template of each subject
with five probe templates of different subjects. The same
subjects considered for the evaluation of single-session
verification are used to evaluate our Siamese CNNs in
multi-session. Also, the same comparison pairs are used
to evaluate 1L- and 12L-Siamese CNNs with in-house
and PTB databases.

To sum up, we underline that in single-session scenario
only experiments with summary segments can be performed,
as we dispose of a single ECG signal for each subject. Nev-
ertheless, in multi-session scenario we dispose of multiple
ECG signals for each subject, and we observed that templates
instead of summary segments provide better performances.

B. EXPERIMENT 1: SINGLE-SESSION VERIFICATION
In Table 4 and Fig. 5 we report the performance achieved in
terms of EER and Detection Error Tradeoff (DET) curves,
along with the number of genuine and impostor pairs tested.
It is important to highlight that only the in-house database
has been considered for training ECGXtractor. Therefore,
in Table 4 we can also analyze the generalization ability
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FIGURE 5. DET curves achieved in the scenario of single-session ECG
biometric verification (color image).

of ECGXtractor to other databases and sensors. We observe
better EERs when we consider 12-lead instead of 1-lead ECG
signals, i.e., 1.28% vs 3.27% EER for the in-house database
and 0.14% vs 0.51% EER for PTB. Also, the two Siamese
CNNs are able to provide perfect 0% EER for the ECG
signals belonging to healthy subjects of PTB, and 1.52%
EER with ECG-ID database, better compared to the results
of [27] and [21] presented in Table 1. We observe that our
two Siamese CNNs, trained with the in-house database and
evaluated with other databases, provide a remarkable gener-
alization ability in cross-dataset evaluation.

Our 1L-Siamese CNN shows performance degradation
when evaluated with comparison pairs obtained from CYBHi
database (6.98%). The availability of only a single lead, the
high variability between heartbeats recorded during the same
session, and the low signal-to-noise ratio, peculiar of this
database, may be the causes of the performance degradation.
We observe that [21] achieves values ranging from 2.3% to
9% EER for CYBHi. However, that study considers a larger
set of subjects, some of them provided with ECG signals
recorded under different conditions, and the protocol adopted
to generate comparison pairs is not clearly specified. In gen-
eral, worse values of EER for CYBHi database are common
in the literature, compared to EERs achievable with other
databases. For instance, high EERs are observable in [50] (up
to 26.38%) and [51] (15.37%).

C. EXPERIMENT 2: MULTI-SESSION VERIFICATION
In Table 5 and Fig. 6 we report the performance achieved
in terms of EER and DET curves, along with the number
of genuine and impostor pairs tested, and the average dis-
tance in days between the ECG signals considered for each
subject. Again, as described in the single-session experiment,
only the in-house database has been considered for training
ECGXtractor. Therefore, in Table 5 we can also analyze the

TABLE 5. Description of the different evaluation sets and performances
achieved in the scenario of multi-session ECG biometric verification.
EER = Equal Error Rate, FT = Fine Tuning.

FIGURE 6. DET curves achieved in the scenario of multi-session ECG
biometric verification (color image).

generalization ability of ECGXtractor to other databases and
sensors.

Analyzing the results of this scenario, we observe that they
are generally worse than those achieved in single-session
verification, for both single- and multi-lead ECG signals.
In particular, the largest performance degradation affects the
single-lead scenario for PTB database, with a worsening of
EER from 0.51% to 5.12%.

The exception to this trend is represented by ECG-ID,
that provides a very low EER of 0.26% for multi-session
verification. We highlight that the ECG signals considered
for each subject are recorded during the same day. Moreover,
the possibility to average the entire amount of heartbeats to
generate templates in multi-session verification may improve
the performance previously achieved in single-session verifi-
cation with summary segments. However, some variations are
expected between ECG signals recorded during the same day
but in different sessions, because of heart rate variability [52]
and potential alterations introduced by the operator between
different measurements.

It is not possible to make a fully comparative analysis
with other studies in Table 1, due to different experimental
protocols and missing details. Several studies do not perform
multi-session analysis, or consider databases that provide
a single ECG for many subjects. This is one of the main
motivations of the present study, i.e., to establish a benchmark
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TABLE 6. Experimental protocol considered for the training and
evaluation of the identification system in the scenario of single-, multi-,
and mixed-session.

evaluation that is easily reproducible by the research commu-
nity.

D. EXPERIMENT 3: FINE TUNING
To conclude the analysis of multi-session verification,
we investigate the possibility to fine tune ECGXtractor with
data from specific databases. In this study, we fine tune our
1L-Siamese CNN with comparison pairs obtained from the
ECG signals contained in the short-term dataset of CYBHi,
not previously considered for evaluation. We exclude 10 of
the 65 subjects available in short-term dataset, as they are
also included in the long-term dataset used for evaluation.
We divide the remaining subjects into training and valida-
tion sets with 80:20 ratio, and extract single segments from
their ECG signals. With the usual 1:5 genuine-impostor ratio,
we generate 12,980 comparison pairs for training and 3,058
pairs for validation. To increase variability during fine tuning,
each pair is made of two single segments. We evaluate the
fine-tuned 1L-Siamese CNN with the same comparison pairs
previously used for multi-session verification with CYBHi.
Table 5 shows the results achieved over the evaluation dataset,
i.e., CYBHi (FT). We obtain an improvement of EER from
7.97% to 5.44%. Similar results would be expected when
doing similar procedure with other databases.

VI. EXPERIMENTAL WORK: IDENTIFICATION TASK
A. EXPERIMENTAL PROTOCOL
For the scenario of identification, we only perform exper-
iments with PTB and ECG-ID databases, using summary
segments generated from blocks of ten consecutive single
segments. Given the different number of summary segments
available between subjects, we perform random re-sampling
to train and evaluate each system with the same number of
summary segments for each subject. Details of the experi-
mental protocol considered for the training and evaluation of
the identification system in different scenarios are provided
in Table 6.

• Training: For each experiment, we consider our
Autoencoder for feature extraction and the singular
Siamese component of 1L- or 12L-Siamese CNNs, with-
out further training them. The only layer trained is the
final fully connected layer, included at the end of the
Siamese component and specific to each experiment
(i.e., depending on the number of users to identify).
We use categorical cross-entropy as loss function and

TABLE 7. Description of the different evaluation sets and performance
achieved in the scenario of single-, multi-, and mixed-session ECG
biometric identification.

maintain the other settings specified for the previous
training.

• Single-session: We perform two different experiments
involving subsets of PTB database: i) the 113 subjects
provided with multiple ECG signals, to compare per-
formance between single- and multi-session, and ii) the
52 healthy subjects, to compare the achieved perfor-
mance with other studies. In both experiments, we select
a single ECG signal for each subject, generate all the
possible summary segments, and split them in the train-
ing, validation, and test sets with 70:10:20 ratio.

• Multi-session: For multi-session, we consider the sub-
set of 113 subjects in PTB provided with at least two
ECG signals. For each subject, we generate all the possi-
ble summary segments from all but the last of their ECG
signals. We split the summary segments of each subject
in training and validation sets with 80:20 ratio. Then,
we generate all the possible summary segments from the
last ECG signal of each subject and use them for evalua-
tion.We also consider the ECG-ID database. To increase
the amount of available data, we mix together the sum-
mary segments generated from the first two ECG signals
of each subject. We call this scenario ‘‘mixed-session,’’
to be more precise. We split the summary segments of
each subject in the training, validation, and test sets with
70:10:20 ratio.

B. EXPERIMENT 1: SINGLE-SESSION IDENTIFICATION
In Table 7 we report the performance achieved in terms
of accuracy. Compared with the verification scenario, each
subject of PTB is correctly identified, also when considering
the subset of 113 subjects. This result is consistent with those
achieved in the literature [19], [27] and reported in Table 1.

C. EXPERIMENT 2: MULTI-SESSION IDENTIFICATION
In Table 7 we also report the accuracy achieved for multi-
(and mixed-) session. As in the case of verification, the per-
formance decreases between single- and multi-session, with
accuracy that goes from 100% to 96.46% for PTB. Higher
accuracies in multi-session scenario are achieved in recent
studies specifically designed for identification: 99.66% for
PTB [29], and 100% for ECG-ID [28]. We remind that iden-
tification is not the main focus of this study, and that these
results are achieved with an architecture of our ECGXtractor
trained for verification with the in-house database, whereas
other databases are used for evaluation. No fine tuning is
considered here, and only minor adaptations of our system
have been made, proving the potential of ECGXtractor to
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extract discriminative ECG-based features for different tasks
and scenarios.

VII. CONCLUSION
In this article we have investigated ECG biometric recog-
nition through the proposal of ECGXtractor, a novel DL
method, exhaustively evaluated across multiple scenarios
and precise experimental settings. We release in GitHub the
trained weights of our DL system, along with the material
used to carry out our experiments.3 This study aims to over-
come the major drawback of ECG biometric recognition,
i.e., the lack of standard experimental protocols, by mak-
ing available a general public benchmark evaluation so that
everyone can replicate it and compare their results with us.
The proposed ECGXtractor method is robust in cross-dataset
evaluation, with the following best EERs achieved in multi-
session verification: 1.97% for the in-house database, 2.06%
for PTB, 0.26% for ECG-ID, and 5.44% for CYBHi. More-
over, ECGXtractor performs perfectly when the subset of
healthy subjects from PTB database is considered, in both
single-session verification and identification.

In addition, the evaluation conducted with the ‘‘off-the-
person’’ CYBHi database may present interesting implica-
tions. ECG signals like those of CYBHi are the easiest to
record inwidespread applications, and studies involving ‘‘off-
the-person’’ databases may favor the diffusion of ECG bio-
metric recognition technologies. The major drawbacks of
these signals are the high level of noise and imprecision,
that generally lower recognition performance compared to
traditional ECGs. In this sense, a strategy analyzed in this
study and requiring further investigation is the fine-tuning
of ECGXtractor with specific ECG signals presenting the
characteristics of the signals of interest. For CYBHi, we were
able to decrease the EER in multi-session verification from
7.97% to 5.44%.

Another future work consists in the protection of sensitive
information that may be contained in the different types of
ECG segments considered in this study [15]. As we observed,
the Autoencoder of ECGXtractor was not trained specifically
for recognition tasks. Hence, the features extracted fromECG
segments are generic, and we expect that they can be suc-
cessfully exploited in other applications, revealing sensitive
information such as age, sex, or medical pathologies [53].
The risk assessment related to this aspect and eventual coun-
termeasures shall be further investigated.
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