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ABSTRACT: An accurate force calculation with the Poisson−
Boltzmann equation is challenging, as it requires the electric field
on the molecular surface. Here we present a calculation of the
electric field on the solute−solvent interface that is exact for
piecewise linear variations of the potential and analyze four
different alternatives to compute the force using a boundary
element method. We performed a verification exercise for two
cases: the isolated and two interacting molecules. Our results
suggest that the boundary element method outperforms the finite
difference method, as the latter needs a much finer mesh than in
solvation energy calculations to get acceptable accuracy in the
force, whereas the same surface mesh as in a standard energy
calculation is appropriate for the boundary element method. Among the four evaluated alternatives of force calculation, we saw that
the most accurate one is based on the Maxwell stress tensor. However, for a realistic application, like the barnase−barstar complex,
the approach based on variations of the energy functional, which is less accurate, gives equivalent results. This analysis is useful
toward using the Poisson−Boltzmann equation for force calculations in applications where high accuracy is key, for example, to feed
molecular dynamics models or to enable the study of the interaction between large molecular structures, like viruses adsorbed onto
substrates.

■ INTRODUCTION
Implicit-solvent models consider a dissolved molecule as a
cavity inside an infinite dielectric medium, averaging out the
discrete degrees of freedom of the solvent,1,2 which yields an
efficient way to compute mean-field potentials and free
energies. A popular version of these models uses the
Poisson−Boltzmann equation to represent the electrostatic
potential in an ionic solvent.3 Numerical solutions of this
equation are implemented in a variety of solvers that use finite
difference,4−6 finite element,4,7 or boundary element (BEM)
methods.8−11

Most applications of the Poisson−Boltzmann model apply it
to compute the mean-field electrostatic potential and polar
component of the solvation energy, but it can also compute the
electrostatic force.4,5,12−14 This force is useful to study the
interaction between multiple bodies,15 which can be fed into
molecular dynamics codes (i.e., for molecular docking12).
There are three ways to compute the force with the

Poisson−Boltzmann equation: starting from the variation of
the energy functional,9,16−18 using the Maxwell stress
tensor,19,20 or calculating the variation of the solvation energy
numerically.18 Regardless of the method of choice, this
calculation is challenging, as it involves either (i) the
subtraction of two large numbers,16 (ii) calculating hyper-
singular integrals,19 or (iii) numerical differentiation across the

molecular surface.21 It is also model-dependent, as there are
differences if the dielectric interface is sharp or continuous.22

Moreover, if the Poisson−Boltzmann equation is being solved
with a finite difference method, the electric field on the
molecular surface is computed with a mollified interface5,12 or
approximated with least-squares,23 which may introduce a
diffusive effect to the solution. The boundary element method
offers a more accurate description of the molecular surface, but
current implementations do not overcome the limitations
described earlier.24 Alternatively, we can reformulate the
expressions resulting from taking the variation of the energy
functional and the Maxwell stress tensor in terms of an
apparent surface charge.20,25,26 Also, analytical calculations of
the force are possible when using the conductor-like screening
model (COSMO)-type models.14

The goal of this work is twofold. First, we present a new
formulation to compute the electric field across the boundary
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that is exact for piecewise linear boundary elements. This
allows us to compute the force without adding numerical
approximations on top of standard electrostatic potential
calculations. Second, we perform a thorough assessment of the
accuracy of the force computed with different methods,
implemented in the Poisson−Boltzmann & Jupyter (PBJ)
code.27

In Methods we present the implicit-solvent model and how
the Poisson−Boltzmann equation is formulated with a
boundary integral approach. This section also gives details
on the calculation of the energy and force in a Poisson−
Boltzmann continuum. In the Results and Discussion we show
the accuracy of the different methods for the force calculation
in settings with isolated and interacting molecules. The final
section presents conclusions and outlook for future work.

■ METHODS
The Poisson−Boltzmann Equation with a Boundary

Integral Formulation. In the context of molecular solvation,
the Poisson−Boltzmann model considers the solute as a low-
dielectric cavity immersed in an infinite continuum domain.
Following Figure 1, the solute region (Ω1) has point sources to

represent the partial charges (qk) and is contained inside the
molecular surface (Γ). There are several possible definitions of
Γ, such as the solvent-accessible, solvent-excluded, van der
Waals, and Gaussian surfaces. We chose the solvent-excluded
surface,28 which is the result of tracking the contact points
between the solute and a spherical probe that is rolled around
it. On the other hand, the external region corresponds to an
ionic solvent (usually, water with salt). The free ions in the
solvent have an effect on the electric field, and if they are
considered as point charges that arrange according to
Boltzmann statistics, continuum electrostatic theory leads to
the (linearized) Poisson−Boltzmann equation. We can express
this as the following system of partial differential equations:
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where ϕ is the electric potential, κ is the inverse of the Debye
length, δ(xk) is the Dirac delta function at xk, and n is a unit
vector that is normal to Γ.
The Boundary Integral Formulation. A common

approach is to formulate eq 1 as an integral over Γ. Applying
Green’s second identity to eq 1, we arrive at
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where x ∈ Ω1 ∪ Ω2\Γ. Also,
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are known as the single- and double-layer potentials, and
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are the free-space Green’s functions of the Laplace and Yukawa
(Poisson−Boltzmann) potentials.
Combinations of the expressions in eq 2 yield different

boundary integral formulations27 that vary in complexity and
the conditioning of the resulting matrix. Here we use the
simplest form, termed direct formulation,29 which is imple-
mented in the PBJ code.27 The direct formulation simply
takes the limit of the expressions in eq 2 as x → Γ, leaving
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There are many other boundary integral formulations of this
problem27 that yield better-conditioned systems than eq 5, for
example, Juffer’s30 and Lu’s31 formulations. The force
calculation presented in this work is applicable to any
formulation.
Energy in a Poisson−Boltzmann Continuum. In a

continuum description, the electrostatic free energy is a
function of the electrostatic potential (ϕ), the charge

distribution in the solute = =( )q x( )j
N

j jf 1
q , and the

Figure 1. Representation of a solute in a continuum model.
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concentration of free ions in the solvent (cj for species j). At
equilibrium, cj takes the Boltzmann distribution. This trans-
forms Gauss’s law into the Poisson−Boltzmann equation, and
the Gibbs free energy functional takes the form32
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where β = 1/kT is the inverse thermal energy, cj∞ is the bulk
concentration far away from the solute at vanishing electro-
static potential, and λ is a unit-step function that masks out the
salt-free solute region. In linear form, eq 6 becomes3
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At equilibrium, the free energy G reaches a minimum
value.32 Using the Euler−Lagrange equation, the minimum is
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where xj (j ∈ {1, 2, 3}) are the components of x. Equation 8
shows that the electrostatic potential that minimizes the energy
is a solution of the Poisson−Boltzmann equation. We can use
the identity ∇·(ϵϕ∇ϕ) = ϕ∇·(ϵ∇ϕ) + ϵ∇ϕ·∇ϕ and consider
∫ Ω∇·(ϵϕ∇ϕ) dΩ = 0 (as ϕ goes to 0 at infinity) to rewrite eq
7 as
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Acknowledging that the charge distribution in the solute is a
set of Dirac delta functions and that the solvation process is the
difference between vacuum and solvated states, we arrive at the
well-known expression for solvation energy:
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where ϕreac = ϕ − ϕCoul is the reaction potential at the location
of the atoms (xk). In the context of the boundary integral
formulation, ϕreac can be computed by subtracting out the
Coulomb contribution from the first expression in eq 2 as
follows:

i
k
jjjjj

y
{
zzzzz= +K Vx

n
( ) ( )x x

reac ,L 1, ,L
1,

(10)

Forces in a Poisson−Boltzmann Continuum. Virtual
Displacement Approach. Force is the gradient of the energy
in eq 7 along a coordinate. Thus, we can use the virtual work
principle to compute the force by evaluating the energy at

positions displaced by a small value h18 and performing a
finite-difference-type calculation:
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Here we can compute any component of the force by
performing the displacements in the corresponding direction x,
y, or z. This approach is convenient because it does not involve
any modification of a standard Poisson−Boltzmann solver that
can compute the energy. However, accuracy becomes an issue,
as energy differences are usually small, and the numerical
solver needs to appropriately resolve the electrostatic potential,
requiring meshes that are much finer than in common
solvation energy calculations. On top of this, it requires
multiple energy calculations, increasing calculation time.

Energy Functional Variation Approach. Gilson et al.16

used the virtual work principle to take variations of the energy
functional in eq 7 to find a force density function. This is

= | |f E E
1
2

1
2f

2 2 2
(12)

which can be integrated in the volume to find the total force.
We refer the reader to the work by Gilson et al.16 for the
complete derivation that leads to eq 12.
Equation 12 introduces a clear distinction between three

sources of force:
• Charge, due to the electric field (E) on the charges:

=F E xdq f (13)

Similar to the electrostatic potential, E can be
decomposed into Coulombic (ECoul) and reaction
(Ereac) components.

• Dielectric boundary, from the jump in ϵ across the
molecular surface:

= | |F E x1
2

ddb
2

(14)

• Ionic boundary (osmotic pressure), which appears as the
ionic concentration drops to 0 inside the solute:

=F x1
2

dib
2 2

(15)

where λ is a mask function that is equal to 0 in Ω1 and 1
in Ω2.

Maxwell Stress Tensor Approach. Starting from the volume
integral of the force density in eq 12, we can use the divergence
theorem to write it in terms of a surface integral as

= = · = ·F f x P x P n xd d d
(16)

where P is a modified version of the Maxwell stress tensor that
includes the effect of the salt concentration. Following the
details in the work by Xiao et al.,22 we obtain the following
expression for the components of the stress tensor:

=P E E E E
1
2

1
2ij i j k k ij ij

2 2
(17)

Different from the energy functional approach in eq 12, the
Maxwell tensor does not distinguish the different sources of
force. In the last term of eq 17 we find the ionic boundary
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force (Fib in eq 15); however, Fq and Fdb are mixed in the first
two terms.
The i, j ∈ {1, 2, 3} indices of the Maxwell stress tensor in eq

17 usually indicate the Cartesian x, y, and z components.
However, it can be represented in any frame of reference.
Following the work by Cai and co-workers,33 we use a per-
element local coordinate system ξ, η, τ, as shown in Figure 2,

centered at one vertex of the triangle. In this setting, ξ points in
the direction normal to the panel, η points along one edge, and
τ results from the cross product of the corresponding unit
vectors (eτ = eξ × eη). We can then write the normal vector in
the integral of eq 16 as n = eξ = (1, 0, 0), and applying the
Maxwell tensor to it gives
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which is the stress normal to the triangle. Evaluating eq 18 with
the unit vectors eξ, eη, and eτ expressed in Cartesian
coordinates recasts the stress in the global frame of reference.
Numerical Method Implementation Details. Numer-

ical Solution of the Boundary Integral Equation. We solve eq
5 numerically on a triangulation of the solvent-excluded surface
using the Bempp-cl library.34 Bempp-cl provides high-
level abstractions of discretized forms of the single- and
double-layer potentials (V and K) with an easy Python API,
implemented in highly optimized OpenCL code for perform-
ance. This allows us to reach large-scale problems on a single
workstation.
We assumed a continuous piecewise linear distribution of ϕ

and ∂ϕ/∂n on the triangular panels. In that case, Bempp-cl
tracks the values on the vertices of each triangle rather than the
panel itself and uses a Galerkin approach to arrive at a linear
system, such as
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Then the solution of this linear system yields the values of ϕ
and ∂ϕ/∂n on the vertices, which we use on the discretized
form of eq 10 to obtain ϕreac anywhere in the domain Ω1.
Equation 19 is the matrix representation of eq 5, which is

valid for the single-solute system in Figure 1. In practice,
having just one solute is not an interesting setup to compute

forces. The BEM formulation can consider more than one
solute by applying the procedure that led to eq 5 over multiple
surfaces,11,35 which can define the molecular surface of another
solute or a surface with imposed charge or potential.15,36,37

The Electric Field on the Molecular Surface with a First-
Order Boundary Element Method. Solving the system in eq
19 using continuous piecewise linear elements with Bempp-
cl gives ϕ and ∂ϕ/∂n on the triangle vertices. On the other
hand, eq 18 needs the electric field E = −∇ϕ in the normal
(Eξ) and tangential (Eη and Eτ) directions. Note that in the
integration process to obtain the force, we consider Eξ, Eη, and
Eτ to be constant in each panel. The normal direction is easy to
obtain, as it is an average of −∂ϕ/∂n over the vertices of each
triangle, which is appropriate even though the normal to the
panel might be different from the normal to the vertex.
However, the tangential directions require some work, and this
is where the local coordinate system becomes useful. The
numerical method assumes a linear distribution of ϕ on each

panel, which lives on the (η, τ) plane (see Figure 3), allowing
us to write

= + +a b c( , ) (20)

Using Figure 3, we can determine a, b, and c from the values of
ϕ on the three vertices (ϕ1, ϕ2, and ϕ3), their relative distance
(d12 and d13), and the angle α at vertex 1. The local frame of
reference is centered at vertex 1, and eη points in the direction
between vertices 1 and 2. Replacing on vertex 1 gives

= · + · + =a b c(0, 0) 0 0 1 (21)

Then evaluating on η = d12 gives
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Figure 2. Local coordinate system for calculation of the force using
the Maxwell stress tensor. Bottom set of triangles represents the
surface mesh on the molecular surface, whereas the top set of triangles
corresponds to the piecewise linear distribution of ϕ and ∂ϕ/∂n.

Figure 3. Local coordinate system for a triangular element.
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With the values of a, b, and c obtained from eqs 22, 23, and
21, we can compute the tangential field in each direction
analytically as

=E
n

= =E
d

2 1

12
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d dsin( ) tan( )

3 1

13

2 1

12 (24)

The computation of E with eq 24 does not introduce further
approximations to the calculation. Then, in the context of a
molecular surface represented with flat triangular panels and a
piecewise linear variation of the potential and its normal
derivative, the calculation of the field is exact. This stands out
from other implementations of the force calculation with the
Poisson−Boltzmann equation4,5,12,31 that require numerical
approximations on the molecular surface. For example, Lu and
McCammon31 used a similar approach with local coordinates
on each panel but required an extra interpolation step to
account for a piecewise constant node-patch scheme.

The Energy Functional Variation Approach in Boundary
Integral Form. The Charge Force (Fq). The charge force
consists of an integration over the solute volume (see eq 13).
Since the charge distribution (ρf) is a set of Dirac delta
functions, the integral becomes a sum over the charges. Like
the electrostatic potential leading to eq 10, the electric field can
also be decomposed into reaction and Coulombic components
(E = Ereac + ECoul). By the action−reaction principle, two point
charges induce equal and opposite forces on them, canceling
out the Coulomb contribution to the total force (∫ ΩρfECoul dx
= 0). Then we can write

= = qF E x xd ( )q
i

N

i if reac reac
(25)

This could be computed by directly taking the derivative of eq
10, but the gradients of the potential operators VΓ

x and KΓ
x are

currently not available in Bempp-cl. Thus, we calculated
∇ϕreac(xi) by computing ϕreac at locations near each charge and
used a centered difference scheme as
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where i ∈ {1, 2, 3} indicates a Cartesian component and xk is
the position of charge k. We used hE = 0.001 throughout this
study, making sure that the mesh size of this finite difference
approximation yielded an error that is low enough to not affect
our results.

The Boundary Forces (Fdb and Fib). The values of ϵ and λ
have a sudden jump accross the molecular surface, making the
gradients in eqs 14 and 15 difficult to compute with numerical
methods. For example, finite difference codes like APBS4,5

mollify the interface, making ϵ and λ vary across a few mesh
points. The boundary integral formulation becomes convenient
to avoid these inaccuracies.
Following the work by Cai and co-workers,33 we can

compute the force across the molecular surface due to the
jump in dielectric constant by taking the difference of the

terms with ϵ in the Maxwell stress tensor, evaluated on the
inner (Pijin) and outer (Pijout) sides of Γ. In the local coordinate
system from eq 18, this gives us the following force density:
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Considering Ω1 and Ω2 the internal and external regions,
respectively, we can apply the interface conditions
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to cancel out the eη and eτ components and write
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Equation 29 is in agreement with previous work from Davis
and McCammon.18 Then the total force Fdb on the molecular
surface is

= = ·F f x E E e xd
1
2

( ) ddb db 2 1 1 2 (30)

The electric fields E1 and E2 in eq 30 can be computed with eq
24. The tangential components of the field are usually much
smaller than the normal one,33 and Fdb can be approximated
as15
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(31)

This last expression is very convenient in a boundary integral
framework, as ∂ϕ/∂n results directly from solving the system in
eq 19, without limiting the choice of ansatz to piecewise linear.
To obtain a surface integral expression for the ionic pressure

force (Fib), we can use the same approach that led to eq 30.
This time, we compute the difference of the salt-related terms
in the Maxwell stress tensor (λ in eq 17) on the inner and
outer sides of Γ. This leads to

=F n x1
2

dib
2

2
2

(32)
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■ RESULTS AND DISCUSSION
This section presents force calculations for isolated molecules
and for two molecules interacting. We computed the force with
the three approaches described in Methods, namely, the virtual
displacement (eq 11), energy functional (eqs 25, 30, and 32),
and Maxwell stress tensor (eqs 16 and 18) approaches. In the
case of the energy functional approach, we also computed the
dielectric boundary force with the normal approximation in eq
31 (Fdbapprox). This is summarized in Table 1, with a naming
convention that is used in the rest of this section. To compare,
we used the finite difference software APBS.4,5

In all cases, the dielectric constant inside the protein was ϵ1
= 4, and the solvent was set to ϵ2 = 80 and κ = 0.125 Å−1

(corresponding to 150 mM monovalent ions in the solvent).
We used the pdb2pqr38 software to parametrize the atomic
charges and radii and then Nanoshaper39 to generate the
surface mesh, unless otherwise noted. Both pdb2pqr and
Nanoshaper are called from PBJ. Unless otherwise noted,
we used a Gauss quadrature rule of order 4 and a GMRES
tolerance of 10−5.
The runs were performed on a workstation with two 12-core

Intel Xeon E5-2680 v3 @ 2.5 GHz CPUs and 96 GB of RAM.
Results with a Single Molecule. As an initial test case, we

ran experiments with the different methods detailed in Table 1
on a single lysozyme (PDB entry 1lyz), parametrized with the
AMBER force field. As the protein is isolated, the total force
should be zero, making this a good test case for accuracy. For
the same reason, we did not run these experiments with
Method 1.
Table 2 shows the solvation force and energy (eq 9) for

Methods 2, 3, and 4 for different surface mesh refinements. As

expected, all methods are converging to zero as the mesh
density increases, but Method 4 generates the most accurate
results and Method 3 the least. This is an expected result for
two reasons. First, Method 3 behaves worse because it uses an
approximation on the dielectric boundary force (eq 31) that
neglects the electric field in off-normal directions. Second,
Method 2 involves the sum of two large and opposite
components, namely, Fq and Fdb (see Table 3 for their
magnitudes). This is a difficult situation for the numerical
method, as small errors in Fq and Fdb may result in a large error
in their difference. This does not happen with Method 4. The
force calculations with APBS in Table 4 also use the energy

functional approach (similar to Method 2), and hence, they
have the same accuracy issues. Even though the solution with
APBS seems to be converging to zero, it performs worse than
Method 2 and Method 3.
To analyze the convergence, we can use the concept of

observed order of convergence (p):11,40
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f f

f f
1 2

2 3

(33)

where f1, f 2, and f 3 are the solutions with a coarse, medium,
and fine mesh, respectively, and r is the mesh density ratio
between them. If the details of the solution are appropriately
resolved, p should match the order of convergence of the
numerical method, and we say it is in the asymptotic convergent
region. Our boundary integral method uses linear elements that
give first-order convergence. Considering the mesh densities 4,
8, and 16 vertices/Å2 from Table 2 in eq 33, we get p = 1.2 for
Method 4 and p = 1.4 for Method 2 and Method 3, which
indicates that they all are asymptotically converging. Using the
three finest meshes of APBS in Table 4 results in p = 1.48,
which is similar to our BEM approach; however, the results are
still far from the real solution (|F| = 0). It is important to
consider that force calculations with APBS use a fourth-order
spline to mollify the dielectric interface and compute the
electric field on the molecular surface, adding an extra layer of
approximations.
Sørensen et al.41 performed a careful analysis of the impact

of mesh spacing on solvation and binding free energies for

Table 1. Summary and Naming Convention of Force
Calculation Methods with BEM

Name Description Equation(s) Reference

Method 1 Virtual displacement 11 18
Method 2 Energy functional variation 25, 30, and

32
16

Method 3 Approximated energy functional
variation

25, 31, and
32

15

Method 4 Maxwell stress tensor integration 16 and 18 22

Table 2. Solvation Energy (in kcal/mol) and Force
Magnitude (in kcal mol−1 Å−1) for PDB Entry 1lyz at
Different Mesh Densities (in Vertices/Å2)

Mesh density Method 2 Method 3 Method 4 ΔGsolv

2 5.2553 7.0078 0.6234 −484.70
4 2.0308 3.3422 0.2325 −465.74
8 0.8131 1.9724 0.1013 −458.31
16 0.3649 1.4639 0.0458 −455.22

Table 3. Force Decomposition (Magnitudes in kcal mol−1 Å−1) for PDB Entry 1lyz Using Method 2 and Method 3 at Different
Mesh Densities (in Vertices/Å2)

Method 2 Method 3

Mesh density |Fq| |Fdb| |Fib| |Fq| |Fdb| |Fib|
2 38.0419 32.6898 0.1419 38.0419 30.9821 0.1419
4 29.2129 27.0556 0.1405 29.2129 25.7790 0.1405
8 27.6445 26.6999 0.1411 27.6445 25.5650 0.1411
16 26.2625 25.7651 0.1410 26.2625 24.6971 0.1410

Table 4. APBS Force Magnitude (in kcal mol−1 Å−1) for
PDB Entry 1lyz (Mesh Density in Δx Å, Box Size = 60 × 60
× 60)

Δx Nodes |F|
0.938 65 × 65 × 65 73.439
0.469 161 × 161 × 161 64.234
0.208 321 × 321 × 321 17.963
0.117 513 × 513 × 513 1.4699
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various finite difference codes (APBS among them). They
recommended a spacing of Δx = 0.5 or less for acceptable
binding energy results. On the other hand, a similar analysis
with BEM11 concludes that a mesh with 2 vertices/Å2 is the
coarsest refinement that yields acceptable results for solvation
and binding energies. Table 4 shows that a mesh spacing of Δx
= 0.117, which is 4× finer than Sørensen et al.’s
recommendation, is less accurate than using 2 vertices/Å2

with Method 4 and 8 vertices/Å2 with Method 2. This
indicates that a BEM approach with the same mesh that is valid
for solvation energy calculations is useful to compute the force.
This is not the case in finite differences, which has been
reported in the past.23

Results for Two Spherical Molecules. Force calculations
are useful to study the interaction between two or more
molecules. As a simple model problem, we computed the force
induced by a spherical molecule on another spherical molecule
(Fbind). In general, Fbind is the difference in force between an
interacting state, where spheres are close by, and a non-
interacting one. As there are only two spheres, the molecules
are isolated in the noninteracting state, and the force is zero.
For that reason, we only need to compute the force in the
interacting state.
Both spheres had a centered charge of 2qe and a radius of 1

Å, and we generated the meshes with MSMS.42 In this case it
makes sense to use Method 1 because the free energy depends
on the relative distance between the spheres, which changes in
the virtual displacement calculations (offset by hei with h =
0.001 Å) of eq 11. As the discretization error is small for a
sphere, we refined other parameters to make sure that the
convergence was not affected. In particular, we set the Gauss
quadrature rule to order 8 and the GMRES tolerance to 10−8.
Table 5 shows a mesh refinement study of the force and

binding energy when the spheres are 3 Å away, where ΔGbind is

the energetic difference between interacting and isolated states.
As a reference solution, we used closed expressions for the
solvation energy of two spheres43,44 and computed the force by
applying them to the virtual displacement approach in eq 11.
This reference value was Fref = 1.9425 kcal mol−1 Å−1, which is
the base in the error plots of Figure 4. It is interesting to note
that even though Method 2 is more accurate than Method 4,
the latter is converging with the expected first-order trend (as
also Method 1) when Method 2 is not. Similarly to the isolated
case with lysozyme, it is difficult to obtain the right
convergence with Method 2, as it involves the subtraction of
two large numbers (Fq and Fdb). This makes Method 4 a more
robust option.

Figure 5 shows the induced force at different center-to-
center distances for the same two spheres, using an 8 vertices/

Å2 mesh and h = 0.001 Å for Method 1. Even though the errors
in Figure 4 are different for Methods 2, 3, and 4, in the context
of Figure 5 these curves are overlapped.
The fact that Method 2 does not converge linearly in Figure

4 is not surprising. This method involves the sum of large
opposite values Fq, Fdb, and Fib, yielding a smaller total force.
Using a Richardson extrapolated value as an approximate exact
solution for each component,11,40 we performed a mesh
convergence study (see Figure 6), which indicated linear
convergence of Fq, Fdb, and Fib independently. Then, small
errors that are not noticed in each component of the force have
a large influence on the convergence of the total force of Figure
4.
Convergence of the Boundary Forces. The computa-

tion of the boundary forces is challenging, and results shown so
far are not conclusive regarding its convergence. To further
verify our implementation of Fdb and Fib, we performed two
variations to the test case in Table 5 and Figure 5:

Table 5. Solvation Force (x Component, in kcal mol−1 Å−1)
for Two Charges (2qe Each) in Spheres of 1 Å Radius
Separated by 3 Å for Different Mesh Densities (in Vertices/
Å2)a

Mesh
density Method 1 Method 2 Method 3 Method 4

ΔGbind
(kcal/mol)

2 1.8794 1.9203 1.8944 1.8607 3.9338
4 1.9124 1.9374 1.8748 1.9062 3.9521
8 1.9268 1.9417 1.8652 1.9230 3.9611
16 1.9353 1.9429 1.8613 1.9346 3.9667
32 1.9390 1.9430 1.8599 1.9387 3.9689

aUsing the virtual work approach with an analytical solution for the
energy gives a force of 1.9425 kcal mol−1 Å−1.

Figure 4. Error of each method for two 1 Å spheres with a centered
2qe charge at a center-to-center distance of 3 Å. Dashed line indicates
linear convergence.

Figure 5. Induced force and binding energy between two spheres
(each with radius 1 Å) with a centered 2qe charge at different center-
to-center distances.
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1. We removed the charge from one sphere and set ϵ2 = ϵ1
= 4. Then there was no dielectric interface, and the
computed force corresponded to the osmotic pressure
(Fib) completely. A convergence analysis at a center-to-
center distance of 3 Å is presented in Table 6, and
Figure 7 shows its variation with distance using a 128
vertices/Å2 mesh.

2. We removed the charge from one sphere and salt from
the solvent (κ = 0). In this case, all the force on the
neutral sphere corresponded to the dielectric boundary
force (Fdb). A convergence analysis at a center-to-center
distance of 3 Å is presented in Table 7, and Figure 8
shows its variation with distance using a 128 vertices/Å2

mesh.

To ensure the appropriate accuracy, these runs used a GMRES
tolerance of 10−8. The results in Tables 6 and 7 show that all
methods are converging to the same value and are
indistinguishable in Figures 7 and 8. This verifies the
implementation of Fib and Fdb in Method 2.
Using Method 1 as a reference, we can see from Table 6 that

Methods 2 and 3 do a better job than Method 4 in computing
the osmotic pressure Fib. This seems surprising, considering

that Method 4 has been the most accurate consistently.
However, Fib is usually the smallest component of the force,
limiting its contribution to the total error.

Figure 6. Error (with respect to an extrapolated value) of the different
components of Method 2 for two 1 Å spheres with a centered 2qe
charge at 3 Å center-to-center distance. Dashed line indicates linear
convergence.

Table 6. Solvation Force (x Component, in kcal mol−1 Å−1)
for an Uncharged Spherical Cavity Interacting with a Sphere
Containing a Single 2qe Charge in a Low-Dielectric Solvent
(ϵ2 = 4, κ = 0.125)a

Mesh
density Method 1 Method 2 Method 3 Method 4

ΔGbind
(kcal/mol)

2 −0.0304 −0.0331 −0.0331 −0.1286 0.0339
4 −0.0388 −0.0398 −0.0398 −0.0908 0.0419
8 −0.0419 −0.0423 −0.0423 −0.0732 0.0449
16 −0.0439 −0.0440 −0.0440 −0.0583 0.0469
32 −0.0447 −0.0448 −0.0448 −0.0520 0.0477
64 −0.0451 −0.0452 −0.0452 −0.0485 0.0481
128 −0.0453 −0.0453 −0.0453 −0.0470 0.0483
256 −0.0454 −0.0454 −0.0454 −0.0463 0.0484

aBoth spheres have a 1 Å radius, and they are 3 Å apart (center-to-
center). Mesh densities are in vertices/Å2.

Figure 7. Induced force of a sphere with a 2qe centered charge on
another uncharged sphere and binding energy at different center-to-
center distances. Both spheres had a radius of 1 Å, and the solvent
dielectric was ϵ2 = ϵ1 = 4. The only source of this force is the osmotic
pressure Fib.

Table 7. Solvation Force (x Component, in kcal mol−1 Å−1)
for an Uncharged Spherical Cavity Interacting with a Sphere
Containing a Single 2qe Charge in a Salt-Free Solvent (ϵ2 =
80, κ = 0)a

Mesh
density Method 1 Method 2 Method 3 Method 4

ΔGbind
(kcal/mol)

2 −0.0555 −0.0636 −0.0013 −0.0642 0.0391
4 −0.0689 −0.0729 −0.0020 −0.0733 0.0480
8 −0.0742 −0.0767 −0.0023 −0.0769 0.0514
16 −0.0776 −0.0789 −0.0025 −0.0790 0.0537
32 −0.0791 −0.0798 −0.0026 −0.0798 0.0546
64 −0.0798 −0.0802 −0.0026 −0.0802 0.0551
128 −0.0802 −0.0804 −0.0026 −0.0804 0.0554
256 −0.0804 −0.0805 −0.0027 −0.0805 0.0555

aBoth spheres have a 1 Å radius, and they are 3 Å apart (center-to-
center). Mesh densities are in vertices/Å2.

Figure 8. Induced force of a sphere with a 2qe centered charge on
another uncharged sphere and binding energy at different center-to-
center distances. Both spheres had a radius of 1 Å, and the solvent had
no salt (κ = 0). The only source of this force is the dielectric interface
Fdb.
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As the results in Table 6 do not consider a dielectric
interface, the normal field approximation from Method 3 has
no effect, and methods 2 and 3 yield the exact same values.
This is in contrast to Table 7, which is only due to the
dielectric boundary and results with Method 3 are way off.
Results for the Barnase−Barstar Complex. The

barnase−barstar complex is a standard case study for binding
energy calculations.12,45,46 Here we used chains B (barnase)
and E (barstar) of the structure under PDB entry 1brs47 and
moved barstar up in the z direction, away from barnase. In the
closest position, barstar was displaced 9 Å in the z direction
(see Figures 9 and 10), which was the smallest displacement

that did not generate clashes between the two molecular
surfaces. We meshed the solvent-excluded surface of both
molecules with 8 vertices/Å2 and used h = 1 Å for Method 1.
Similar to the sphere case in Figure 5, the noninteracting

state has both molecules isolated, where the force should be
exactly zero, making the total force equal to Fbind. However,
from Table 2 we see that there is a numerical error, which
decreases as the mesh is refined. To subtract out this error, we
explicitly computed the force placing barstar and barnase far
away (at 100 Å), and subtracted that out from the calculations
performed at each distance.

Figures 9 and 10 show the z component of Fbind and ΔGbind
of barnase and barstar, respectively, as a function of the
distance barstar was moved from its original position in the
PDB structure. We can see that Method 2 and Method 4
overlap, whereas Method 3 performs worse. Even though for
large distances the accuracy of Method 3 seems acceptable, as
barnase and barstar get closer, the off-normal components of
the field become more important, and the approximation in eq
31 is inadequate. Results with Method 1 are close to those with
Methods 2 and 4. Computing the force with Method 1 for
small distances is challenging because we need to avoid mesh
clashing in the virtual displacements calculations of eq 11.
Moreover, when the two molecules are close, ΔGbind changes
only slightly (see black curve for distances close to 10 Å in
Figures 9 and 10), making it difficult to capture with the
numerical derivative of eq 11. At large distances, all methods
seem to perform similarly.
In our setup, barstar is placed above barnase on the z axis.

Then, a positive z component of Fbind in Figure 9 indicates an
attractive interaction, whereas attraction happens when the
force is negative in Figure 10. As barstar approaches barnase,
the interaction is initially attractive and then flips to repulsive.
This is an indication that at small distances we would see a
deceleration of the approaching molecules, in what is known as
sof t landing.48

■ CONCLUSIONS
The Poisson−Boltzmann equation is usually restricted to
electrostatic potential and free energy calculations, but the
force provides useful insights, for example, to study molecular
interaction and binding, which can be tested experimentally.49

As the force is a derivative of the energy, it is a challenging
quantity to calculate numerically. Starting from piecewise
linear boundary elements, our approach computes the electric
field on the molecular surface exactly, without adding
numerical approximations to the standard Poisson−Boltzmann
calculation of the potential. Here we presented a thorough
analysis of different formulations to obtain the force with a
boundary element method. We compared four different
methods and found that the most accurate one is based on
the Maxwell stress tensor, followed by a method that relies on
the variation of the energy functional. We also introduced an
approximation to the energy functional approach that
considers the normal component of the electric field only.
This method gave acceptable results when the molecules were
far apart. We verified our approach against known solutions for
single molecules and two interacting spheres. We also
compared the accuracy with that of the finite difference code
and saw that the boundary integral approach outperforms the
finite difference method for equivalent meshes.
In the future, we plan to use this efficient approach in

applications where high accuracy is required for reliable
simulations. Some examples are the force induced on large
structures, such as viruses and materials,15 and adsorption
calculations,50 where we need to detect the influence of small
changes in orientation36,51,52 on the total force.

■ ASSOCIATED CONTENT
Data Availability Statement
All the code and data required to reproduce the results of this
work can be found in the repository at https://github.com/
bem4solvation/paper_PBforces.

Figure 9. z component of force induced by barstar on barnase and
binding energy at different offsets of barstar on the z axis with respect
to its original position from the PDB crystal structure.

Figure 10. z component of force induced by barnase on barstar and
binding energy at different offsets of barstar on the z axis with respect
to its original position from the PDB crystal structure.
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