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Abstract—Testing is essential for assessing the correctness of
software systems. Metamorphic testing (MT) is an approach
especially suited when the system under test lacks oracles,
or they are expensive to compute. However, creating an MT
environment for a specific domain (e.g., cloud simulation, model
transformation, machine learning) requires substantial effort.

To alleviate these difficulties, we present a model-driven tool
that automates the construction of MT environments. Starting
from a meta-model with the domain concepts, and a description
of the domain execution environment, our tool produces an
MT environment featuring comprehensive support for the MT
process. This includes the definition of domain-specific metamor-
phic relations, their evaluation, detailed reporting of the testing
results, and the automated search-based generation of follow-up
test cases. This paper illustrates the tool on a case-study in the
domain of video streaming APIs. A video showcasing the tool is
available at https://youtu.be/DeuIW6V4LaQ.

Index Terms—Metamorphic testing, Model-driven engineering,
Domain-specific languages, Video streaming APIs

I. INTRODUCTION

Metamorphic testing (MT) is a testing technique suitable in
scenarios where the system under test (SuT) has no oracle or is
difficult to compute [1]. MT is based on establishing so-called
metamorphic relations (MRs), which state that when two or
more input test cases are related in a certain way, their outputs
should be related as specified. For example, when testing the
trigonometric sine function, one can define MRs that profit
from identities like −sin(x) = sin(−x). Thus, given two
input test cases x1 and x2, s.t. x1 = −x2, the outputs of
applying the sin function to them must satisfy the relation
−sin(x1) = sin(x2).

Due to its generality, MT has been applied in a wide range
of domains [1], including compilers [2], machine learning [3],
or autonomous driving [4]. MT has also been employed in
model-driven engineering (MDE), e.g., to test model trans-
formations [5] or the semantics of domain-specific languages
(DSLs) [6]. Part of the success of MT is because MRs can
embed domain knowledge, as well as be used both as oracles
and to automatically generate follow-up test cases. The latter

are input test cases related as required by a given MR (e.g.,
x1 = −x2 in our example).

Typically, MT engines are created manually, which incurs a
high effort and often leads to ad-hoc solutions that are hardly
extensible. This is so as a full-fledged MT solution needs to
provide support to encode the MRs, generate follow-up test
cases, execute the SuT with the test cases that satisfy the input
part of the MRs, and check whether the execution results fulfil
the output part of the MRs. However, MRs are frequently hard-
coded within the MT solution, which is not extensible and does
not offer full support for the MT cycle [7].

To alleviate this problem, we propose GOTTEN, a model-
driven solution to engineer MT environments for specific
domains [7]. The approach is based on a DSL to specify MRs,
and on representing the input test cases as models conformant
to a domain meta-model. GOTTEN provides full support for
the MT cycle, including the automatic generation of follow-
up test cases using model search, and detailed reporting of
the MT results. Moreover, it offers facilities to compare the
behaviour of several SuTs against the same MRs and test
cases, which is useful, e.g., to compare several simulators,
machine learning alternatives, or different versions of the same
SuT for regression testing.

Paper organisation. Section II overviews our approach and
introduces a running example in the domain of video streaming
APIs. Section III explains the architecture of our solution, and
the tooling, which is based on Eclipse. Section IV compares
with related works, and Section V concludes.

II. OVERVIEW AND RUNNING EXAMPLE

As a running example, assume we would like to test a video
streaming API, like that of Youtube1 or Vimeo2. MT is useful
here, since the expected system behaviour can be modelled as
MRs, like this one: “Perform a search for videos published
before a year y. Then perform another search for videos after

1https://developers.google.com/youtube/
2https://developer.vimeo.com/api/
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y with same query as before. The result set should be disjoint”
(taken from [8]).

Testing should be automated, and so, we would need to
create an MT environment to define and execute MRs such as
the exemplified one. However, manually building an MT tool
for video streaming is challenging and requires considerable
effort. Instead, in the remainder of this paper, we showcase
how to facilitate its construction with the help of GOTTEN.
Fig. 1 overviews the construction process, which involves the
roles of application expert, domain expert and tester.
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Fig. 1. Building and using an MT environment with GOTTEN.

First, the application expert defines a domain meta-model
capturing the structure of the inputs expected by the SuT.
Fig. 2 shows the meta-model for video streaming APIs that
we have designed. It captures the possible actions of the API
(e.g., SearchVideo, UploadVideo, UpdateVideo) and the input
data. For example, when searching for a video, it is possible
to input parameters like the maximum number of results
(attribute maxResults), the search query (attribute query), the
date range for the search (class VideoDate), the geo-location
(class VideoPosition), and the ordering criterion (enum Order).

VideoPosition

latitude: Double
longitude: Double
radius: Double

VideoDate

sec: Integer
min: Integer
hour: Integer
day: Integer
month: Integer
year: Integer

«enum»
Order

DATE
RATING
PLAYS
NONE

VideoStatistics

viewCount: Integer
likeCount: Integer
favoriteCount: Integer
commentCount: Integer

Video

id: String
title: String[0..1]
description: String[0..1]
tags: String[*]

UpdateVideoUploadVideo

localPath: String

SearchVideo

maxResults: Integer
resultsPerPage: Integer
duration: Integer
query: String
channel: String[*]

APIAuth

name: String
key: String

VideoOperation

path: String

VideoAPITest

testName: String

0..1
position

0..1
until

0..1
from

*
resultsorderType

statistics  
0..1

0..1
video

0..1
video

0..1
auth

request

Fig. 2. Meta-model for video streaming APIs.

The application expert must also specify how to execute the
SuT programmatically, using an extension point of GOTTEN.

This extension must pass the inputs (instances of the defined
meta-model) to the SuT, and execute the SuT. GOTTEN can
handle several SuTs. In our example, this is useful to compare
different APIs (e.g., Youtube against Vimeo), or to perform
regression tests to ensure that the behaviour of a new API
implementation conforms to the previous one (e.g., Youtube’s
API has 14 revisions since 20213). From the provided in-
formation (domain meta-model and SuT execution process),
GOTTEN generates a dedicated MT environment.

In this MT environment, the domain expert can use the
mrDSL language to define MRs that capture knowledge of
the domain. Starting from the defined MRs, GOTTEN is
able to automatically generate follow-up test cases. For this
purpose, it relies on the MOMoT search-based framework [9].
The domain expert can fine-tune this generation process by
means of the fowDSL language, which allows configuring the
mutation operations to be used during the test case search.

Finally, the tester can use the MT environment to perform
MT. Specifically, the tester creates some initial test cases
manually, which are used to automatically generate follow-up
test cases. Then, the MT environment evaluates the MRs on the
initial test cases and the follow-ups, producing a testing report.
If the results are not satisfactory, new MRs, input test cases
and follow-ups can be defined, and the process is repeated.

III. GOTTEN

Next, we describe GOTTEN’s architecture (Section III-A)
and the tooling (Section III-B).

A. Architecture of GOTTEN

Fig. 3 shows the architecture of GOTTEN. It is an Eclipse
plugin with an extension point (Processor) that the application
experts can instantiate to gain programmatic access to the SuT.
For illustration, the figure shows two extensions for Youtube
and Vimeo (label 1).
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Fig. 3. Architecture of GOTTEN.

GOTTEN includes Xtext-based editors for the languages
mrDSL and fowDSL. The former permits defining MRs (label
2), which will be used for the MT process, and also to

3https://developers.google.com/youtube/v3/revision history

https://developers.google.com/youtube/v3/revision_history


generate follow-up test cases. The test case generation relies
on MOMoT [9], a model-based search engine. Specifically,
starting from the MRs, GOTTEN generates a file defining the
mutation operators to be used for the search by MOMoT.
These operators are specified using the DSL fowDSL, and can
be fine-tuned manually by the domain expert. Then, GOTTEN
automatically transforms the fowDSL configurations into the
input format of MOMoT, and into Henshin rules (labels 3
and 4). Finally, MOMoT uses the defined input test models as
seeds (label 5), and synthesizes follow-up test cases according
to the given search configuration (label 6).

At this point, the MT process can start. GOTTEN passes
the test cases to the implemented processors (label 7), and
the output of their execution is checked against the MRs. The
result is displayed in interactive reports (label 8).

B. Tool support
The GOTTEN framework is available at http://g0tten.github.

io/gotten/ along with an installation guide and usage examples.
The framework supports two DSLs – mrDSL and fowDSL –
explained next.

1) mrDSL: This DSL enables the definition of MRs. List-
ing 1 describes three MRs for the running example. Line 1
specifies the path of the videostream meta-model, and line 2
the location of the conforming input models.

1 metamodel videostream ”/video/model/VideoStream.ecore” with m1, m2
2 models ”/video/model/videotc”
3
4 videostream input Features {
5 context VideoAPITest def: IsFullSearch: Boolean =
6 request.oclIsTypeOf(SearchVideo)
7 and request.oclAsType(SearchVideo).maxResults = −1
8 context SearchVideo def: SearchOrder: Int = orderType
9 context SearchVideo def: UntilYear: Int = until.year

10 context SearchVideo def: FromYear: Int = from.year
11 context SearchVideo def: Radius: Double = position.radius
12 }
13
14 output Features {
15 NVideos: Long
16 Results: Set
17 }
18
19 Processor {
20 Name: String
21 Version: String
22 }
23
24 MetamorphicRelations {
25 MR1 = [ (IsFullSearch(m1) and SearchOrder(m1) <> SearchOrder(m2))
26 implies (NVideos(m1) == NVideos(m2)) ]
27 MR2 = [ (IsFullSearch(m1) and UntilYear(m1) < FromYear(m2))
28 implies (Results(m1)→excludes(Results(m2))) ]
29 MR3 = [ (IsFullSearch(m1) and Radius(m1) > Radius(m2))
30 implies (Results(m1)→includes(Results(m2))) ]
31 }

Listing 1. mrDSL specification of three MRs for the running example.

Lines 4–12 define input features (IsFullSearch,
SearchOrder, UntilYear, FromYear, Radius), which are
OCL expressions that extract information from the input
models and may appear in the left part of the MRs. Lines
14–17 declare output features (NVideos, Results). These
represent features obtained from the tests executed in the
SuT, and can appear at the right part of the MRs.

Lines 19–22 include meta-data of the processor (Name and
Version) to identify the implemented Processors, Youtube and
Vimeo in our case study.

Finally, three MRs are coded in lines 24–31 by using the
previously defined input and output features. MR1 states that
if two searches are performed by only changing the sorting
criteria (SearchOrder(m1) <> SearchOrder(m2)), then both
should return the same number of videos. MR2 encodes the
relation introduced in Section II (“Perform a search for videos
published before a year y. Then perform another search for
videos after y with same query as before. The result set should
be disjoint”). MR3 expresses that, given two video searches,
where the search radius of the first is greater than that of the
second, then the results obtained from the first query must
include the results obtained in the second. Please note that
mrDSL assumes that the model elements not mentioned by
the MR remain equal in both test models.

2) fowDSL: This DSL allows fine-tuning the generation
of follow-up test cases. Listing 2 shows an example fowDSL
configuration for generating follow-up test cases for MR1. Line
1 selects the meta-model of the input models and the MR
used to guide the search of new follow-up test cases. Lines
2–3 specify the folders where the input models and follow-up
test cases are located, respectively. Line 5 shows the rule that
GOTTEN generates automatically for seeding variations in the
SearchOrder feature. This includes a constraint preventing the
value NONE for the feature.

Line 7 defines the fitness function used to give values to
the search order. In this case, OrderType.NONE has value 0,
while the rest of the enumerates have value 1.

Finally, lines 9–11 set the maximum number of solutions
(i.e., follow-up test cases) to generate, the number of iterations
of the search algorithm, and the evolutionary algorithms to be
used in the search process, respectively.

1 followups for videostream using MR1
2 with source path = ”/video/model/videotc”
3 and output folder = ”/video/model/videotc”
4
5 SearchOrder →require SearchVideo.orderType <> NONE
6
7 maximize (SearchOrder(m2) − SearchOrder(m1))
8
9 maxSolutions 3

10 iterations 1
11 algorithms [Random, NSGAII, NSGAIII, eMOEA]

Listing 2. fowDSL configuration for MR1 in Listing 1.

3) The MT process: Fig. 4 presents a screenshot of the
GOTTEN environment. It provides editors for mrDSL and
fowDSL featuring code completion, syntax highlighting and
validation (labels 1 and 2). The tool supports the creation of
GOTTEN projects (label 3), and provides a wizard to synthesize
fowDSL configurations from the given mrDSL specifications,
and another to add Processor extensions to the workspace (two
are shown in label 4). The environment allows launching the
MT process for the selected Processors (see Fig. 5) and shows
the results of the execution for each MR in two additional
views (simplified in label 5, detailed in label 6 of Fig. 4).

http://g0tten.github.io/gotten/
http://g0tten.github.io/gotten/
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Fig. 5. GOTTEN execution view.

To show the suitability of GOTTEN, we have integrated two
processors of video streaming services by implementing the
Youtube and Vimeo APIs. After executing the tool using the
three MRs (see Listing 1) and the two processors, we reach
the following conclusions: i) MR1 detects an issue in both
processors, because the number of videos returned by a query
that specifies a search order differs from the number of videos
returned by the same query without this parameter. This issue

happens in two queries with the Youtube platform (‘winter
pentathlon 1949’ and ‘mistrustfully’) and two more with the
Vimeo platform (‘Warzone’ and ‘music trend’). Regarding this
MR1, the issues found by GOTTEN with the Youtube platform
were also identified by Segura et al. [10], while to the best of
our knowledge, the issues detected with the Vimeo platform
are new. ii) MR2 is satisfied by the follow-up test cases for the
Youtube processor. However, this MR detects a bug in Vimeo.
In particular, the filter date field is not taken into account when
the query is executed; iii) MR3 is also satisfied by the tests
executed on the Youtube processor, but it is not supported by
Vimeo.

Overall, we were able to create an MT environment for
video streaming with GOTTEN; we reused all meta-models,
input models and follow-up test cases for both processors;
and we discovered issues in both APIs.

IV. RELATED WORK

In this section, we review related works on MT frameworks,
and on the use of MT in MDE.
MT frameworks. In recent years, the number of works on
MT has increased considerably. Moreover, MT has proven to
be valuable in many research areas such as MDE, compilers,
artificial intelligence, and autonomous driving, among others.

Li et al. [3] use MT as a robustness testing method to
check the quality of DeepL, a neural machine translation
service for which preliminary results reveal a lack of ro-
bustness. MT-DLComp [2] is an MT framework to reveal



erroneous compilations in deep learning (DL) compilers. The
framework identified more than 435 inputs that can lead to
faulty compilations, in four widely-used DL compilers by
Amazon, Facebook, Microsoft, and Google. RMT [4] is a rule-
based MT framework that converts human-written rules into
MRs by employing an NLP-based parser that references an
ontology list. The test cases are generated using various image
transformation engines to ensure diversity. The authenticity
of the test cases, and the validity of the anomalies detected,
were confirmed through a human study conducted on Amazon
Mechanical Turk. MIA (Metamorphic Interaction Automa-
ton) [11] is the first reported large-scale implementation of
MT in an industrial setting. The authors address challenges
related to test flakiness and the oracle problem while testing
Facebook’s Web Enabled Simulation. This simulation system
is built upon a Web infrastructure of hundreds of millions
of lines of code. MT-EA4Cloud [12] combines MT and
evolutionary algorithms to test cloud computing simulators
using eight MRs about energy consumption.

Overall, these MT frameworks have been developed man-
ually, which requires substantial effort. A tool like GOTTEN
could have saved implementation effort.

MT in MDE. Several works combine MT and MDE. Most
of them apply MT to model transformations, usually written
in ATL [13]. For example, Du et al. [14] integrate MT with
spectrum-based fault localisation to locate faulty rules in ATL
transformations. To do so, the authors exploit code coverage
information collected during the execution of individual test
cases, and the test results. Somewhat similarly, Troya et al. [5]
also analyse the execution traces of ATL transformations,
in this case, to infer likely MRs for the transformations.
The inferred MRs aim at detecting faults in three scenarios:
regression testing, incremental transformation, and language
migration. He et al. [15] evaluate the correctness of bidi-
rectional transformations (BXs) via MT. They identify three
generic MRs for BXs (GETPUT, PUTGET, and PUTTWICE),
which can be complemented with domain-specific MRs to
account for transformation-specific semantics. The approach
is supported by an MT framework that allows defining test
models via a tree editor, and execute them on ATL-based BXs.

Just a few MT proposals do not deal with model transforma-
tions. Boussaa et al. [16] use non-functional MRs modelling
resource usage and performance to identify inconsistencies
in code generators. More differently, Chaleshtari et al. [17]
present a generative MT approach for security testing. It relies
on an Xtext-based DSL to define MRs that capture security
properties of Web systems, and from which Java code is
generated to perform security testing. One of our first usages
of GOTTEN [6] was to apply MT to test the semantics of
DSLs, i.e., simulators that take as input a model in the DSL.

Overall, all these approaches were developed for a specific
domain or language. However, to the best of our knowledge,
none of the current MT frameworks use MDE to create MT
environments. Our tool aims to fill this gap, as it can save
effort and time when creating MT environments.

V. CONCLUSIONS AND FUTURE WORK

This paper has showcased GOTTEN, a tool to automate the
engineering of MT environments for specific domains. The
tool supports the full cycle of MT, including the specification
of MRs, the generation of test cases, and detailed reporting.
MT environments built with GOTTEN are extensible, since
new MRs can be added externally, and the tool facilitates the
comparison of several versions of the SuT.

We will improve the follow-ups generation process to sup-
port more powerful synthesis of strings (e.g., using Wordnet4).
We are currently extending the mrDSL language with more
primitives. We also plan to use GOTTEN for MT in typical
MDE tasks, like model transformation and code generation.
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“New ideas: Automated engineering of metamorphic testing environ-
ments for domain-specific languages,” in SLE. ACM, 2021, pp. 49–54.
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