Universidad Autónoma

 de Madrid
instituto de ciencias matemáticas

Noncommutative analysis techniques in the geometry of L_{p} spaces and Calderón-Zygmund theory

Antonio Ismael Cano Mármol

Tesis Doctoral dirigida por José Manuel Conde Alonso y Javier Parcet Hernández

Departamento de Matemáticas
Universidad Autónoma de Madrid

The-research-contained-in-this-Ph.D.-thesis-has-been-supported-by-Grant-SEV-2015-0554-19-3-funded-by-MCIN/AEI/10.13039/501100011033-and-by-ESF-Investing-in- your-future.-Also,-it-has-been-supported-by-the-FPI-UAM-2019-scholarship.

Moreover,- the-contents-of-this-work-were-partially-supported-by-the-Madrid-Government-Program-V-under-PRICIT-Grant-SI1/PJI/2019-00514,-by-Grant-PID-2019-107914GB-I00-(MCIN-PI-J.-Parcet),-as-well-as-by-the-Severo-Ochoa-Grant-CEX2019-000904-S-(ICMAT)-funded-by-MCIN/AEI-10.13039/501100011033.-

Répétons que le rythme profond, vrai et vivant de la musique, le "feeling" disent les Américains, ne saurait être donné uniquement par le métronome. Cette vie que procure la pulsation demeure toutefois tributaire de l'exactitude du rythme et du tempo.

Jean-Marie Londeix

Agradecimientos

Estos- últimos-años-de-doctorado-han-sido-quizás-la-etapa-de-mi-vida-en-la-que- más-he aprendido.- Ha-estado-lleno-de-altibajos,-pero-han-prevalecido-los-buenos-momentos-cerca-de-personas-que-me-han-enseñado- y-a-las-que-estoy-agradecido.-

En-primer-lugar,-quiero-agradecer-a mis-directores,-Javi-y-Jose.- Gracias-Javi-por-aceptarme-como-alumno-de-Trabajo-Fin-de-Máster, por-tu-esfuerzo-incansable-(casi-literal)-en-nuestras-reuniones,- ${ }^{-}$-por-las-ganas-de-trabajar-que-transmites.- Gracias-Jose-por-tu-perseverancia-conmigo-en-nuestras-innumerables-reuniones,-por-las-ganas-de-trabajar-que-transmites-(tú-también,- no-he-escrito- por- error- dos-veces-la-misma- frase),- - $^{-}$por- irme-adelantando- poco-a-poco-qué-iba-a-encontrar-en-el-doctorado-y-en-este-mundillo.- En-resumen,- gracias-a-los-dos-por-dejarme-trabajar-con-vosotros,-por-ponerme-en-contacto-con-buenas-matemáticas,-y-por-felicitarme-o-señalarme-mis-errores-cuando-es-necesario.-

Quiero- agradecer- también- a- Adrián- González- por- acceder- a- ser- el- lector- de- esta- tesis.Also, - - - am-very-grateful-to-Léonard-Cadilhac-and-Runlian-Xia-for-accepting-to-write- the-international-reports-of this thesis.- También,-gracias-a-Pedro-Tradacete-y-Carlos-Palazuelos-por-acceder-a-formar-parte-del-tribunal-de-esta-tesis.-

During-my-doctoral-studies,- I- had- the- opportunity- to- do- several- research- stays- at- the-Université- de-Caen- with-Éric-Ricard.- Thank- you-Éric- for- your- time,- and- for-sharing-your-knowledge- of- functional- and-harmonic- analysis- with-me.- Also,- thank- you- for- your-hospitality.-I-believe-that-my-experience-working-in-Caen-has-had-a-deep-influence-in-meas a- mathematician,- in- the-short- and the-long- term.- I- also- would-like- to- thank-Roland-Vergnioux,-Clément-Coine,-Ben-Anderson-Sackaney,-Fatemeh-Khosravi,-as-well-as-the-rest-of-the-faculty-and-les jeunes chercheurs.-

Mi- experiencia- con-otros- congresos- y^{-}- estancias- cortas-ha-sido-muy- gratificante- también.-Thank-you-Tao-for-being-a-great-host-in-Houston-and-Waco.-I-am-grateful-for-having-met-Andrei-Martínez-Finkelshtein,-Dorina-Mitrea,-Paul-Hagelstein,-Sheng-and-Zhen-there,-as-well-as the rest-of the faculty.- Gracias también-a todas-laspersonas-con-las-que-he-coincidido-en-otros-congresos-y-escuelas,-especialmente-en-los-primeros-para-mí:-la-Escuela-Taller-de-Análisis-Funcional-y-la-Escuela-JAE.-En-particular,-gracias-(de-nuevo)-a-Pedro-Tradacete-por-enseñarme-acerca-del-problema-del-subespacio-invariante,- y^{-}-dirigirme-tan-bien-en-mi-
primera-experiencia-leyendo-artículos-de-investigación.-
Le-debo-todo-mi-agradecimiento-a-la-Facultad-de-Matemáticas-de-Murcia,-especialmente-a-Matías-Raja,-por-sus-cursos-y-por-identificar-mi-inclinación-por-el-análisis,-y-a-Luis-Carlos-García- por-su-dedicación-durante-mi- último-año- de- grado.- También,- gracias-a-Antonio-Pérez,- Bernardo- Cascales ${ }^{\dagger}$,- Gustavo- Garrigós,- José- Orihuela,- y- a- mis- profesores- de- la-facultad.- Yendo-aún-más-para-atrás-en-el-tiempo,-gracias-a-mis-profesores-de-matemáticas-en-el-instituto,-y-en-general,-a-todos-aquellos-que-me-dieron-clase-en-el- Jiménez.-

Una- buena- compañía- siempre- hace- que- el- trabajo- sea- más- llevadero.- Gracias- a- mis-compañeros-de-máster- $^{-}$- a $^{-}$mis- primeros compañeros-de-despacho-en-el-ICMAT:-Ángela,-Glenier- y- José- Granados.- Gracias- también- a- Jesús- Ocáriz.- Aunque- coincidimos- poco,-veros-en-el-despacho-me-ayudó-a-hacerme-una-idea-de-lo-que-podría-ser-el-doctorado-como-experiencia-social.- Una-vez-matriculado-en-mi- primera-tutela,- pude-ver-que-el- ambiente-entre-doctorandos-era-propicio-para-la-convivencia.- Quiero-agradecer-a-los-que-ya-estaban-en-la-UAM-cuando- yo-llegué:- Adri-Llinares,-Diego,-Fran,-Jaime,-Julio-y-Manuel-Mellado.-En-este-grupo-incluyo-a-los-que-considero-mis-hermanastros mayores,-sobre-todo-a-partir-de-mi-tercer-año.- Gracias-Alex-por-darme-la-bienvenida-al-departamento-y-ser-mi-gymbro durante-unos-cuantos-meses.- Gracias-Luis-por-dejarme-pedirte-consejo-de-vez-en-cuando-y-por-ser-pionero-en-reivindicar-el-café- y-galletas-para-el-Coloquio.-

A-aquellos-compañeros-que-empezamosjuntos-y-a-los-que-vinieron-después,-quiero-agradecer-su-voluntad-de-hacer-piña-en-el-departamento.- En-primer-lugar,-quiero-dar-las-gracias-a-mis-hermanos-pequeños,-Edu-y-Jorge-Pérez,-por-las-conversaciones-sobre-mates-y-el-tiempo-compartido-en-los-congresos.- Gracias-a-mi-compañera-de-despacho-Celia,-a-Daniel,-a-Jan-(gracias- por- dominar- el- humor- en- castellano- con- el- nivel- propio- de- un-nativo),- Mikel- y-Omar.- También-quiero-dar-gracias-a-los-más-jóvenes,-por-estos-dos-úttimos-años:- Antonio,-Carlos,- Enrique-Martínez,- Henrique,- Irene- (gracias-por-proponer- el- Coloquio- Inocente),-Itahisa,-Iván,-Javier-Casado,-Javi-Minguillón-(eres muy-grande),-Jorge-Ruiz-(prácticamente-murciano),-M ${ }^{\mathrm{a}}$ Teresa,-Pablo-Sánchez,-Peio,-Sergio-Domingo-y-Sergio-García-(muy-grande-y-prácticamente-murciano).- También-quiero-agradecer-a-los-estudiantes-visitantes:- Dani,-Florian,- Francesca,- Giovanni-y-Mafe-(prácticamente-madrileña).- Además,-me-alegra-ver-que-se-vuelven-a-consolidar-los-lazos-UAM-ICMAT,-por-lo-que-quiero-incluir-en-mi-lista-a-Alba,-Asier,-Bilson,-Cherco,-David-de-Hevia,-Enrique,-Guillermo-Barajas,-Jesús,-Joaquín,-Manuel-Laínz,-Miguel-el mago,-Pablo-Hidalgo,-Roberto,-Rodri- y-Santi.- También,-agradecer-a-algunos-amigos-de-la-Complu:- a-Achraf,-a-mi-paisano-Fernando,-a- Guille-Gallego- y-a-Laura.-

Quiero-agradecer-a-alguna-gente-de-fuera-del-mundo-del-doctorado-que-me-ayudó,-sobre-todo-los- primeros-años,- a-lo-largo- de-mi- estancia-en-Madrid.- Gracias-David- por-ser-mi-primer-guía-en-la-capital.- Gracias-a-los-miembros-de-la-Comisión:- Alex,-Bea,-Belén,-Jorge-Mayoral,-Laura-Etayo,-Patri,-Pedro-y-miembros-honorarios.- Gracias-a-mis-compañeros-de-piso-Jorge-Pérez-(otra-vez),-Maite-y-Sergio.-

Antes-de-mudarme-a-Madrid,-tuve-la-suerte-de-conocer-a-amistades-con-las-que-he-man-
tenido- el-contacto-estos-años.- Especialmente-a-mis-amigos-de-carrera-en-Murcia:- Fran,-Isa,- Iván- y-Thomas.- Cada-vez- que-me-lleno- un-vaso-de- un-dispensador- de- agua,- pienso-en-el-Club (añado-a-esta-lista-a-Carlos-Rubio- y- Jose-Antonio).- Gracias-a-mis-amigos-de-Cartagena,- - - Hugo- y-Ghizlane- (compañeros-de-Ph.D.-en-la-distancia), y-a-Dani,-Elena,-Marcos-y-Pablo.- Gracias-también-al- grupo de Brighton por-el-año-preuniversitario-y-los-años-posteriores.- Dentro-de-unos-meses-hará-una-década-de-aquel-viaje.-

Por-último,-quiero-agradecer-mi-familia.- Literalmente-no-habría-llegado-hasta-aquí-de-no-ser-por-mi-familia.- En-primer-lugar,- gracias-a-mi-abuela-María-Rosario,-a-los-titos-Pepe-y-Ana,-las-primas-Ana- y-María-Rosario- y-sus-familias.- Gracias-a-mis-hermanas-Reyes-y-Paloma-por-seguir-tratándome-como-si- estuviera-cerca-a-pesar-de-la-distancia.- Gracias-papá- por-transmitirme-la- curiosidad- por-buscar- algo- nuevo- en- una- biblioteca.- Gracias-mamá-por-inculcarme-el-intentar-dar-siempre-el- 100% - de-uno-mismo.- De-momento- yo-lo-logro-el-50\%-de-las-veces.- Gracias-a-los-dos,-por-apoyarme-siempre,-y-por-permitirme-pasar-tanto-tiempo-lejos-de-casa.-

Contents

Agradecimientos v
Resumen 1
Abstract 7
1 Trigonometric chaos and X_{p} inequalities 13
1.1- Trigonometric chaos $19-$
1.1.1- Harmonic analysis on discrete groups 21
1.1.2- Noncommutative- L_{p}-spaces-are-Banach- X_{p} spaces 23
1.1.3- Proof-of Theorem 1.0.1 $25-$
1.1.4- Proof of Theorem11.0.2 27
1.2- Applications to abelian groups 27
1.2.1- Classical-tori 27
1.2.2- Discrete toril. 32-
1.3- Applications to free products 36
1.3.1- The free group 36
1.3.2- The-free-product- $\mathbb{Z}_{2 m}^{* n}$ 38
1.3.3- Free-Hilbert-transforms $40-$
$2 \mathrm{X}_{\mathrm{p}}$ inequalities and the metric geometry of Banach spaces 43
2.1- Metric X_{p} inequalities 46
2.2- Intrinsic X_{p} inequalities 50
2.2.1- Continuous X_{p} inequalities 50
2.2.2- Cyclic groups with the word-length 52
2.3- Transferred X_{p} inequalities $54-$
2.4- Metric consequences 56
3 Spin chaos and the Pisier inequality 59
3.1- X_{p} inequality-for spin chaos 62-
3.2- Dimension-free-Pisier's-inequality-for-spin-chaos $70-$
4 Calderón-Zygmund operators with operator-valued kernel 77
4.1- Column/row-Hilbert-valued- L_{p} spaces 81-
4.1.1- Noncommutative-spaces- $L_{p}\left(\mathcal{M} ;-L_{2}^{c}(\Omega)\right)$ 88
4.2- Duality-between-Hardy-spaces-and-BMO spaces 89-
4.3- Proof-of a result by-Garnett 109-
4.4- Calderón-Zygmund-operators-with-operator-valued-kernel 118
A Vector-valued Hardy spaces 127
Conclusiones 131
Conclusions 135
Bibliography 143

Resumen

Los-contenidos-de-este-trabajo-se-engloban-dentro-del-área-del-anátisis-armónico-no- con-mutativo.- Una-característica- central- de-este-campo-de-investigación- es-la-sustitución- de-funciones-sobre-espacios-de-medida-por-operadores-en-espacios-de-Hilbert.- Más-concreta-mente,-sea- (Ω, μ)-un-espacio-de-medida-semifinito-y-consideremos-los-espacios-de-Lebesgue$L_{p}(\Omega, \mu)$ - para- $0-<p \leq \infty$.- Entonces,- $L_{2}(\Omega, \mu)^{-}$- es- un- espacio- de- Hilbert- complejo- con-el- producto- interior-dado- por-la-integral,- mientras- que-el- espacio- de- funciones- medibles-esencialmente-acotadas- $L_{\infty}(\Omega, \mu)$-puede-interpretarse-como-una-subálgebra-de-operadores-acotados-sobre- $L_{2}(\Omega, \mu)$.- En-otras-palabras,-cualquier- $f \in L_{\infty}(\Omega, \mu)$-induce-una-aplicación-lineal-acotada-

$$
\begin{aligned}
& T_{f}:-\quad L_{2}(\Omega, \mu) \longrightarrow \\
& g \longmapsto \\
& L_{2}(\Omega, \mu)- \\
& f g
\end{aligned}
$$

con-norma- $\left\|T_{f}\right\|=-\|f\|_{\infty}$ y-la-correspondencia- $f \mapsto T_{f}$ es-biyectiva.- Sea- $\mathcal{H}=-L_{2}(\Omega, \mu)$-y-sea-$B(\mathcal{H})$-el-álgebra-de-operadores-lineales-acotados-sobre- \mathcal{H}.- Entonces-la -familia-de-operadoresT_{f} es-un-álgebra de von Neumann,-es-decir,-una-C*-subáłgebra-de- $B(\mathcal{H})$-que-contiene-a-la identidad-y-es-cerrada-con-respecto-a-la-topología-débil-de-operadores-de- $B(\mathcal{H})$.- Cuando-un-áłgebra-de-von-Neumann- \mathcal{M} está-equipada-con-una-traza τ,-un-funcional-lineal-que-juega el-papel-de-"integral-no-conmutativa",-decimos-que-el-par-($\mathcal{M}, \tau)$-es-un-espacio de medida no conmutativo.- Además,- esto- conduce-a-la-definición,- via- cálculo- funcional- espectral- y-un-argumento-de-completación,-de-los- espacios L_{p} no conmutativos $L_{p}(\mathcal{M}, \tau)$-equipados-respectivamente-con-las-normas-

$$
\|x\|_{p}=-\tau\left(|x|^{p}\right)^{1 / p}
$$

El-ejemplo- $\mathcal{M}=-L_{\infty}(\Omega, \mu)$-puede-ser-provisto-de-la-traza-dada-por-la-integral,-es-decir,-

$$
\tau(f)=-\int(f d \mu
$$

de-forma-que-los-espacios- L_{p} clásicos-son-espacios- L_{p} no-conmutativos.- A-lo-largo-de-esta-tesis-aparecerán-varios-ejemplos-de-álgebras-de-von-Neumann-como-los-contextos-donde-se-han-estudiado-los-dos-problemas-principales-de-este-trabajo.-

La- primera- parte- de-esta-disertación- está constituida- por-los-capítulos-1-a-3.- El- punto-en-común-de-los-resultados-incluidos-en-estos-capítulos-es-la-aplicabilidad-de-la-teoría-de-
funciones-en-el-cubo-de-Hamming- $\{-1,1\}^{n}$ a-la-geometría-de-espacios-de-Banach-y-la-teoría-de-inclusiones-de-espacios-de-Banach.-

Una- pregunta- fundamental- en- análisis- funcional- es- conocer- cuándo- un- espacio- dado- es-isomorfo-a-un-subespacio-vectorial-de-otro.-En-el-caso-de-los-espacios- $L_{p}(0,1)$-el-panorama-es-bien-conocido.- $L_{2}(0,1)$-es-isomorfo-a-un-subespacio-de- $L_{p}(0,1)$-para-todo- p en-el-rango-de-Banach,-pero-no-existe-un-embedding-lineal-de- $L_{q}(0,1)$-en- $L_{p}(0,1)$-cuando- $q<\min \{2, p\}$ ${ }_{\mathrm{o}}-q>\max \{2, p\}$.- Banach- 1 - conjecturó una-respuesta-positiva-para-el-caso-min $\{2, p\}<$ $q<\max \{2, p\}$.- Kadec-lo-demostró- para- $p<q<2$-en- 47],-mientras-que-Paley-lo-refutó-para- $2-<q<p$ en-65].-

Nuestro- trabajo- está- inspirado- por- un- resultado- de- Naor- 60 - sobre-la-imposibilidad- de-un- embedding- en- la- categoría- de- espacios- métricos- del- espacio- de- Lebesgue- $L_{q}(0,1)$ - en-$L_{p}(0,1)^{-}$-siempre- que- q y $^{-} p$ pertenezcan- al- rango- refutado- por-Paley, $-2-<q<p$.- La- no-existencia-de- una- aplicación-de-espacios- métricos- $L_{q}(0,1)^{-} \hookrightarrow L_{p}(0,1)^{-}$- es- conocida- desde-los-años-setenta- [50]- por-reducción-a-la-teoría-lineal,- que-aprovecha-la-diferenciabilidad--de-aplicaciones-Lipschitz-para-reducir-el-enunciado-métrico-a-uno-lineal.- Sin-embargo,-el- enfoque- propuesto- por-Naor- y^{-}Schechtman- 63 - proporciona-nuevos-resultados-que-no-pueden-ser-obtenidos-a-través-de-la-teoría-lineal.- Consúltese-la-Introducción-en-ese-trabajo-para-una-descripción-más-detallada-del-contexto-y referencias-sobre-la-historia-del-problema-y-conexiones-con-otras-áreas.-

Nuestro-interés-en-el-trabajo-de-Naor- y^{-}Schechtman-se-ve-reforzado- por-el-hecho-de-que-este-depende-fuertemente-del-análisis-armónico-en-el-cubo-de-Hamming.-Sea- Ω_{n} el-hiper-cubo- n-dimensional- $\{-1,1\} \times\{-1,1\} \times \ldots \times\{-1,1\}$,-equipado-con-la-medida-de-contar-normalizada.- Si- $^{-}[n]=-\{1, \ldots, n\}$,- toda-función-admite- una- expansión- de-Fourier-Walsh-[64],-en-otras-palabras,-satisface-la-identidad-

$$
f(\varepsilon)=-\sum_{\mathrm{A} \subseteq[n]} \widehat{f}(\mathrm{~A})-W_{\mathrm{A}}(\varepsilon), \quad \text { donde }-\quad W_{\mathrm{A}}(\varepsilon)=\prod_{j \in A} \varepsilon_{j} .
$$

Dada-una-función-f de-media-cero,-Naor-demostró-en- 60-la-desigualdad X_{p} para caos de Rademacher:- para-todo $p \geq 2 \mathrm{y}-k \in[n]-$

$$
\begin{equation*}
\frac{1^{-}}{\binom{n}{k}} \sum_{\substack{S \subset[n] \\|\mathrm{S}|=k}} \sum_{\mathrm{A} \subset \mathrm{~S}} \underset{f}{ }(\mathrm{~A}) W_{\mathrm{A}}^{p}{ }_{L_{p}\left(\Omega_{n}\right)}^{p} \lesssim_{p} \frac{k}{n} \sum_{j=1}^{n}\left(\partial_{j} f\left\|_{L_{p}\left(\Omega_{n}\right)}^{p}+-\left(\frac{k}{n}\right)^{\frac{p}{2}}\right\| f \|_{L_{p}\left(\Omega_{n}\right)}^{p},\right. \tag{1}
\end{equation*}
$$

donde- $\partial_{j} f(\varepsilon)=-f(\varepsilon)-f\left(\varepsilon-2 \varepsilon_{j} e_{j}\right)$.- Esta-desigualdad-tiene-aplicaciones-extremadamente-novedosas-en- geometría- métrica.- Más- precisamente,-implica-la-forma-cuantitativamente-óptima-de-la-desigualdad métrica X_{p} para- $L_{p}(0,1)-[63]$.-En-consecuencia,-esto-da-un-criterio-puramente-métrico-de-estimar-una-cota-inferior-para-la-distorsión- L_{p} de-un-espacio-métrico-X.- Su-naturaleza- métrica- es- extremadamente- útil- a-la-hora- de-resolver- problemas-no-lineales-acerca-de-la-imposibilidad-de-embeber- L_{q} en- L_{p} para-2-< $q<p$.- Esto-incluye, más-allá de-las-posibilidades-de-la-teoría-lineal-de-inclusiones-de-espacios- L_{p},-la-distorsión-óptima- L_{p} de-parrillas-(no-lineales)-de- ℓ_{q}^{n} o-el-exponente-crítico- L_{p} de-un-snowflake de- L_{q}.

En-conclusión,-la-desigualdad-de-Naor- (1)- y-las-consecuentes-desigualdades- X_{p} métricas-con-exponente-de-escalado-óptimo-son-una-contribución-clave-para-el-programa-de-Ribe,-un esfuerzo-en-identificar-qué-propiedades-de-la-teoría-local-de-espacios-de-Banach-dependen-de-realidad-de-consideraciones-puramente-métricas-y-no-de-la-estructura-lineal-del-espacio.-Este- objetivo- de- investigación- fue- iniciado- tras- 71]- y- explícitamente- formulado- en- [3].-Consultar- 59 - para-un-visión-de-conjunto-de-este-tema.-

En-el-capítulo-1 - presentamosuna-generalización-cuántica-de-la-desigualdad-(1)-que-depende-fuertemente-de- técnicas-de-anátisis- armónico- no- conmutativo.- Aquî́,- las- álgebras- de- von-Neumann-de-grupo-son-el-marco-de-referencia-adecuado-para-nuestro-objetivo.- Dado-un-grupo-discreto- G ,-se-puede-asociar-un-operador-acotado- $\lambda(g)-\in B\left(\ell_{2}(\mathrm{G})\right.$)-a-cada-elemento$g \in G$.- El-álgebra de von Neumann de grupo $\mathcal{L}(\mathrm{G})$-se-define-como-la-clausura-en-la topologíadébil* de-sumas-finitas-de-la-forma-

$$
f=-\sum_{g \in \mathrm{G}} \hat{f}(g)-\lambda(g) .
$$

Cuando-G-es-conmutativo,- $\lambda(g)$-juega-el-papel-de-un-caracter-

$$
\chi_{g}: \widehat{\mathrm{G}} \not(\mathbb{T}=-\{z \in \mathbb{C}:-|z|=1\}
$$

obteniéndose-la-expresión-familiar- $\mathcal{L}(\mathrm{G})-\simeq L_{\infty}(\widehat{\mathrm{G}})_{6}$-donde- $\widehat{\mathrm{G}}$-es-el-dual-de-Pontryagin-de-G-(ver-[19,-74]).-Por-ejemplo,-el-espacio-de-funcione - $^{-2 c o t a d a s-s o b r e-e l-c u b o-d e-H a m m i n g-~} \Omega_{n}$ puede-ser-identificado-con- $\mathcal{L}\left(\mathbb{Z}_{2}^{n}\right)$.- Encontrar-unatversión-adecuada-de-la-desigualdad- (2)-en- $\mathcal{L}(\mathrm{G})$-supone-varias-dificultades.- Por-ejemplo,-un-grupo-discreto-no-suele-estar-provisto-de-una-estructura-diferencial-canónica,-pero-esto-se-puede-resolver-con-una-representación-apropiada-G-en-un-espacio-de-Hilbert,-que-ya-posee-una-estructura-de-este-tipo-40].- Más-concretamente,-un-cociclo ortogonal a la izquierda ($\mathcal{H}, \alpha, \beta$)-en-G-está-dado-por-una-acción-ortogonal- $\alpha: \mathrm{G}-\curvearrowright \mathcal{H}$ sobre-algún-espacio-de-Hilbert-real- \mathcal{H} y-una-aplicación- $\beta: \mathrm{G}-\rightarrow \mathcal{H}$ satisfaciendo-la-relación- $\alpha_{g}(\beta(h))=-\beta(g h)-\beta(g)$.-Estas- y-otras-dificultes-son-estudiadas-a-lo-largo-del-capítulo,-y-la-resolución-de-las-mismas-dan-lugar-a-una-generalización-de- (11).-Entre-los-ejemplos-resultantes,- destacamos-el-productor-directo-de-grupos:- el- espacio-de-Hilbert-del-cociclo-asociado-al producto-será el producto-de-los-espacios-de-Hilbert-asociados-a-cada-componente.- También,-se-han-obtenido-varias-aplicaciones-para-productos-libres-de-grupos,-así-como-una-versión-particular-en-el-toro- \mathbb{T}^{n} y-otros-ejemplos-de-productos-finitos-de-grupos-abelianos-cíclicos-y-grupos-de-Coxeter.-

El-capítulo- 2 contiene-algunas-generalizaciones-de-la-desigualdad métrica X_{p}.- El-resultado-original- de- Naor- ${ }^{-}$- Schechtman- 63]- fue- dado- para- funciones- en - $\Omega_{n} \times \mathbb{Z}_{8 m}^{n}$ con- valores-en- $L_{p}(0,1)$,- por- lo- que- nuestra- primera- contribución- es- estudiar- cómo- reemplazar- este-par- por-otros- grupos $^{-}(\mathrm{H}, \mathrm{G}),-$ donde- H^{-}es- un- grupo-discreto- abeliano- $\mathrm{y}^{-} \mathrm{G}^{-}$- puede- ser-no-abeliano.- El-argumento-se-sigue-para-desigualdades- para-caos-en- H - y - algunas-relaciones-de-compatibilidad-entre-H-y-G.-Aquí,-el-análisis-armónico-aparece-otra-vez-como-la-forma-de-codificar-una-de-estas-condiciones,-y-proporciona-una-noción-de-traslación-en-el-áłgebra de-von-Neumann-de-grupo- $\mathcal{L}(\mathrm{G})$-a-través-de-multiplicadores-semiconmutativos.-

A-lo-largo-de-la-segunda-parte-del-capítulo 2 -obtenemos-que todo-espacio- L_{p} no-conmutativo-satisface-la-desigualdad- X_{p} métrica- para-todo- $p>2$,- dando-lugar- a- resultados- de-no-embedabilidad-para-estos-espacios,-análogos-a-los-clásicos.-

El-capítulo 3-complementa-a-los resultados-obtenidos-en-los-capítulos 1y 2 - En primer-lugar,-se-introduce-una-versión-de-la-desigualdad- (1), proporcionando-un-enfoque-alternativo-a-la-desigualdad- X_{p} métrica-para-espacios- L_{p} no-conmutativos-que-ya-fue-presentado-en-el-capítulo-2.-Por-otro-lado,- estudiamos- una- formulación- en-términos-de-sistemas-spin- de-la-dimension free Pisier's inequality [33,- que- puede-ser-codificada-a-través-de-la-teoría-de-espacios-de-operadores.- Esta-desigualdad-fue-originalmente-enunciada-para-funciones$f: \Omega_{n} \rightarrow \mathbb{X}$ para-todo-espacio-de-Banach-X,- \mathbf{y}-supone-la-solución-de-un-problema-longevo-en-geometría-métrica-de-espacios-de-Banach:-el-tipo-de-Rademacher-coincide-con-el-tipo-de-Enflo.-A pesar-de-que nuestra-generalización-no-ha-dado-lugar-a-ninguna-aplicación todavía,-nos-sugiere-que-sería-interesante-estudiar-si-una-teoría-análoga-podría-ser-desarrollada-en-el-contexto-de-los-sistemas-spin-y-los-espacios-de-operadores.-

La-segunda-parte-de-esta-tesis-está-relacionada-con-la-extensión-de-la-teoría-de-Calderón-Zygmund-al-contexto-de-las-funciones-con-valores-en-matrices.-En-el-contexto-clásico,-dado-un-kernel- $K(x, y)$-definido-en- $\mathbb{R}^{n} \times \mathbb{R}^{n} \backslash\{x=-y\}$,-la-integral-singular-asociada-a- K es-un-operador- T dado-por-la-expresión-

$$
T f(x)=-\iint_{\mathbb{E}_{n}} K(x, y)^{-f}(y)^{-} d y
$$

bajo-ciertas-hipótesis.-Si-además- T está-acotado-en- $L_{2}\left(\mathbb{R}^{n}\right)$ y- K satisface-ciertas-condiciones-de-suavidad,-entonces-decimos-que-T es-un-operador de Calderón-Zygmund.-

Nuestra- contribución- en- el-capítulo-4 está- relacionado-con-la- extensión- de- esta-teoría-al- contexto-de-funciones- con-valores-en-operadores.- Dada- un-átgebra de-von-Neumann\mathcal{M} equipada- con- una- traza- τ,- denotemos- por \mathcal{A} a-la-clausura- en-la- topología- débil- de-operadores-de-las-funciones-esencialmente-acotadas- $f:-\mathbb{R}^{n} \rightarrow \mathcal{M}$,-que-se-pueden-identificar-con-el-producto-tensorial- $L_{\infty}\left(\mathbb{R}^{n}\right) \bar{\otimes} \mathcal{M}$ equipado-con-la-traza-

$$
\varphi(f)=-\iint_{\mathfrak{f}^{n}} \tau(f(x))-d x
$$

La-teoría-de-operadores-de-Calderón-Zygmund-puede-ser-trasladada-a-este-contexto.-Siem-pre-que- $1-<p<\infty$,-la-acotación-de- $L_{p}(\mathcal{A})$-en- $L_{p}(\mathcal{A})$-se-puede-reducir-al-caso-de-funciones-con- valores- en- espacios- de- Banach- que-satisfacen-la- unconditional martingale property (UMD),-como-demostró-Figiel-[18].- Mi-investigación-en-esta-dirección-ha-tenido-lugar-en-el-estudio-de-un-análogo-semiconmutativo-del-espacio-de-Hardy- $H_{1}\left(\mathbb{R}^{n}\right)$-y-la-acotación-de-operadores-de-Calderón-Zygmund-de-ese-espacio-en- $L_{1}(\mathcal{A})$.-

La-forma-semiconmutativa-del-espacio-de-Hardy-fue-examinada-en-profundidad-en-la-tesis-doctoral-de-Mei-[54]-a-través-de-algunas-caracterizaciones-basadas-en-la-integral-de-Lusin-y-la- g-función- de- Littlewood-Paley,- un- enfoque- análogo- a- 17 - en- el- contexto- clásico.-

Debido-a-fenómenos-no-conmutativos,-el-espacio-de-Hardy-semiconmutativo- $H_{1}(\mathcal{A})$-debe-ser-considerado-como-la-suma-de-un-espacio-columna-y-un-espacio-fila,-es-decir,-

$$
H_{1}(\mathcal{A})=-H_{1}^{c}(\mathcal{A})+-H_{1}^{r}(\mathcal{A})
$$

El-trabajo-en-este-capítulo-se-concentra-en-estudiar-en-detalle-una-descomposición-atómica-para- $H_{1}^{c}(\mathcal{A})$-a-través-de-lo-que-llamamos-c-átomos.-Una-función- $a \in L_{1}(\mathcal{A})$-es-un-c-átomo si-admite-una-descomposición- $a=-b h$ para-cierto- h en-la-bola-unidad-de- $L_{2}(\mathcal{M})$ - y $^{-c}$ cierta-función-b en- $L_{2}(\mathcal{A})$-satisfaciendo-

$$
\iint_{\mathbb{R}^{n}} b=0, \quad \operatorname{supp}_{\mathbb{R}^{n}}(b) \subseteq B, \quad\left(\int\left(\|b(x)\|_{L_{2}(\mathcal{M})}^{2} d x\right)^{1 / 2} \leq \frac{1-}{\sqrt{|B|}}\right.
$$

para-alguna-bola- B.- Entonces, $-H_{1}^{c}(\mathcal{A})$-es-el-espacio-de-Banach-

$$
\left\{\sum_{i}\left(\chi_{i} a_{i}:\left(\lambda_{i}\right)_{i} \in \ell_{1},\left(a_{i}\right)_{i} c-\text { atoms }\right\}(\right.
$$

equipado-con-la-norma-

$$
\|f\|_{H_{1}^{c}}=-\inf -\left\{\sum_{i}\left|\lambda_{i}\right|:-f=-\sum_{i} \not_{i} a_{i},\left(\lambda_{i}\right)_{i} \in \ell_{1},\left(a_{i}\right)_{i} c-\text { atoms }\right\} .
$$

El-capítulo-está-organizado-como-sigue.- Primero,-se- presenta-una-descripción-en-detalle-de-los-espacios-BMO columna/fila-utilizando-espacios- L_{p} no-conmutativos-con-valores-en-espacios-de-Hilbert.- Luego,-se-justifica-la-dualidad- $H_{1}^{c}(\mathcal{A})^{*}=-\mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$-de-forma-que-se-obtiene-

$$
H_{1}(\mathcal{A})^{*}=-\mathrm{BMO}(\mathbb{R}, \mathcal{M})=-\mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M}) \curvearrowleft \cap \mathrm{BMO}_{c}(\mathbb{R}, \mathcal{M}) .
$$

Para-lograr-esto,-nos-basamos-en-la-construcción-del-espacio-de-Hardy- H_{1} con-valores-en$L_{2}(\mathcal{M})$ - (ver- Apéndice- A)- y - en- otras- propiedades- del- espacio- $\mathrm{BMO}\left(\mathbb{R}^{n}\right)$ - que- pueden- ser-traducidas-al-contexto-semiconmutativo-(ver-Sección-4.3).

La-descomposición-atómica-de- $H_{1}^{c}(\mathcal{A})$-es-la-clave-que-nos-permite-dar-una-nueva-prueba-de-la-acotación-de-operadores-de-Calderón-Zygmund- de- $H_{1}^{c}(\mathcal{A})$-en- $L_{1}(\mathcal{A})$ - con-kernel- escalar$K(x, y)$.- Nuestra-estrategia-está- inspirada- por-el-enfoque-seguido- por-Meyer- y^{-}Coifman-[57].- Primero,-el-kernel- K asociado-al-operador- T es-aproximado-explícitamente-por-una-sucesión-de-kernels-uniformemente-acotados- $\left(K_{m}\right)_{m=1}^{\infty}$.- Entonces,-si- T_{m} es-el-operador-de Calderón-Zygmund-asociado-a- K_{m},-se-tiene-que-

$$
\left\|T_{m}(a)\right\|_{L_{1}(\mathcal{M})} \leq C
$$

para-todo- $m \geq 1$,-cualquier- c-átomo- a y $^{-}$una-constante- universal- C.- Cabe-recalcar-que T_{m} está-bien-definido-sobre- $c-$ átomos, independientemente-de-la-descomposición- $a=-b h$ para-cada-c-átomo- a.- Puesto- que- K_{m} está- acotado,- la- extensión- a- todo- el- espacio- de-Hardy- $H_{1}^{c}(\mathcal{A})$-se-sigue-trivialmente,- y-por-aproximación,-se-sigue-que- T está-acotado- de-
$H_{1}^{c}(\mathcal{A})$ - en- $L_{1}(\mathcal{A})$.- Este-argumento-se-extiende-a-un-nuevo-resultado- para-operadores-de-Calderón-Zygmund-asociados-a-kernels- K con-valores-en-un-álgebra-de-von-Neumann-M.-

La-mayoría-de-resultados-de-esta-tesis-están-contenidos-en-los-siguientes-artículos-de-in-vestigación.- En-concreto,-los-capítulos-1/y-2/se-corresponden-con-los-dos-primeros-papers,-mientras-que-el-tercer-artículo-ha-dado-lugar-al-capítulo-4.

- A.I.-Cano-Mármol,-J.M.-Conde-Alonso,-and-J.-Parcet.- Trigonometric-chaos-and- X_{p} inequalities-I:-Balanced-Fourier-truncations-over-discrete-groups.- Submitted.-
- A.I.-Cano-Mármol,- J.M.-Conde-Alonso,-and-J.-Parcet.- Trigonometric-chaos-and-X ${ }_{p}$ inequalities-II:- X_{p} inequalities-with-sharp-scaling-parameter.- Submitted.-
- A.I.-Cano-Mármol,-É.-Ricard.- Calderón-Zygmund theory with noncommuting-kernelsvia $-H_{1}$ - Preprint. -

A-pesar-de-que-no-incluiremos-un-capítulo-introduciendo-los-conceptos-propios-del-análisis-armónico-no-conmutativo-necesarios-para-entender-los-resultados-de-esta-tesis,-estas-her-ramientas- serán-introducidas- conforme- sea- preciso.- De- esto- modo,- la- longitud- de- este-
 posible.

Abstract

The-contents-of-this-dissertation-can-be-encompassed-within-the-area-of-noncommutative-harmonic-analysis.- A-central-feature- of-this-research-field-is-the-substitution- of-functions-defined-over-measure-spaces-by-operators-acting-on-Hilbert-spaces.- More-clearly,-let- (Ω, μ) -be- a-semifinite- measure-space- and- consider- the- associated-Lebesgue- spaces- $L_{p}(\Omega, \mu)$ - for-$0^{-}<p \leq \infty$.- Then, $L_{2}(\Omega, \mu)$ - is- a- complex- Hilbert- space- with- inner- product- given- by-the- integral,- while- the-space- of- essentially- bounded- measurable-functions- $L_{\infty}(\Omega, \mu)$-can-be-interpreted-as- a^{-}subalgebra- of- bounded- operators- on- $L_{2}(\Omega, \mu)$.- In- other- words,- any$f \in L_{\infty}(\Omega, \mu)$-induces-a-bounded-linear-map-

$$
\begin{array}{cc}
T_{f}:-L_{2}(\Omega, \mu)^{-} & \longrightarrow \\
g & \longmapsto \\
L_{2}(\Omega, \mu)- \\
& f g
\end{array}
$$

with-norm- $\left\|T_{f}\right\|=-\|f\|_{\infty}$ and-the-correspondence- $f \mapsto T_{f}$ is-a-bijection.- Let- $\mathcal{H}=-L_{2}(\Omega, \mu)-$ and-let- $B(\mathcal{H})$-be the-algebra-of-bounded-linear-operators-on $-\mathcal{H}$.- Then the family of-operatorsT_{f} is-a-von-Neumann-algebra,-that-is,-a-C*-subalgebra-of- $B(\mathcal{H})$-which-contains-the-identity-and-is-closed-with-respect-to-the-weak-operator-topology-of- $B(\mathcal{H})$.- When-a-von-Neumann-algebra- \mathcal{M} is- equipped- with- a - trace τ,- a- linear- functional- which- plays- the- role- of the-"noncommutative-integral", the pair-($\mathcal{M}, \tau)$ is-a-noncommutative measure space.- Moreover,-this-leads-to-the-definition,-via-spectral-functional-calculus-and-a-completion-argument,-of-the-noncommutative L_{p} spaces $L_{p}(\mathcal{M}, \tau)$-equipped-with-the-norms-

$$
\|x\|_{p}=\tau\left(|x|^{p}\right)^{1 / p}
$$

The-example- $\mathcal{M}=-L_{\infty}(\Omega, \mu)$-can-be-provided-with-the-trace-given-by-the-integral,-that-is,-

$$
\tau(f)=-\int(f d \mu
$$

so-that-classical- L_{p} spaces-are-examples- of-noncommutative- L_{p} spaces.- Several-examples-of-von-Neumann-algebras-will-appear-through-this-thesis-as-the-frameworks-where-the-two-main-problems-of-this-work-have-been-studied.-

The-first-part-of-this-dissertation-is-constituted-by-chapters-1-to-3.- The-meeting-point-of-the-results-included-there-is-the-applicability-of- the-theory-of-functions- on-the-Hamming-cube- $\{-1,1\}^{n}$ to-the-geometry-of-Banach-spaces-and-Banach-space-embedding-theory.-

In functional-analysis, it is-a fundamental-question to-know-when-a-given space is isomorphic-to- a-linear-subspace- of- another.- For-the-important- example- of- $L_{p}(0,1)$ - and- $L_{q}(0,1)$ - the-landscape- is- well- known.- $L_{2}(0,1)$ - is- isomorphic- to a- subspace- of $L_{p}(0,1)$ - for- all- p in-the- Banach- range, - but- there- is- no- linear- embedding- from- $L_{q}(0,1)$ - to- $L_{p}(0,1)$ - if- either$q<\min \{2, p\}$ or $-q>\max \{2, p\}$. Banach-conjectured-a-positive-answer-for-min $\{2, p\}<q<$ $\max \{2, p\}$.- Kadec-proved-it-for- $p<q<2$-in-47],-while-Paley-disproved-it-for- $2-<q<p$ in65].

Our-work- finds-its-inspiration-in-a-result-by-Naor- 60 -about-the-nonembeddability-as-a-metric-space-of- the-Lebesgue-space- $L_{q}(0,1)$-into- $L_{p}(0,1)$ - whenever- q and- p belong-to- the-range- disproved- by-Paley,- $2^{-}<q<p$.- The-non-existence- of- such-a-map- between- metric-spaces- $L_{q}(0,1)-\hookrightarrow L_{p}(0,1)$-has-been-known-since the-seventies- 50 -by reduction to the-linear-theory,-since-it-goes-through-differentiability--of-Lipschitz-maps--to-reduce-the-metric-statement-to-a-linear-one.- However,-the-approach-proposed-by-Naor-and-Schechtman-63-provides-new-results-that-cannot-be-attained-through- the-linear-theory.- One-can-consult-the- Introduction- in- that- work- for- ${ }^{-}$- more- detailed- context- and- references- regarding- the-history-of-the-problem-and-its-connections-with-other-areas.-

Our-interest-in-the-work-by-Naor-and-Schechtman-is-reinforced-by-the-fact-that-it-strongly-relies-on-harmonic-analysis-on-the-Hamming-cube.- Let- Ω_{n} be-the- n-hypercube- $\{-1,1\} \times$ $\{-1,1\} \times \cdots \times\{-1,1\}$ equipped with its normalized-counting measure.-If-[n]:=-\{1,2, $, n, n\},-$ every-function- $f: \Omega_{n} \rightarrow \mathbb{C}$ admits-a-Fourier-Walsh-expansion-[64],-in-other-words,-it-satis-fies-the-identity-

$$
f(\varepsilon)=-\sum_{\mathrm{A} \subseteq[n]} \widehat{f}(\mathrm{~A})-W_{\mathrm{A}}(\varepsilon), \quad \text { where }-\quad W_{\mathrm{A}}(\varepsilon)=-\prod_{j \in A} \varepsilon_{j} .
$$

Given-a-mean-zero- f,- Naor- proved- in- 60 - the- X_{p} inequality for Rademacher chaos:- for-each- $p \geq 2$-and $-k \in[n]$ -

$$
\begin{equation*}
\frac{1}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subset[n] \\ \mathrm{S} \mid=k}} \sum_{\mathrm{A} \subset \mathrm{~S}} \hat{f}(\mathrm{~A}) W_{\mathrm{A}}{ }_{L_{p}\left(\Omega_{n}\right)}^{p} \lesssim_{p} \frac{k}{n} \sum_{j=1}^{n}\left\|\partial_{j} f\right\|_{L_{p}\left(\Omega_{n}\right)}^{p}+-\left(\frac{k}{n}\right)^{\frac{p}{2}}\|f\|_{L_{p}\left(\Omega_{n}\right)}^{p}, \tag{2}
\end{equation*}
$$

where- $\partial_{j} f(\varepsilon)=-f(\varepsilon)--f\left(\varepsilon-2 \varepsilon_{j} e_{j}\right)$.- This-inequality-has- groundbreaking-applications-in-metric- geometry.- More- precisely,- it- implies- the- quantitatively- optimal- form- of the- so-called-metric X_{p} inequality for $-L_{p}(0,1)$ - 63$]$.- In-turn,-this-gives-a-purely-metric-criterion-to-estimate-the- L_{p}-distortion-of-a-metric-space-X-from-below.- Its-metric-nature-is-extremely-useful-in-solving-nonlinear-problems-around-the-nonembedability-of- L_{q} into- L_{p} for-2-<q< p.- Thisincludes, beyond the-scope-of-linear $-L_{p}$-embedding theory, the-optimal- L_{p}-distortion-of-(nonlinear)-grids-in- ℓ_{q}^{n} or-the-critical- L_{p} snowflake-exponent-of- L_{q}. In-conclusion,-Naor's differential-inequality-(2)-and-subsequent- X_{p} inequalities-with-sharp-scaling-parameter-are-a-key- contribution- to- the-Ribe- program,- an- effort- to- identify- which- properties- from- the-local-theory-of-Banach-spaces-ultimately-rely-on-purely-metric-considerations-and-not-on-the- whole-strength- of the-linear-structure- of- the-space.- This- research-goal- was- initiated-after-[71]-and-explicitly-formulated-in-[3]-See-[59]-for-an-overview-on-this-topic.-

In- chapter-1. we- present- a- quantum- generalization- of- the-inequality- (2)- which- strongly-relies- on- noncommutative-Fourier-analysis.- Here,- group- von-Neumann- algebras- are-the-right-framework-for-our-purpose.- Given-a-discrete-group-G,-one-can-associate-a-boundedoperator $-\lambda(g)-\in B\left(\ell_{2}(\mathrm{G})\right.$)-to-each- $g \in \mathrm{G}$.- Then, -the-group von Neumann algebra $\mathcal{L}(\mathrm{G})$-is-defined-as- the- ${ }^{*}$-closure-of -finite-sums-of-the-form-

$$
f=-\sum_{g \in G} \hat{f}(g)-\lambda(g) .
$$

Whenever- ${ }^{-}$-is-commutative,- $\lambda(g)$-plays-the-role-of-a-character-

$$
\chi_{g}: \widehat{\mathrm{G}} \longrightarrow \mathbb{T}=-\{z \in \mathbb{C}:-|z|=1\}
$$

and-one-gets-the-familiar-expression- $\mathcal{L}(\mathrm{G})-\simeq L_{\infty}(\widehat{\mathrm{G}})_{6}$ where- $\widehat{\mathrm{G}}$-is-the-Pontryagin-dual- of-G-(see- [19, -74]).- For-instance,- the-space- of-bounded functions- on-the-Hamming-cube- Ω_{n} can-be-identified-with- $\mathcal{L}\left(\mathbb{Z}_{2}^{n}\right)$.-Finding-a-suitable-version-of-the-inequality- (2)-on- $\mathcal{L}(G)$-for-an-arbitrary-group-G-encounters-several-difficulties.- For-instance,-general-discrete-groups-fail-to-admit-canonical-differential-structures,-but-this-can-be-solved-with-an-appropriate-representation-of-Ginto-a-Hilbert-space,-which-already-carries-such-a-structure-40].- Indeed,-an- orthogonal-left cocycle $(\mathcal{H}, \alpha, \beta)$ - on- G - is- given-by-an-orthogonal-action- α : G- $\curvearrowright \mathcal{H}$ into-some- \mathbb{R}-Hilbert-space- \mathcal{H} and-a-map- $\beta: \mathrm{G}-\rightarrow \mathcal{H}$ satisfying-the-relation- $\alpha_{g}(\beta(h))^{-}=-$ $\beta(g h)-\beta(g)$.- These-and-other-difficulties-are-studied-along this-chapter,-and their-solutions-give-rise-to-a-wide-generalization- of- (22).-Among-the-resulting-examples,-we-highlight-the-direct- product of groups:- the- cocycle-Hilbert-space- of the- product- is- the- product- of the-Hilbert-space-corresponding to-each-component.- Also,-several-applications for free productsof groups-have-been-obtained,- as-well- as-a-particular-version-on-the-torus- \mathbb{T}^{n} and-other-examples-on-finite-products-of-abelian-cyclic-groups-and-Coxeter-groups.-

Chapter 2 contains-several-generalizations-of-the-metric X_{p} inequality.- The-original-result-by-Naor-and-Schechtman- 63$]$ was-given for functions-on- $\Omega_{n} \times \mathbb{Z}_{8 m}^{n}$ with-values in- $L_{p}(0,1)$,-so-our-first-contribution-is-studying-how-to-replace-this-pair-by-other-pairs-of-groups-(H, G),-where- H - is- a^{-}discrete- abelian- group-but- G - is- allowed- to- be- nonabelian.- The- argument follows- from- X_{p} inequalities- for- chaos- in- H^{-}and- some- compatibility- relations- between- H^{-} and- G.- At-this-point,-harmonic-analysis-appears-again-as-the-way-to-encode-one-of-this-conditions,- while- providing- a- notion- of- translations-in- the- group- von- Neumann- algebra-$\mathcal{L}(\mathrm{G})$-via-semicommutative-multipliers.-

Along-the-second-part-of-chapter 2 -we-obtain-that-any-noncommutative- L_{p} space-satisfies-the-metric $-\mathrm{X}_{p}$ inequality-for-each- $p>2$,-yielding-nonembeddability-results-for-these-spaces-analogous-to-the-classical-ones.-

Chapter 3 complements the-results-obtained-in-chapter 1 and 2 - First,-a-version-of-inequal-ity-(2)-for-spin-systems-is-introduced,-providing-an-alternative-approach-for-the-metric- X_{p} inequality for $-L_{p}(\mathcal{M})$-which-was-presented-in-chapter-2.-Second,-we-study-a-formulation-in-terms-of-spin-systems-of-the-dimension-free-Pisier's-inequality-[33],-which-can-be-encoded-through-the-theory-of-operator-spaces.- This-inequality-was-originally-stated-for-functions-
$f: \Omega_{n} \rightarrow \mathbb{X}$ for-any-Banach-space- \mathbb{X},-and-it-supposes-the-solution-to-a-long-standing-prob-lem-in-the-metric- geometry-of-Banach-spaces:- Rademacher-type-and-Enflo-type-coincide.-Although-our-generalization-has-not-yielded-any-application-yet,-it-suggests-that-it-would-be-interesting-to-study-whether-an-analogous-theory-could-be-developed-in-the-context-of-spin-systems-and-operator-spaces.-

The- second- part- of this- thesis- is- related- to- the- extension- of- Calderón-Zygmund- theory-to- the-context- of-matrix-valued-functions.- In-the-classical-setting, - given-a-kernel- $K(x, y)$ -defined- on- $\mathbb{R}^{n} \times \mathbb{R}^{n} \backslash\{x=-y\}$,- the-singular-integral- associated- to- K is- an- operator- T admitting- the-expression-

$$
T f(x)=-\iint_{\mathbb{E}_{n}^{n}} K(x, y)^{-f}(y)^{-} d y
$$

under-some-suitable-hypotheses.- If,-in-addition, $-T$ is-bounded-on- $L_{2}\left(\mathbb{R}^{n}\right)$-and- K satisfies-certain-smoothness-conditions,-then- T is-classified-as-a-Calderón-Zygmund operator.-

Our-contribution-in-chapter4is-concerned-with-the-extension-of-this-theory-to-the-context of-operator-valued-functions.- Given-a-von-Neumann-algebra- \mathcal{M} equipped-with-a-trace- τ,-denote-by- \mathcal{A} the-weak-operator-closure- of- essentially-bounded-functions- $f:-\mathbb{R}^{n} \rightarrow \mathcal{M}$,-which-can-be-identified-as-the-tensor-product- $L_{\infty}\left(\mathbb{R}^{n}\right) \bar{\otimes} \mathcal{M}$ equipped-with-the-trace-

$$
\varphi(f)=-\iint_{\mathfrak{e}^{n}} \tau(f(x))-d x
$$

The- theory- of- Calderón-Zygmund- operators- can- also- be- translated- to- this- framework.Whenever $-1-<p<\infty$, the-boundedness-from- $L_{p}(\mathcal{A})$-to- $L_{p}(\mathcal{A})$-can-be-reduced to-the-case-of-functions- with-values-on-Banach-spaces-satisfying-the- unconditional- martingale- property-(UMD),-as-showed-by-Figiel- [18].- My-research-along-this-direction-has-taken-place-in-the-study-of- the-semicommutative-analogue-of-the-Hardy-space- $H_{1}\left(\mathbb{R}^{n}\right)$-and-the-boundedness-of-Calderón-Zygmund-operators-from-that-space-into- $L_{1}(\mathcal{A})$.-

The-semicommutative-form-of-the-Hardy-space-was-deeply-examined-in-Mei's-Ph.D.-thesis-[54]-via-characterizations-relying-on-Lusin's-integral-and-the-Littlewood-Paley-g-function,-an- approach- analogous- to- the- one- 17 - for- the-classical- setting.- Due- to- well-understoodnoncommutative phenomena, the-semicommutative-Hardy-space- $H_{1}(\mathcal{A})$-must-be-considered-as-the-sum-of-certain-column-and-row-spaces,-that-is,-

$$
H_{1}(\mathcal{A})=-H_{1}^{c}(\mathcal{A})+-H_{1}^{r}(\mathcal{A}) .
$$

The-work-of-this-chapter-focuses-on-studying-in-detail-an-atomic-decomposition-for- $H_{1}^{c}(\mathcal{A})$ -via- what- we-call- c - atoms.- A- function- $a \in L_{1}(\mathcal{A})$ - is-a- c-atom whenever- it-admits- a-de-composition- $a=-b h$ for-some $-h$ in-the-unit-ball- of- $L_{2}(\mathcal{M})$ - and-some-function- b in- $L_{2}(\mathcal{A})^{-}$ satisfying-

$$
\iint_{\mathbb{R}^{n}} b=0, \quad \operatorname{supp}_{\mathbb{R}^{n}}(b)-\subseteq B, \quad\left(\int\left(\|b(x)\|_{L_{2}(\mathcal{M})}^{2} d x\right)^{1 / 2} \leq \frac{1^{-}}{\sqrt{|B|}}\right.
$$

for-some-ball- B.- Then, $-H_{1}^{c}(\mathcal{A})$-is-the-Banach-space-

$$
\left\{\sum_{i} \not_{i} a_{i}:\left(\lambda_{i}\right)_{i} \in \ell_{1},\left(a_{i}\right)_{i} \text { c-- atoms }\right\}
$$

equipped-with - the norm-

$$
\|f\|_{H_{1}^{c}}=\inf -\left\{\sum_{i}\left|\lambda_{i}\right|:-f=\sum_{i} \not_{i} a_{i},\left(\lambda_{i}\right)_{i} \in \ell_{1},\left(a_{i}\right)_{i} \mathrm{c}^{-}-\text {atoms }\right\} \cdot(
$$

The-chapter-is-organized-as-follows:- first,-an-in-depth-description-of-the-column/row-BMO spaces is- introduced-using-Hilbert-valued-noncommutative- L_{p} spaces.- Then,- the-duality-identity- $H_{1}^{c}(\mathcal{A})^{*}=-\mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$-is-fully-justified-so-there-holds-

$$
H_{1}(\mathcal{A})^{*}=-\mathrm{BMO}(\mathbb{R}, \mathcal{M})=-\mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M}) \curvearrowleft \mathrm{BMO}_{c}(\mathbb{R}, \mathcal{M}) .
$$

In- order- to- do- that,- we- rely- on- the- construction- of- the- $L_{2}(\mathcal{M})$ - valued- H_{1} space- (seeAppendix $\left[\right.$ A ,-and-some-properties-of-the- $\mathrm{BMO}\left(\mathbb{R}^{n}\right)$-space-which-can-be-translated-to-the-semicommutative-setting-(see-Section-4.3).-

The-atomic-decomposition-of- $H_{1}^{c}(\mathcal{A})$-is-the-key-point-which-allows-us-to-give-a-new- proof-for-the-boundedness-of-Calderón-Zygmund-operators-with-scalar-valued-kernel-from- $H_{1}^{c}(\mathcal{A})$ -into- $L_{1}(\mathcal{A})$.- Our-strategy-is-inspired-by-the-approach-followed-by-Meyer-and-Coifman-[57].-First,-the-kernel- K associated-to-the-operator- T is-explicitly-approximated-by-a-sequence-of- uniformly-bounded-kernels- $\left(K_{m}\right)_{m=1}^{\infty}$ - $^{-}$Then,- if- T_{m} is- a- Calderón-Zygmund- operator-associated-to- K_{m}, -there-holds-

$$
\left\|T_{m}(a)\right\|_{L_{1}(\mathcal{M})} \leq C
$$

for-any- $m \geq 1$,-any- $c-$ atom- a and-some-universal-constant- C. Recall that- T_{m} is-well-defined-on-atoms,-regardless-the-decomposition- $a=-b h$ for-the $-c-$ atom- a.- Since $-K_{m}$ is-bounded,-the-extension-to- the-whole-Hardy-space- $H_{1}^{c}(\mathcal{A})$-follows- trivially,- and-by-approximation,-it-follows-that- T is-bounded from $-H_{1}^{c}(\mathcal{A})$-to- $L_{1}(\mathcal{A})$.- This-argument-extends-to-a-result,-which-is-new,- for-Calderón-Zygmund- operators-associated-to-kernels- K with-values-in- the-von-Neumann-algebra-M.-

Most- of- the- results- contained- in- this- thesis- are- contained- in- the- following- papers.- In-particular,-chapters 1 and 2 correspond-to-the-first-two-papers,-while-the-third-publication-has-given-rise-to-chapter 4 -

- A.I.-Cano-Mármol,- J.M.-Conde-Alonso,-and-J.-Parcet.- Trigonometric-chaos-and- X ${ }_{p}$ inequalities-I:-Balanced-Fourier-truncations-over-discrete-groups.- Submitted.-
- A.I.-Cano-Mármol,-J.M.-Conde-Alonso,-and-J.-Parcet.- Trigonometric-chaos-and- X_{p} inequalities-II:- X_{p} inequalities-with-sharp-scaling-parameter.- Submitted.-
- A.I.-Cano-Mármol,-É.-Ricard.-Calderón-Zygmund theory withnoncommuting-kernelsvia $-H_{1}$ - Preprint.-

Although-we-have-chosen-not-to-include-a-chapter-introducing-the-concepts-from-noncom-mutative- harmonic-analysis-required- to- understand- the-results- in- this- thesis,- these-tools-will- be- presented-as- they-become-necessary.- In- this-manner,- the- extension- of- this- work-remains-within-reasonable-length-limits,-and-it-is-still-as-self-contained-as-possible.-

Chapter 1

Trigonometric chaos and X_{p} inequalities

Let $-\Omega_{n}$ be-the $-n$-hypercube $-\{-1,1\} \times\{-1,1\} \times \cdots \times\{-1,1\}$ equipped-with-its-normalized-counting-measure.- If- $[n]$ - $:=-\{1,2, \ldots, n\}$,- every-function- $f: \Omega_{n} \rightarrow \mathbb{C}$ admits-a-Fourier-expansion-in-terms of Walsh characters

$$
W_{\mathrm{A}}(\varepsilon)=\prod_{j \in A} \ell_{j} \text { for-any }-\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{-\in} \Omega_{n}
$$

which-can-be-understood-as-A-products-of-Rademacher-coordinates- ε_{j} for-any-A $\subseteq[n]$ - $[64]$.-More-clearly,-there-holds-

$$
f(\varepsilon)=-\sum_{\mathrm{A} \subseteq[n]}\left(\widehat{f}(\mathrm{~A})-W_{\mathrm{A}}(\varepsilon)-\right.
$$

for-some-complex-coefficients- $\widehat{f}(A)$.- Given-a-mean-zero- f,-Naor-proved-in- 60 - the-followinginequality for each $-p \geq 2$-and $-k \in[n]-$

$$
\left(\mathrm{N}_{p}\right)^{-} \quad \frac{1-}{\binom{n}{k}} \sum_{\substack{S \subseteq[n] \\|S|=k}} \sum_{\mathrm{A} \subseteq \mathrm{~S}}\left(\hat{f}(\mathrm{~A}) W_{\mathrm{A}}{ }_{L_{p}\left(\Omega_{n}\right)}^{p} \lesssim_{p} \frac{k}{n} \sum_{j=1}^{n}\left\|\partial_{j} f\right\|_{L_{p}\left(\Omega_{n}\right)}^{p}+\left(\frac{k}{n}\right)^{\frac{p}{2}}\|f\|_{L_{p}\left(\Omega_{n}\right)}^{p} .\right.
$$

The-above-S-truncations-of-the-Walsh-expansion-of- f are-conditional expectations denoted-by- $\mathrm{E}_{[n \backslash \backslash \mathrm{~S}} f$,- while- $\partial_{j} f$ stands-for-the- j-th-directional (discrete) derivative of $-f$,-given- by$\varepsilon \mapsto f(\varepsilon)-f\left(\varepsilon-2 \varepsilon_{j} e_{j}\right)$.-

Naor's-inequality- $\left(\overline{N_{p}}\right)$-for-functions-with-a-linear-Fourier-Walsh-expansion-becomes-a-form-of-Rosenthal- inequality-for-symmetrically-exchangeable-random-variables- 34, ,22, ,35, ,73].-More-precisely,-let- Π_{k} be-the-space-of-sets $S \subseteq[n]$-with $-|S|=-k$ equipped-with-its-normalized-
counting-measure-and-define- $\Sigma_{n, k}=\Omega_{n} \otimes \Pi_{k}$.- Then,-if- $\widehat{f}(\mathrm{~A})-=-0^{-}$when- $|\mathrm{A}| \neq 1$,-the-left-hand-side-of- $\left(\mathrm{N}_{p}\right)^{-}$-becomes-

$$
\sum_{j=1}^{n} \hat{(}(\{j\}) \sigma_{j} l_{L_{p}\left(\Sigma_{n, k}\right)}^{p} \quad \text { with- } \sigma_{j}(\varepsilon, \mathrm{~S})=-\varepsilon_{j} \otimes \delta_{j \in \mathrm{~S}}
$$

and-the-linear-model-for-Naor's-inequality-follows-from-34-

$$
\sum_{j=1}^{n} \widehat{(}(\{j\}) \sigma_{j} L_{L_{p}\left(\Sigma_{n, k}\right)} \asymp_{p}\left(\frac{k}{n} \sum_{j=1}^{n}|\widehat{f}(\{j\})|^{p}\right)^{\frac{1}{p}}+-\left(\frac{k}{n} \sum_{j=1}^{n}|\widehat{f}(\{j\})|^{2}\right)^{\frac{1}{2}} .
$$

Its-general-form- $\left(N_{p}\right)$-can-be-regarded-as-an-extension-for-Rademacher-chaos.- Our-primary-goal- in- this-chapter-is-to- produce-similar-inequalities-when-we-replace-the-hypercube-by-other-(nonnecessarily-abelian)-discrete-groups.- Fourier-series-with-frequencies-on-a-given-discrete- group- - - must- be- written- in- terms- of- its- left- regular- representation- $\lambda: G-\rightarrow$ $\mathcal{B}\left(\ell_{2}(\mathrm{G})\right)$.- The-unitaries- $\lambda(\mathrm{g})$-replace-Walsh-characters-and-we-work-with-operators-of-the-form-

$$
f=-\sum_{g \in \mathrm{G}} \hat{f}(g) \lambda(g) .
$$

The-"quantum" -probability-space-where-we-place-them-is-the-group-von-Neumann-algebra-$\mathcal{L}(\mathrm{G})$.- Understanding-how- to-replace-Rademacher-chaos- by-some-sort- of- "trigonometricchaos" - has- to- do- with-identifying- elementary- generating- families.- Our- construction- is-somehow-delicate-and-we-start-with-a-model-case-which-originally-motivated-us.-

Let- $\mathbb{F}_{n}=-\mathbb{Z} * \mathbb{Z} * \cdots * \mathbb{Z}$ be-the-free-group-with- n generators- $g_{1}, g_{2}, \ldots, g_{n}$.- The-unitaries- $\lambda\left(g_{j}\right)$ -are-an-archetype-of-Voiculescu's-free-random-variables,-which-play-the-role-of-Rademacher-variables-above.- The-tensor- products- $\zeta_{j}(\mathrm{~S})=-\lambda\left(g_{j}\right)-\otimes \delta_{j \in \mathrm{~S}}$ in- $\Sigma_{n, k}^{\prime}=-\mathcal{L}\left(\mathbb{F}_{n}\right)-\otimes \Pi_{k}$ satisfy the-inequality-

$$
\sum_{j=1}^{n} \widehat{\left(g_{j}\right) \zeta_{j}}{L_{p}\left(\Sigma_{n, k}^{\prime}\right)}^{\asymp_{p}\left(\frac{k}{n} \sum_{j=1}^{n}\left|\widehat{f}\left(g_{j}\right)\right|^{p}\right)^{\frac{1}{p}}+-\left(\frac{k}{n} \sum_{j=1}^{n}\left(\left.\widehat{f}\left(g_{j}\right)\right|^{2}\right)^{\frac{1}{2}} ~ . ~\right.}
$$

The-desired-free-form-of-Naor's-inequality-looks-as-follows-

Here- \mathbb{F}_{S} denotes-the-free-subgroup-with-generators-in-S and-

$$
\partial_{j} f=2 \pi i\left(\sum_{w \geq g_{j}}\left(\hat{f}(w) \lambda(w)+\sum_{w \geq g_{j}^{-1}} \widehat{f}(w) \lambda(w)\right) \cdot(\right.
$$

where- $w \geq g_{j}$ is- used- to- pick- those- words-starting- with- the-letter- g_{j} when- written- in-reduced-form.- Let-us-briefly-comment-on-the-two-inequalities-above.- The-first-one-follows-
from-the-noncommutative-Burkholder/Rosenthal-inequality- 45, 46].- On-the-other-hand,-the-second-inequality-reduces-to-the-first-one-when- f lives-in-the-linear-span-of- $\lambda\left(g_{j}\right)$'s-as-a-consequence-of-the-free-Khintchine-inequality-[28].-It-is-therefore-an-extension-of-the-linear-model-for-free-chaos.- A-look-at-Naor's-original-inequality-shows-that-both-group-elements-and-collections-of-generators-(respectively-denoted-by-A and-S there)-become-subsets-of-[$n]$.-This-curious-coincidence-in-the-hypercube-must-be-decoupled-for-other-discrete-groups-and-our-inner-sum-in-the-left-hand-side-is-taken-over-those-words- w with-letters-living-in-free-coordinates-located-in-S.- On-the-other-hand,-our-choice-for- $\partial_{j} f$ comes-from- 40 - and-will-be-properly-justified-in-due-time.- It-is-worth-mentioning-that-some-nonlinear-extensionsof the-free-Rosenthal-inequality-where-investigated-in-[44]-for-free-chaos,-but-none-of-them-include-a-free-form-of-Naor's-inequality-along-the-lines-suggested-above.-

The-above-reasoning-settles-a-free-model-for-Naor's-inequality-and-illustrates-how-trigono-metric- chaos- fits- in- for- free- groups.- Answering- these- questions- amounts- to- considering-Fourier-truncations-and-somehow-related-differential-operators-over-discrete-groups.- Other-than-lattices- of-Lie-groups,-discrete-groups-fail-to-admit-canonical-differential-structures.-This-difficulty was successfully-solved-in-[39, 40] with-affine-representations.- More-precisely,-
 some- \mathbb{R}-Hilbert-space-together-with-a-map- $\beta: \mathrm{G}-\rightarrow \mathcal{H}$ satisfying-the-cocycle-law-

$$
\alpha_{g}(\beta(h))-=-\beta(g h)--\beta(g) .
$$

The-latter- ensures- that- $g \mapsto \alpha_{g}(\cdot)+-\beta(g)$ - is- an- affine- representation- of- G ,- so- that- the-cocycle-map- β establishes- a^{-}good-Hilbert-space-lift- of- G - and- one- can- expect- to-import-the-differential-structure-of $-\mathcal{H}$.- Naively,-we-"identify"- the-unitary- $\lambda(g)$-with-the-Euclidean-character- $\exp (2 \pi i\langle\beta(g), \cdot\rangle)$-and-define- \mathcal{H}-directional-derivatives-on- $\mathcal{L}(\mathrm{G})$-as-follows-for-any$u \in \mathcal{H}$

$$
\partial_{u}(\lambda(g))^{-}=-2 \pi i\langle\beta(g), u\rangle \lambda(g)^{-} \text {and- } \Delta(\lambda(g))^{-=}=-4 \pi^{2}\|\beta(g)\|^{2} \lambda(g) .
$$

This-strategy-has-been-extremely- useful- to- establish- L_{p}-boundedness- criteria-for-Fourier-multipliers- on-group- von- Neumann- algebras.- We-now- introduce-the-right-setup- for-the-problem.- Given- a- discrete- group- G- equipped- with- an- orthogonal- cocycle- (α, β) - and- a-positive-integer- n,-we-say-that-

$$
\mathcal{A}=\left\{\mathrm{B}_{\mathrm{S}} \subseteq \mathrm{G}:-\mathrm{S} \subseteq[n]\right\}(
$$

is-an-admissible family of Fourier truncations when-we-have:-

- $\sum_{g \in \mathrm{BS}_{\mathrm{S}}} \widehat{f}(g) \lambda(g)^{-}{ }_{p} \leq_{\mathrm{cb}} C_{p} \sum_{g \in \mathrm{G}} \underset{f}{ }(g) \lambda(g)^{-}{ }_{p}$ for $-p \geq 2$.-
- Pairwise- β-orthogonality:-

$$
\mathcal{H}=\bigoplus_{j=1}^{n} \mathcal{H}_{j} \quad \text { with }-\beta\left(\mathrm{B}_{\mathrm{S}}\right), \beta\left(\mathrm{B}_{\mathrm{S}}^{-1}\right)-\subseteq \bigoplus_{j \in \mathrm{~S}} \mathcal{H}_{j}=-\mathcal{H}_{\mathrm{S}}
$$

Given-an-orthonormal-basis- $\left(u_{j \ell}\right)_{\ell}$ of $-\mathcal{H}_{j}$,-define-the- j-th gradients

$$
\mathrm{D}_{j} f=\sum_{\ell \geq 1} \oint_{u_{j} \ell} f \otimes e_{\ell, 1} \quad \text { so-that }-\left|\mathrm{D}_{j} f\right|=\left(\sum_{\ell \geq 1}\left|\partial_{u_{j \ell}} f\right|^{2}\right)^{\frac{1}{2}}
$$

Theorem 1.0.1. Let G -be a discrete group equipped with an orthogonal cocycle (α, β)-whose associated laplacian Δ-has a positive spectral gap $\sigma>0$. Let us consider an admissible family of Fourier truncations $\mathcal{A}=-\left\{\mathrm{B}_{\mathrm{S}}:-\mathrm{S} \subseteq[n]\right\}$. Then, given $p \geq 2$ - and $k \in[n]$, the following inequality holds for any mean-zero f

$$
\frac{1^{-}}{\binom{n}{k}} \sum_{(\mathrm{S} \mid=k} \sum_{g \in \mathrm{~B}_{\mathrm{S}}}\left(\widehat { f } (g) \lambda (g) ^ { - } { } _ { p } ^ { p } \lesssim _ { p , \sigma } \frac { k } { n } \sum _ { j = 1 } ^ { n } \left[\left(\left|\mathrm{D}_{j}(f)\right|_{p}^{p}+-\left|\mathrm{D}_{j}\left(f^{*}\right)\right|_{p}^{p}\right]+-\left(\frac{k}{n}\right)^{\frac{p}{2}}\|f\|_{p}^{p}\right.\right.
$$

Naor's-inequality-follows-as-a-particular-case- of-Theorem-1.0.1 by- taking- G - $=-\widehat{\Omega}_{n}=-\mathbb{Z}_{2}^{n}$ equipped-with-the-cocycle-into-the- n-dimensional-space- $\mathcal{H}=-\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}$ determined-by-the-inclusion-map- β and-

$$
\alpha_{A}=(-1)^{\delta_{1 \in A}} \mathrm{Id}-\times \ldots \times(-1)^{\delta_{n \in A}} \mathrm{Id}
$$

as-well-as-the-truncations- $\mathrm{B}_{\mathrm{S}}=-\{\mathrm{A} \subseteq \mathrm{S}\}=-\beta^{-1}\left(\mathcal{H}_{\mathrm{S}}\right)$. Recall-that- $\mathrm{D}_{j}=-\partial_{j}$ in-this-case-since$\operatorname{dim} \mathcal{H}_{j}=-1$. - Moreover, $-\left|\partial_{j}(f)\right|=-\left|\partial_{j}\left(f^{*}\right)\right|$ in-the-abelian-framework-of-the-hypercube.- Two-generalizations- of-Naor's-inequality-for-large-classes- of-discrete- groups- easily - follow-from-Theorem-1.0.1:-
i)- Direct products. If-G- $=-\mathrm{G}_{1} \times \mathrm{G}_{2} \times \cdots \times \mathrm{G}_{n}$ is-a-direct-product-of-discrete-groups-equipped-with-orthogonal-cocycles- $\left(\alpha_{j}, \beta_{j}\right)$,-consider-the-product-cocycle- (α, β)-and-set- B_{S} be-the-subgroup- of- G -generated-by-group-elements-whose-nontrivial-entries-lie-in-S.- Then, -the-Fourier-truncations-become-(completely-contractive)-conditional-expectations-and-we-get-an-admissible-family-of-Fourier-truncations.- The-gradientsD_{j} correspond-to-the-different-factors-and-cocycles-in-the-direct-product-above.-
ii)- Equivariant decompositions. If-G-is-a-discrete-group-equipped-with-an-orthogonal-cocycle- (α, β),-any-direct-sum-decomposition-of the-Hilbert space- \mathcal{H} into- α-equivariant-subspaces- gives-rise-to-an-admissible-family-of-Fourier-truncations.- More-precisely,-assume-

$$
\mathcal{H}=\bigoplus_{j=1}^{n} \mathcal{H}_{j} \quad \text { and }-\quad \alpha_{g}\left(\mathcal{H}_{j}\right)-\subseteq \mathcal{H}_{j} \text { for-every }-(g, j)-\in \mathrm{G}-\times[n]
$$

Then,-the-family-of-sets-

$$
\mathrm{B}_{\mathrm{S}}=-\beta^{-1}\left(\bigoplus_{j \in \mathrm{~S}} \mathcal{l}_{j}\right)(
$$

are-subgroups- of- G.- In- particular,- the- associated- Fourier- truncations- are- condi-tional- expectations- (henceforth- L_{p}-contractions)- and- the- BS^{\prime} 's- satisfy- pairwise- β -orthogonality.- This- more- general- construction- does- not- impose- a- direct- product structure-on-the-discrete-group-G.-

Let- \mathcal{A} be-an-admissible-family-of-Fourier truncations-on-G-as-defined-above.- Let-us-say that-a-group-element $-g \in$ G-is-an- $^{-}$-generator when- $\beta(g)-\in \mathcal{H}_{j}$ for-some- $1^{-} \leq j \leq n$.- Theorem1.0.1 may- be- regarded- as- a- nonlinear- form- of- an- inequality- for- linear- combinations- of-\mathcal{A}-generators ${ }^{-}$

$$
f=\sum_{j=1}^{n} \sum_{\beta(g) \in \mathcal{Z}}\left(\widehat{f}(g) \lambda(g)=\sum_{j=1}^{n} A_{j}(f) .\right.
$$

This- inequality- controls- balanced- averages of - S-truncations- $\sum_{j} \epsilon_{\mathrm{s}} A_{j}(f)$ - in- terms- of $-f$ and- the- j-th- gradients- of $-A_{j}(f)$.- This-linear- model- seems- to- be-new- for- general- discrete-groups/cocycles-and- Theorem-1.0.1 gives-a-nonlinear- generalization- in-terms- of trigono-metric-chaos over \mathcal{A}-generators.

Theorem- 1.0 .1 does- not- recover- the- conjectured- free- form- of Naor's- inequality- $\left(\mathrm{FN}_{p}\right)$. Indeed, - the-free-inequality-relies- on-the-standard-cocycle- of- \mathbb{F}_{n} associated- with- the-word-length,-which-yields- $\mathcal{H} \simeq \ell_{2}\left(\mathbb{F}_{n} \backslash\{e\}\right)$-and-infinitely-many-free-derivatives-of-the-form-

$$
\partial_{u} f=-\sum_{w \geq u} \hat{f}(w) \lambda(w)-\text { for-any- } u \in \mathbb{F}_{n} \backslash\{e\} .
$$

However,-we-only-need-to-use- n free-directional-derivatives-

$$
\partial_{j}=-\partial_{g_{j}}+\partial_{g_{j}^{-1}} \quad \text { with }-1-\leq j \leq n
$$

and-these-are-not-coupled-into-a-family-of-gradients,-as-we-do-in-Theorem 1.0.1- The-key-point-to-achieve-this is-the-fact-that-free-derivatives-associated-to-free-generators-include-all-free-derivatives-in-the-sense-that-

$$
u \neq e \Rightarrow u \geq g_{j} \text { or } u \geq g_{j}^{-1} \text { for-some- } 1-\leq j \leq n \Rightarrow \partial_{u} \circ \partial_{j}=-\partial_{j} \circ \partial_{u}=-\partial_{u}
$$

In-general,-assume-that- $\mathcal{A}=-\left\{\mathrm{B}_{\mathrm{S}}:-\mathrm{S} \subseteq[n]\right\}$ is-an-admissible-family-of-Fourier-truncations-in-G-with-respect-to- (α, β).- We-will-say-that- $\mathcal{J}=-\left\{\partial_{j}: 1-j \leq n\right\}$ is-a-distinguished family of derivatives when- $\partial_{u} \circ \partial_{j}=\partial_{u}$ for-any- $u \in \mathcal{H}_{j}$ with $-1-j \leq n$. Throughout-the-chapter, we-shall-consistently-use- u for-vectors-in- \mathcal{H} and- $j \in[n]$,-so-that-no-confusion-should-arise-when-using $-\partial_{u}$ and $-\partial_{j}$.- The-following-result-refines-Theorem-1.0.1 when-we-can-find-such-a-family.-

Theorem 1.0.2. Let G -be a discrete group equipped with an orthogonal cocycle (α, β)-and an admissible family of Fourier truncations $\mathcal{A}=-\left\{\mathrm{BS}_{\mathrm{S}}:-\mathrm{S} \subseteq[n]\right\}$. Assume that $\mathcal{J}=-\left\{\partial_{j}\right.$:-$1-\leq j \leq n\}$ is a distinguished family of derivatives. Then, given $p \geq 2$ - and $k \in[n]$, the following inequality holds for any mean-zero f

$$
\frac{1-}{\binom{n}{k}}\left(\sum _ { (\mathrm { S } | = k } \sum _ { g \in \mathrm { B } _ { \mathrm { S } } } \left(\hat{f}(g) \lambda(g){ }_{p}^{p} \lesssim_{p} \frac{k}{n} \sum_{j=1}^{n} \partial_{j}(f)^{-}{ }_{p}^{p}+-\partial_{j}\left(f^{*}\right){ }_{p}^{p}+-\left(\frac{k}{n}\right)^{\frac{p}{2}}\|f\|_{p}^{p} .\right.\right.
$$

When- the-distinguished-family- of-derivatives- ∂_{j} is-a- proper-subset-of-the-cocycle-deriva-tives- ∂_{u},-it-turns-out-that-Theorem 1.0 .2 gives-a-stronger-inequality-(compared-to-that-of-Theorem-1.0.1)- at- the- cost- of- additional- assumptions,- which- fortunately-hold- in- several-important-cases- considered-below.- Note-as- well- that-the-spectral- gap-assumption- is- un-necessary-under-the-presence-of-distinguished-derivatives.- Here-are-our-main-applications-of-Theorem 1.0.2.
i)- Free chaos. Our-discussion- on- free-derivatives- illustrates-how- to- apply- Theorem1.0 .2 to-obtain-an-inequality-which-gets-very-close-to- FN $_{p}$.- The-extra-term- $\partial_{j}\left(f^{*}\right)$ -is-anyway-removable-due-to-a-special-property-of-free-groups, for-which-word-length-derivatives- become- free- forms- of- directional- Hilbert- transforms- 55].- This- "good-pathology"-leads- us- to- an- even- stronger- inequality- than- the- free- analog- of- Naor's-inequality- $\left(\overline{\mathrm{FN}_{p}}\right)$.- This-could-be-useful-in-other-directions-of-free-harmonic-analysis.-We-shall-also-explore-the-free-products- $\mathbb{Z}_{2 m} * \mathbb{Z}_{2 m} * \cdots * \mathbb{Z}_{2 m}$.
ii)- Continuous and discrete tori. We-also-analyze- $\mathbb{T}^{n}=-\widehat{\mathbb{Z}}^{n}$ and- $-\mathbb{Z}_{m}^{n}=-\widehat{\mathbb{Z}}_{m}^{n}$ equipped-with-different-geometries.- Theorem-1.0.2 is- applicable-for-the-Cayley- graph-metric-and- the- resulting- inequality- improves- the- one- coming- from- the-Euclidean- metric.-These- forms- of- Naor's- inequality- can- be- regarded- as- refinements- of- the- classical-Poincaré-inequality.-
iii)- Infinite Coxeter groups. Any-group-presented-by-

$$
\mathrm{G}=-\left\langle g_{1}, g_{2}, \ldots, g_{n} \quad\left(g_{j} g_{k}\right)^{s_{j k}}=-e\right\rangle(
$$

with- $s_{j j}=-1$ - and $-s_{j k} \geq 2$ - for $-j \neq-k$ is- called- a- Coxeter- group.- Bożejko- proved-in- 5 - that-the-word-length- is-conditionally-negative-for-any-infinite-Coxeter-group.-The-Cayley-graph-of-these-groups-is-more-involved-and-we-will-not-construct-here-a-natural-ONB-for-the-cocycle,-we-invite-the-reader-to-do-it-and-to-derive-inequalities-in-the-lines-of-Theorems 1.0.1 and 1.0.2.-

Our- proof- of- Theorems- 1.0 .1 and- 1.0 .2 streamlines- Naor's- original- argument.- The- key-point- in- this- general- setting- is- to-identify- the-right- notions,- such- as- admissible-families-of- Fourier- truncations- or- distinguished- families- of- derivatives.- Once- this- is- done,- the-proof-heavily-relies-on-dimension-free-estimates-for-noncommutative-Riesz-transforms-40]-in- the-same- way- Naor's- inequality- did- in- terms- of- Lust-Piquard- results- [49].- Another-crucial- point- in- our- argument- is- the- Banach- X_{p} nature- of noncommutative- L_{p}-spaces.-Generalizing- previous-work-of-Naor-and-Schechtman- [63,-Theorem-7.1],-we-shall-establish-it- with-a-much-simpler-argument-based-on-Junge/Xu's-noncommutative-Burkholder-and-Rosenthal- inequalities- [45,-46].- Of- course,- one- could- expect- that- Theorems- 1.0 .1 and 1.0 .2 may-lead-to-noncommutative- X_{p}-type-inequalities,- very-much-like-in- 60 .- We-have-obtained-some-inequalities-in-this-direction-(see-chapter 2 or- $[9]$).- Our-hope-was-to-deduce-nontrivial- bounds- for $-L_{p}$-distortions- of- Schatten- q-classes- or- other- noncommutative- $L_{q^{-}}$ spaces.- Unfortunately,-our-efforts-so-far-have-not-been-fruitful-in-this-direction.-

1.1.- TRIGONOMETRIC CHAOS

1.1 Trigonometric chaos

Before- introducing- the- concepts- related- to- trigonometric- chaos,- we- include- a- summary-about- noncommutative- analysis- which- will- be- useful- along- the- whole- text- of - this- thesis.-Unless-otherwise-stated, $-\mathcal{H}$ will-denote-a-complex-Hilbert-space,-and- $B(\mathcal{H})$-will-be-the- C^{*} -algebra-of-bounded-linear-operators- \mathcal{H} with the usual-adjoint-as involution.- A-von Neumann algebra \mathcal{M} on- \mathcal{H} is- ${ }^{-} \mathrm{C}^{*}$-subalgebra- of $-B(\mathcal{H})$-which-contains-the-identity-operator-Id-on\mathcal{H} and-is-closed-with-respect-to-the-weak-operator-topology- Let- \mathcal{M}_{+}denote-the-positive-cone-of- \mathcal{M},-that-is,

$$
\mathcal{M}_{+}=-\left\{x \in \mathcal{M}:-\langle x h, h\rangle_{\mathcal{H}} \geq 0 \text {-for-any }-h \in \mathcal{H}\right\} .
$$

We-will-consider von-Neumann-algebras- \mathcal{M} which-admit-a-normal semifinite faithful (n.s.f.) trace τ,-that-is,-a-positive-linear-functional-for-which-there-holds-

$$
\tau\left(x^{*} x\right)=-\tau\left(x x^{*}\right) \text {-for-every- } x \in \mathcal{M}
$$

and-is-

- normal,- that-is, $-\sup _{i} \tau\left(x_{i}\right)=-\tau\left(\sup _{i} x_{i}\right)$-for-any-bounded-increasing-net- $\left(x_{i}\right)_{i} \subseteq \mathcal{M}_{+}$,
- faithful,- that-is, $-\tau(x)=-0$-for-some- $x \in \mathcal{M}_{+}$implies- $x=-0,-$
- semifinite,-that- is,-for-any-nonzero- $x \in \mathcal{M}_{+}$there- is- ${ }^{-}$- nonzero- $y \in \mathcal{M}_{+}$such- that$y \leq x$ and $-\tau(y)-<\infty$.-

Moreover, $-\tau$ will-be-said-to-be-finite whenever $-\tau(\mathrm{Id})-<\infty$.
By-spectral-functional-calculus,-one-can-define-the-modulus of- $x \in \mathcal{M}$ as-

$$
|x|=\left(x^{*} x\right)^{1 / 2} \in \mathcal{M}
$$

and-set-the-polar decomposition $x=-u|x|$ for-some-partial-isometry- $u \in \mathcal{M}$.- Whenever$x \in \mathcal{M}_{+}$, - there-holds $-u^{*} u=-u u^{*}$ and $-s(x)-:=-u^{*} u=-u u^{*}$ is-the-least-orthogonal-projectione in $-\mathcal{M}$ satisfying $-e x=-x e=-x$. For-that-reason, $-s(x)^{-}$- is-called - the-support of $-x$. - Then, ${ }^{-}$we ${ }^{-}$ set-

$$
\mathcal{S}(\mathcal{M})^{-}=-\operatorname{span}\left\{x \in \mathcal{M}_{+}:-\tau(s(x))-<\infty\right\}
$$

as-the-ideal-of-operators-in- \mathcal{M} supported by a τ-finite projection.- Moreover,-given- $0-<p<$ $\infty,-|x|^{p} \in \mathcal{S}(\mathcal{M})$-whenever-x $\in \mathcal{S}(\mathcal{M})$,-what-leads-to-defining-the-noncommutative L_{p} space $L_{p}(\mathcal{M})$-as ${ }^{-}$the-completion-of $\mathcal{S}(\mathcal{M})$ - with-respect- to-

$$
\|x\|_{p}=-\tau\left(|x|^{p}\right)^{1 / p}
$$

In-other-words,-

$$
L_{p}(\mathcal{M})=\overline{\mathcal{S}(\mathcal{M})^{\prime}} \cdot \|_{p} .
$$

Whenever-1- $\leq p \leq \infty,-L_{p}(\mathcal{M})$ - is- a-Banach-space,- and-most- of- the- properties- holding-for-classical- (commutative)- L_{p} spaces-remain-valid-in-this-framework:- Hölder-inequality,-duality- $L_{p^{\prime}}(\mathcal{M})=-L_{p}(\mathcal{M})^{*}$ for $-1-\leq p<\infty$,-interpolation-techniques,-etc.-

As- a- first-example,- whenever- $\mathcal{M}=-L_{\infty}(\Omega, \mu)$-for-some-semifinite-measure-space- (Ω, μ), the ${ }^{-} \operatorname{trace}^{-} \tau$ is- given $-\tau(f)=-\int\left(f d \mu\right.$ and $-L_{p}(\mathcal{M})-$ coincides $^{-}$with- $L_{p}(\Omega, \mu)$.- On- the- other ${ }^{-}$ hand,- whenever $-\mathcal{M}=-B(\mathcal{H})$ - and $-\tau=-\mathrm{Tr}^{-}$is- the- usual-trace- of matrices,- we-recover-theSchatten classes $S_{p}(\mathcal{H})=-L_{p}(B(\mathcal{H}), \operatorname{Tr})$.-For-more-context-on-noncommutative- L_{p} spaces,-see- 70, , 81,23$]$.-

Another- crucial notion- in- noncommutative-harmonic- analysis- is- the concept- of- operator-spaces-69, [15].- An-operator space E is-a-closed-linear-subspace-of- $B(\mathcal{H})$.- The-morphisms-in-this-category-must-keep-track-of the-information-given-by-the-inclusion-into- $B(\mathcal{H})$:- these-are-called-completely-bounded-maps. Let- $\mathbb{M}_{n}(E)$-denote-the-space-of-matrices- $n \times n$ with-entries-in- E.- Given-another-operator-space- $F \subseteq B(\mathcal{K})$,- a map- u :- $E \rightarrow F$ is-completely bounded if-and-only-if-the-matrix-amplifications-

$$
\begin{aligned}
& \mathrm{Id}-\otimes u:-\mathbb{M}_{n}(E)-\subseteq B\left(\mathcal{H}^{n}\right) \longrightarrow \\
&\left(x_{i j}\right)_{i, j=1}^{n} \longmapsto \\
& \mathbb{M}_{n}(F)-\subseteq B\left(\mathcal{K}^{n}\right)- \\
&\left(u\left(x_{i j}\right)\right)_{i, j=1}^{n}
\end{aligned}
$$

are-uniformly-bounded-for- $n \geq 1$.- Then-we-define-

$$
\|u\|_{c b}=-\sup _{n \geq 1}-\left\|\mathrm{Id}_{\mathbb{M}_{n}(\mathbb{C})} \otimes u:-\mathbb{M}_{n}(E)-\rightarrow \mathbb{M}_{n}(F)\right\|
$$

Moreover,-asin-Banach-space theory,-we-can-consider-several tensor-products.- The-minimal tensor product $E \otimes_{\min } F$ is-defined-as-the-completion-of-the-algebraic-tensor- $E \otimes F$ with-respect- to- the-norm- of $-B\left(\mathcal{H} \otimes_{2} \mathcal{K}\right)$.- This-tensor- product- plays- the- analogous-role- of- the-injective-tensor- product- in-Banach-space-theory.- On-the-other-hand,- an-operator-space-version-of-the-projective tensor product $E \widehat{\otimes} F$ can-be-introduced.- We-refer-to- 69 -for-its-definition.- These-constructions-lead-to-consider-vector-valued noncommutative L_{p} spaces $\left.L_{p}(\mathcal{M} ; E)-68\right]$.- We-redirect-the-reader-to-Section 3.2 for-a-brief-introduction-on-this-topic,-and-to-chapter-44 for-a-disgression-in-the-theory-whenever- E is-a-Hilbert-space-equipped-with-the-column/row-operator-structure.- Nevertheless,-let-illustrate-this-concept-throughthe $-\operatorname{case}^{-}(\mathcal{M}, \tau)=\left(B\left(\ell_{2}\right), \operatorname{Tr}\right) .-\operatorname{Set}^{-} S_{\infty}[E]=-B\left(\ell_{2}\right)-\otimes_{\min } E$ and $-S_{1}[E]=-S_{1}\left(\ell_{2}\right) \widehat{\otimes} E$.- Then, -the-Schatten-class-with-entries in- E is-defined,-via-complex-interpolation-of-operator-spaces,-as-

$$
S_{p}[E]=\left(S_{\infty}[E], S_{1}[E]\right)_{1 / p}
$$

Analogously, $-S_{p}^{n}[E]$-can-be-defined-for-any- $n \geq 1$,-yielding-a-characterization-for-the-notionof completely-bounded-maps:- a-map- u :- $E \rightarrow F$ is-completely-bounded-if-and-only-if-

$$
\sup _{n \geq 1}-\left\|\operatorname{Id}_{S_{p}^{n}} \otimes u:-S_{p}^{n}[E]-\rightarrow S_{p}^{n}[F]\right\|<\infty
$$

We-will-particularly-interested-in-the-case- $E=-L_{p}(\mathcal{N})$-for-some-von-Neumann-algebra- \mathcal{N},equipped with the-operatorspacestructure-given-by-complexinterpolation- $\left(\mathcal{M}, L_{1}(\mathcal{M})\right)_{1 / p} \simeq$

1.1.- TRIGONOMETRIC CHAOS

$L_{p}(\mathcal{M})$.- The-reason-for-this-interest-is-that,-whenever-a-inequality-that-relates-the- $L_{p}(\mathcal{N})$ -norm-ofseveral-operators-holds-and the-constant-does not-depend-on- \mathcal{N}, then the-inequality-automatically-holds-for-the-norm-in- $S_{p}^{n}\left[L_{p}(\mathcal{N})\right] \simeq L_{p}\left(B\left(\ell_{2}^{n}\right) \bar{\otimes} \mathcal{N}\right)$,-and-therefore,-for-the-cb norm.-

1.1.1 Harmonic analysis on discrete groups

Let- G^{-}be-a-discrete-group.- The-left-regular-representation- of- G^{-}on- $\ell_{2}(\mathrm{G})$ - is- the- unitary-representation-determined-by-

$$
[\lambda(g) \varphi](h)=-\varphi\left(g^{-1} h\right), g, h \in \mathrm{G}, \varphi \in \ell_{2}(\mathrm{G}) .
$$

The-group von Neumann algebra of G-is-denoted-by- $\mathcal{L}(\mathrm{G})$.- It-is-the-weak-operator-closureof the-linear-span- of $\{\lambda(g)\}_{g \in \mathrm{G}}$ in- $\mathcal{B}\left(\ell_{2}(\mathrm{G})\right)$.- Its-canonical- trace- τ is-linearly-determined-by- $\tau(\lambda(g))=-\left\langle\lambda(g) \delta_{e}, \delta_{e}\right\rangle_{\ell_{2}(\mathrm{G})}=-\delta_{g=e}$. . Every-element- $f \in \mathcal{L}(\mathrm{G})$-admits-a-Fourier-series-

$$
f=-\sum_{g \in \mathrm{G}}\left(\hat{f}(g) \lambda(g)^{-} \text {where- } \widehat{f}(g)=-\tau\left(\lambda(g)^{*} f\right) .\right.
$$

This- shows- that $\tau(f)=-\widehat{f}(e)$.- For- $1-\leq p<\infty$,- we-denote- by- $L_{p}(\mathcal{L}(\mathrm{G}))$ - the- associated-noncommutative- L_{p} space.- We-emphasize-here-that-in-case- G^{-}- is-abelian,-its-Pontryagin-dual- $\widehat{\mathrm{G}}(19,-74)$-is-a-compact-abelian-group-and-we-have-

$$
L_{p}(\mathcal{L}(\mathrm{G})) \simeq L_{p}(\widehat{\mathrm{G}}) .
$$

Therefore,- in- that-case- $L_{p}(\mathcal{L}(G))$-is- a-classical- (commutative)- L_{p} space.- In-all-instances-below,-we-will-consider-all-of-our- L_{p} spaces-as-noncommutative-ones-so-that-we-can-give-a-unified-treatment-to-all- the-examples.-

An- orthogonal cocycle for- G^{-}is- ${ }^{-}$- triple $-(\mathcal{H}, \alpha, \beta)$ - given- by- ${ }^{-}$- real- Hilbert- space- \mathcal{H},- an-orthogonal-action- $\alpha: \mathrm{G}-\mathcal{O}(\mathcal{H})$,-and-a-map- $\beta: \mathrm{G}-\rightarrow \mathcal{H}$ satisfying-the-cocycle-law-

$$
\alpha_{g}(\beta(h))=-\beta(g h)-\beta(g) .
$$

Orthogonal-cocycles-are-in-one-to-one-correspondence-with-length-functions.- We-say-that-a-map- $\psi: \mathrm{G}^{-} \rightarrow \mathbb{R}_{+}$is-a-length function if-it-vanishes-at-the-identity-e,-it-is-symmetric-$\psi(g)=-\psi\left(g^{-1}\right)$,-and-it-is-conditionally-negative-

$$
\sum_{g \in \mathrm{G}} a_{g}=0^{-} \Rightarrow \sum_{g, h \in \mathrm{G}}\left(\bar{a}_{g} a_{h} \psi\left(g^{-1} h\right)^{-} \leq 0^{-}\right.
$$

for-any-finitely-supported-family- $\left\{a_{g}\right\}_{g \in \mathrm{G}}$.-Given-a-cocycle- $(\mathcal{H}, \alpha, \beta)$, -the-function- $\psi(g)=-$ $\|\beta(g)\|_{\mathcal{H}}^{2}$ is- a-length-function.- On- the- other-hand,- any-length- function- ψ determines- a Gromov-form- $\langle\cdot, \cdot\rangle_{\psi},-{ }^{-}$-semidefinite-positive-form-on-the-group-algebra- $\mathbb{R}[G]$-given-by-

$$
\left\langle\delta_{g}, \delta_{h}\right\rangle_{\psi}=-\frac{\psi(g)+-\psi(h)--\psi\left(g^{-1} h\right)}{2-} .
$$

Then, - the-Hilbert-completion- \mathcal{H} of- $\left(\mathbb{R}[\mathrm{G}] / \operatorname{Ker}\left(\langle\cdot, \cdot\rangle_{\psi}\right),\langle\cdot, \cdot\rangle_{\psi}\right)$, - together-with- the-map- β :$g \mapsto \delta_{g}+\operatorname{Ker}\left(\langle\cdot, \cdot\rangle_{\psi}\right)$,- and- the- orthogonal-action- $\alpha_{g}\left(\delta_{h}\right)=-\delta_{g h}-\delta_{h}+\operatorname{Ker}\left(\langle\cdot, \cdot\rangle_{\psi}\right)$-form-a-cocycle.- Moreover,-Schoenberg's-theorem- 78 -claims-that- $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$is-a-length-function-if-and-only-if-the-maps- $S_{t}:-\lambda(g)-\mapsto e^{-t \psi(g)} \lambda(g)$-form-a-Markov-semigroup- $\left(S_{t}\right)_{t \geq 0}$ on- $\mathcal{L}(\mathrm{G})$,-see- [39, 40]. - In-this-case- $\left(S_{t}\right)_{t \geq 0}$ admits-an-infinitesimal-generator-

$$
-\Delta:=-\lim _{t \rightarrow 0^{+}} \frac{S_{t}-\operatorname{Id}_{\mathcal{L}(\mathrm{G})}}{t} \quad \text { sothat } \quad S_{t}=-\exp (-t \Delta)
$$

As- is- standard,- we- shall- call- the- generator- Δ - the- ψ-Laplacian on- G.- Since- we- have-$\Delta(\lambda(g))^{-}=-\psi(g) \lambda(g)$-for- $g \in$ G,- it- turns- out- that- Δ - is- an- unbounded- Fourier-multiplier-whose-fractional-powers-can-be-defined-by-

$$
\Delta^{\gamma} f:=-\sum_{g \in \mathrm{G}} \mu(g)^{\gamma} f(g) \lambda(g)
$$

Let- $(\mathcal{H}, \alpha, \beta)$ - be-the- orthogonal- cocycle- naturally- associated- to- the- length-function- ψ :-$\mathrm{G}-\rightarrow \mathbb{R}_{+}$as- explained-above.- Given- an- orthonormal-basis- $\left\{e_{\ell}\right\}_{\ell \geq 1}$ of- \mathcal{H},- we- consider-the-corresponding- directional derivatives as-follows-

$$
\partial_{e_{\ell}} \lambda(g)-=-2 \pi i\left\langle\beta(g), e_{\ell}\right\rangle_{\psi} \lambda(g)-\text { so-that }-4 \pi^{2} \Delta=-\sum_{\ell \geq 1} \not \phi_{e_{\ell}}^{2} .
$$

The-corresponding-Riesz transforms associated-to- ψ are-then-defined-as-

$$
R_{\ell} f=-R_{e_{\ell}} f:=-\partial_{e_{\ell}} \Delta^{-\frac{1}{2}} f=2 \pi i \sum_{g \in \mathrm{G}} \frac{\left\langle\beta(g), e_{\ell}\right\rangle_{\psi}}{\sqrt{\psi(g)}} \widehat{f}(g) \lambda(g) .
$$

Riesz-transforms-act-on-elements-of- $L_{p}(\mathcal{L}(\mathrm{G})$)-with-null-Fourier-coefficients-on-the-kernelof $-\beta$.- More-precisely,-maps- R_{ℓ} are-well-defined-over-the-mean-zero-subspaces-

$$
L_{p}^{\circ}(\mathcal{L}(\mathrm{G}))==\left\{f \in L_{p}(\mathcal{L}(\mathrm{G}))-:-\widehat{f}(g)=-0 \text {-if }-\beta(g)=0\right\} .
$$

Dimension-free-estimates-for-noncommutative-Riesz-transforms-were-studied-in- 40].-

Theorem 1.1.1 (Theorem-A1---40]). If $2-p<\infty$ and $f \in L_{p}^{\circ}(\mathcal{L}(\mathrm{G}))$

$$
\|f\|_{p} \asymp_{p} \max \left\{\left(\left(\sum_{\ell \geq 1}\left(\left.R_{\ell}(f)\right|^{2}\right)^{\frac{1}{2}}{ }_{p}, \quad\left(\sum_{\ell \geq 1}\left(\left.R_{\ell}\left(f^{*}\right)\right|^{2}\right)^{\frac{1}{2}}{ }_{p}\right\} .\right.\right.\right.
$$

Finally,-our-Fourier truncations will-be-written-in-the-form-

$$
\mathrm{E}_{[n] \backslash \mathrm{S}} f=-\sum_{g \in \mathrm{~B}_{\mathrm{S}}}\left(\hat{f}(g) \lambda(g)^{-} \text {with- } \mathrm{S} \subseteq[n] .\right.
$$

When- B_{S} is- a-subgroup- of- $\mathrm{G},-\mathrm{E}_{[n] \backslash S}$ is- a^{-}(L_{p}-contractive)- conditional- expectation- onto-$\mathcal{L}\left(\mathrm{B}_{\mathrm{S}}\right)$.-

1.1.- TRIGONOMETRIC CHAOS

1.1.2 Noncommutative L_{p}-spaces are Banach X_{p} spaces

Linear-forms- of- X_{p} inequalities- are- vector-valued- extensions- of- Rosenthal- inequality-for-symmetrically-exchangeable-random-variables- 34.- More- precisely,-a-Banach-space- \mathbb{X} issaid to-satisfy the-Banach X_{p} inequality if the-inequality-of-Theorem 1.1.2 below-is-satisfied-for-vectors- $\left\{x_{j}\right\}_{j \in[n]} \subseteq \mathbb{X}$ (and-with-norms-taken-in- \mathbb{X}).- In- [63],- Theorem-7.1]-Naor- andSchechtman proved-such-inequalities for-Schatten-p-classes.- A-noncommutative-Burkholder-martingale-inequality-for-the-conditioned-square-function- 45]-led-Junge-and-Xu-to-obtain-noncommutative-Rosenthal-inequalities-for-symmetric-variables-in-46.- The-precise-result-that-we-used-below is the-following-(see-[46]-Corollary-6.6]):-let- \mathcal{N} and- \mathcal{M} be-von-Neumann-algebras-and- $p \geq 2$.-If- $\left\{x_{j}\right\}_{j \in[n]} \subseteq L_{p}(\mathcal{M})$-satisfy-that-

$$
\sum_{j=1}^{n} \delta_{j} a_{\pi(j)} \otimes x_{j} L_{p}(\mathcal{N} \otimes \mathcal{M})<\sum_{j=1}^{n}\left(a_{j} \otimes x_{j} L_{p}(\mathcal{N} \otimes \mathcal{M})\right.
$$

holds-for-all-random-signs- $\delta=\left(\delta_{1}, \ldots, \delta_{n}\right)$ - $\in \Omega_{n}$,-all-permutations- π on- $[n]$-and-coefficients$\left\{a_{j}\right\}_{j \in[n]} \subseteq L_{p}(\mathcal{N})$--that-is,-the-variables-are-symmetric--,-then-

$$
\sum_{j=1}^{n} a_{j} \otimes x_{j} \simeq \frac{1-}{n^{1 / p}} \sum_{j, j^{\prime}=1}^{n}\left(\left\|a_{j}\right\|_{p}\left\|x_{j^{\prime}}\right\|_{p}+-\frac{1-}{n^{1 / 2}}\left(\sum_{j=1}^{n} x_{j}^{*} x_{j}+-x_{j} x_{j}^{*}\right)^{1 / 2}{ }_{p}\left(\sum_{j=1}^{n} a_{j}^{*} a_{j}\right)^{1 / 2}{ }_{p}\right.
$$

We- use-this- result-below- to- establish- the- Banach- X_{p} nature- of arbitrary- noncommuta-tive- L_{p}-spaces.- Naor/Schechtman's-argument-can-be-extended- to- work-as-well-for-other-noncommutative- L_{p}-spaces,-but-our-argument-below-is-much-shorter.-

Theorem 1.1.2. Let (\mathcal{M}, τ)-be a von Neumann algebra equipped with a normal semifinite faithful trace. Then, if \mathbb{E} denotes the expectation over independently equidistributed random signs $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)$-and $x_{j} \in L_{p}(\mathcal{M})$, the following inequality holds for any $p \geq 2$-and $k \in[n]-$

$$
\frac{1}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\ \mathrm{S} \mid=k}} \mathbb{E} \sum_{j \in \mathrm{~S}} f_{j} x_{j}{ }_{L_{p}(\mathcal{M})}^{p} \lesssim_{p} \frac{k}{n} \sum_{j=1}^{n}\left\|x_{j}\right\|_{L_{p}(\mathcal{M})}^{p}+\left(\frac{k}{n}\right)^{\frac{p}{2}} \mathbb{E} \sum_{j=1}^{n} \not_{j} x_{j}^{p}{ }_{L_{p}(\mathcal{M})}^{p} .
$$

Proof. Define-random-variables- $\sigma_{j} \in \Sigma_{n, k}=\Omega_{n} \otimes \Pi_{k}$ as-defined-at-the-beginning-of-this-chapter-by- $\sigma_{j}(\varepsilon, \mathrm{~S})=\varepsilon_{j} \otimes \delta_{j \in \mathrm{~S}}$ for- $1-\leq j \leq n$ and-S $\subseteq[n]$.- We-claim-that,-for-any-choice-of-signs $-\delta_{j}= - \pm 1$-and-any-permutation- π of $-[n]$, it-holds-

$$
\mathrm{A}:=-\sum_{j=1}^{n} \delta_{j} \sigma_{\pi(j)} \otimes x_{j} L_{p}\left(\Sigma_{n, k} \bar{\otimes} \mathcal{M}\right)<\sum_{j=1}^{n} f_{j} \otimes x_{L_{p}\left(\Sigma_{n, k} \bar{\otimes} \mathcal{M}\right)}=: \text { B. }
$$

Indeed,-applying-noncommutative-Khintchine's-inequality-[48]-in- $L_{p}(\mathcal{M})$-twice-

$$
\begin{aligned}
& \mathrm{A}^{p}=-\frac{1^{-}}{\binom{n}{k}} \sum_{\substack{S \subseteq[n] \\
\mathrm{S} \mid=k}} \sum_{\pi(j) \in \oint}\left(\varepsilon_{\pi(j)} \otimes \delta_{j} x_{j}{ }_{L_{p}\left(\Omega_{n} ; L_{p}(\mathcal{M})\right)}^{p}\right. \\
& \asymp_{p} \frac{1}{\binom{n}{k}} \sum_{\substack{\mathrm{s} \subseteq[n] \\
\mathrm{S} \mid=k}}\left(\max -\left\{\left(\left(\sum_{\pi(j) \in\{ }\left(x_{j}^{*} x_{j}\right)^{\frac{1}{2}} L_{p}(\mathcal{M}),\left(\sum_{\pi(j) \in\{ }\left(x_{j} x_{j}^{*}\right)^{\frac{1}{2}} L_{L_{p}(\mathcal{M})}\right\}\right.\right.\right.\right. \\
& =-\frac{1}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}}\left(\max -\left\{\left(\sum_{j \in \mathrm{~S}} c^{*} c_{j}^{*} x_{j}\right)^{\frac{1}{2}}\left(L_{p}(\mathcal{M}),\left(\sum_{j \in \mathrm{~S}} x_{j} x_{j}^{*}\right)^{\frac{1}{2}} L_{p}(\mathcal{M})\right\} \asymp_{p} \mathrm{~B}^{p} .\right.\right.
\end{aligned}
$$

Hence,-we-can-apply-[46,-Corollary-6.6]-to-get-

$$
\mathrm{B}^{p} \lesssim_{p} \frac{1}{n} \sum_{j, j^{\prime}=1}^{n}\left\|\sigma_{j}\right\|_{p}^{p}\left\|x_{j^{\prime}}\right\|_{p}^{p}+\left(\frac{1}{n}\right)^{\frac{p}{2}}\left(\sum_{i=1}^{n}\left\{c_{j}^{*} x_{j}+-x_{j} x_{j}^{*}\right)^{\frac{1}{2}}{ }_{p}^{p}\left(\sum_{j=1}^{n} \sigma_{j}^{2}\right)^{\frac{1}{2}}{ }_{p}^{p}\right.
$$

Now,-we-have-

$$
\begin{aligned}
& \left\|\sigma_{j}\right\|_{L_{p}\left(\Sigma_{n, k}\right)}^{p}=-\frac{1-}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}} \delta_{j \in \mathrm{~S}}=-\frac{k}{n}, \\
& \left(\sum_{k=1}^{n} \delta_{j}^{2}\right)^{\frac{1}{2}} \begin{array}{l}
L_{p}\left(\Sigma_{n, k}\right)
\end{array}=\frac{1-}{\binom{n}{k}} \sum_{\substack{S \subseteq[n] \\
\mathrm{S} \mid=k}}\left(\sum_{k=1}^{n} \delta_{j \in \mathrm{~S}}\right)^{\frac{p}{2}}=-k^{\frac{p}{2}} .
\end{aligned}
$$

Therefore,-we-get-

$$
\begin{aligned}
\mathrm{B} & \lesssim_{p} \frac{k}{n} \sum_{j=1}^{n}\left\|x_{j}\right\|_{L_{p}(\mathcal{M})}^{p}+-\left(\frac{k}{n}\right)^{\frac{p}{2}}\left(\sum_{i=1}^{n} x_{j}^{*} x_{j}+-x_{j} x_{j}^{*}\right)^{\frac{1}{2} p}{ }_{L_{p}(\mathcal{M})} \\
& \asymp p \frac{k}{n} \sum_{j=1}^{n}\left(x_{j} \|_{L_{p}(\mathcal{M})}^{p}+-\left(\frac{k}{n}\right)^{\frac{p}{2}} \mathbb{E} \sum_{j=1}^{n} \varepsilon_{j} x_{j} \begin{array}{l}
p \\
L_{p}(\mathcal{M})
\end{array}\right.
\end{aligned}
$$

applying-once-again-noncommutative-Khintchine's-inequality-- This-proves-the-result-since-the-random-variables- σ_{j} are-chosen-so-that-B-equals-the-left-hand-side-in-the-inequality-of-the-statement.-

Remark 1.1.3. Theorem-1.1.2 says- that- $L_{p}(\mathcal{M})$ - is- an- Banach- X_{p} space.- The- conclu-sion-also-holds-in-the-completely-bounded-setting-since-the-constants-that-appear-in-the-inequality-of-the-statement-do-not-depend-on-the-von-Neumann-algebra-M.-

1.1.- TRIGONOMETRIC CHAOS

1.1.3 Proof of Theorem 1.0.1

According-to-Theorem-1.1.1

$$
\begin{aligned}
& \frac{1}{\binom{n}{k}} \sum_{\substack{\begin{subarray}{c}{\mathrm{~S} \mid n] \\
\mathrm{S} \mid=k} }}\end{subarray}} \sum_{g \in \mathrm{BS}}\left(\hat{f}(g) \lambda(g){ }_{p}^{p}=-\frac{1-}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S}[=k}} \mathrm{E}_{[n] \mathrm{S}} f_{p}^{p}\right. \\
& \asymp_{p} \frac{1}{\binom{n}{1}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathbf{S} \mid=k}}\left(\sum_{\substack{j \in[n] \\
\ell \geq 1}}\left(\left.R_{j \ell}\left(\mathrm{E}_{[n] \backslash \mathrm{S}} f\right)\right|^{2}\right)^{\frac{1}{2}}{ }^{p}\right. \\
& +-\frac{1^{-}}{\binom{n}{\ell}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S}[=k}}\left(\sum_{\substack{j \in[n] \\
\ell \geq 1}}\left(R_{j \ell}\left(\left(\mathrm{E}_{[n] \backslash \mathrm{S}} f\right)^{*}\right)\right)^{2}\right)^{\frac{1}{2}}{ }_{p}^{p}=:-\mathrm{A}+\mathrm{B},
\end{aligned}
$$

where- $R_{j \ell}:=-R_{u_{j \ell}}$ and- $\left\{u_{j \ell}:-j \in[n], \ell \geq 1\right\}$ is-the-orthonormal-basis- of- \mathcal{H} consideredbefore the-statement-of-Theorem 1.0 .1 - Since $-\beta\left(\mathrm{B}_{\mathrm{s}}\right) \subseteq \mathcal{H}_{\mathrm{s}}$, we-observe-that- $\left\langle\beta(g), u_{j \ell}\right\rangle_{\psi}=0^{-}$ whenever $-g \in \mathrm{~B}_{\mathrm{S}}$ and- $j \notin \mathrm{~S}$.- Moreover,-Fourier-truncations-commute-with-Riesz-transforms--as-both-are-Fourier-multipliers-and-we-deduce-

$$
R_{j \ell} \circ \mathrm{E}_{[n] \backslash S}=-\delta_{j \in \mathrm{~S}} \mathrm{E}_{[n] \backslash \mathrm{S}} \circ R_{j \ell} .
$$

Using-the-complete- L_{p}-boundedness-of-our-Fourier-truncations,-we-get-

$$
\begin{aligned}
& \mathrm{A}-\lesssim_{p} \frac{1^{-}}{\binom{n x}{p}} \sum_{\substack{s \subseteq[n] \\
\mathbf{S} \mid=k}}\left(\left(\sum_{j \in \mathrm{~S}} \sum_{\ell \geq 1}\left(\left.R_{u_{j} f} f\right|^{2}\right)^{\frac{1}{2}}{ }^{p} \begin{array}{c}
p \\
p
\end{array}\right.\right. \\
& \lesssim_{p} \frac{1}{\binom{n}{k}} \sum_{\substack{S \subseteq[n] \\
\mathrm{S}[=k}} \left\lvert\, E \sum_{j \in \mathrm{~S}} \varepsilon_{j}\left[\sum_{\ell \geq 1}\left(\left.R_{u_{j \ell}} f\right|^{2}\right]^{\frac{1}{2}}{ }_{p}^{p}=:-\mathrm{A}^{\prime} .\right.\right.
\end{aligned}
$$

The-last- inequality-follows- from- the-noncommutative-Khintchine-inequality- 48]- applied-to- independent- equidistributed $\operatorname{signs}-\varepsilon_{j}= - \pm 1$.- Next,- we- use- the-Banach- X_{p} nature- of noncommutative- L_{p}-spaces.- More-precisely,-applying-Theorem 1.1 .2 we-get-

$$
\mathrm{A}^{\prime} \lesssim p \frac{k}{n} \sum_{j=1}^{n}\left(\sum_{\ell \geq 1} \left\lvert\,\left(\left.R_{u_{j \ell}} f\right|^{2}\right)^{\frac{1}{2}}{ }_{p}^{p}+-\left(\frac{k}{n}\right)^{\frac{p}{2}} \mathbb{E}_{\varepsilon} \sum_{j=1}^{n} \varepsilon_{j}\left(\sum_{\ell \geq 1}\left(\left.R_{u_{j \ell}} f\right|^{2}\right)^{\frac{1}{2}}{ }_{p}^{p}=\mathrm{A}_{1}^{\prime}+\mathrm{A}_{2}^{\prime} .\right.\right.\right.
$$

Since $-R_{u_{j \ell}}=-\partial_{u_{j \ell}} \Delta^{-\frac{1}{2}}=\Delta^{-\frac{1}{2}} \partial_{u_{j \ell}},-[38,-$ Proposition-1.1.5]-yields-

$$
\begin{aligned}
\mathrm{A}_{1}^{\prime} & =\frac{k}{n} \sum_{j=1}^{n} \sum_{\ell \geq 1}\left(R_{u_{j \ell}} f \otimes e_{\ell, 1}{ }_{S_{p}\left[L_{p}(\mathcal{L}(\mathrm{G}))\right]}^{p}\right. \\
& \lesssim_{p, \sigma} \frac{k}{n} \sum_{j=1}^{n} \sum_{\ell \geq 1}\left\{\partial_{u_{j \ell}} f \otimes e_{\ell, 1}{ }_{S_{p}\left[L_{p}(\mathcal{L}(\mathrm{G}))\right]}=-\frac{k}{n} \sum_{j=1}^{n}\left|\mathrm{D}_{j}(f)\right|_{p}^{p} .\right.
\end{aligned}
$$

Moreover,-noncommutative-Khintchine-inequality-and-Theorem 1.1.1 give-

$$
\mathrm{A}_{2}^{\prime} \lesssim_{p}\left(\frac{k}{n}\right)^{\frac{p}{2}}\left(\sum_{j=1}^{n} \sum_{\ell \geq 1}\left(\left.R_{u_{j} \ell} f\right|^{2}\right)^{\frac{1}{2} \quad}{ }_{p}^{p} \lesssim_{p}\left(\frac{k}{n}\right)^{\frac{p}{2}}\|f\|_{p}^{p}\right.
$$

Therefore,-the-term-A-satisfies the-expected-estimate-and-it-remains-to-justify-the-assertion-for-B.- We-now-analyze-the-behavior- of- our-Fourier-truncations- under-adjoints.- Observe-that-

$$
\left(\mathrm{E}_{[n] \backslash \mathrm{S}} f\right)^{*}=-\sum_{g \in \mathrm{~B}_{\mathrm{s}}} \overline{(\hat{f}(g)} \lambda\left(g^{-1}\right)=:=\mathrm{E}_{[n] \backslash \mathrm{S}}^{\prime}\left(f^{*}\right) .
$$

In-particular,-since- $\mathrm{E}_{[n] \backslash \mathrm{S}}^{\prime}$ commutes-with- $R_{j \ell}$

$$
R_{j \ell}\left(\left(\mathrm{E}_{[n] \backslash \mathrm{S}} f\right)^{*}\right)=-\mathrm{E}_{[n] \backslash \mathrm{S}}^{\prime}\left(R_{j \ell}\left(f^{*}\right)\right)=\mathrm{E}_{[n] \backslash \mathrm{S}}\left(R_{j \ell}\left(f^{*}\right)^{*}\right)^{*}
$$

At-this- point-is-where-we-need the-condition- $\beta\left(\mathrm{B}_{\mathrm{S}}^{-1}\right)-\subseteq \mathcal{H}_{\mathrm{S}}$,-to-make-sure-that-the-above-terms-vanish-when- $j \notin \mathrm{~S}$ since-we-find-the-inner-products- $\left\langle\beta\left(g^{-1}\right), u_{j \ell}\right\rangle_{\psi}$ for $-g \in \mathrm{~B}_{\mathrm{s}}$.- Thus, -we-obtain-

$$
\begin{aligned}
\left(\sum_{\substack{j \in[n] \\
\ell \geq 1}}\left(\left.R_{j \ell}\left(\left(\mathrm{E}_{[n] \backslash \mathrm{S}} f\right)^{*}\right)\right|^{2}\right)^{\frac{1}{2}} \mathrm{p}_{p}\right. & =-\sum_{j \in[n]} \sum_{\ell \geq 1} \mathrm{E}_{[n] \backslash \mathrm{S}}(\not \overbrace{j \ell}\left(f^{*}\right)^{*}) \otimes e_{1,(j, \ell)}{ }_{p} \\
& \lesssim_{p} \sum_{j \in \mathrm{~S}} \sum_{\ell \geq 1}\left(R_{j \ell}\left(f^{*}\right)-\otimes e_{(j, \ell), 1}{ }_{p}\right. \\
& =\left(\sum_{j \in \mathrm{~S}} \sum_{\ell \geq 1}\left(\left.R_{j \ell}\left(f^{*}\right)\right|^{2}\right)^{\frac{1}{2}} .\right.
\end{aligned}
$$

Therefore,-we-may-follow-the-above-argument-for-A-just-replacing- f by- f^{*}.-

Remark 1.1.4. A-careful-reading-of-the-proof-of-Theorems 1.0 .1 and 1.0 .2 shows-that-we-may-use-different-Hilbert-space-decompositions- $\mathcal{H}=-\oplus_{j} \mathcal{H}_{j}=-\oplus_{j} \mathcal{K}_{j}$ for- B_{S} and-its-inverse--with $-\beta\left(\mathrm{B}_{\mathrm{S}}\right) \subseteq \mathcal{H}_{\mathrm{S}}$ and $-\beta\left(\mathrm{B}_{\mathrm{S}}^{-1}\right) \subseteq \mathcal{K}_{\mathrm{S}}$ - as-long- as- we- can- find- an- orthonormal- basis $\left\{u_{\ell}:-\ell \geq 1\right\}$ of $-\mathcal{H}$ satisfying-that-

$$
\begin{equation*}
\forall \ell \geq 1-\exists j_{1}, j_{2} \in[n]-\text { such-that- } u_{\ell} \in \mathcal{H}_{j_{1}} \cap \mathcal{K}_{j_{2}} \tag{1.1}
\end{equation*}
$$

More-precisely,-under-these-more-flexible-assumption-we-get-

$$
\begin{aligned}
& \frac{1}{\binom{n}{l}} \sum_{\left(\mathrm{S}_{1=k}\right.} \sum_{g \in \mathrm{~B}_{\mathrm{S}}} \widehat{f}(g) \lambda(g)^{-}{ }_{p}^{p} \lesssim_{p, \sigma} \frac{k}{n} \sum_{j=1}^{n}\left[(| \mathrm { D } _ { j } (f) | _ { p } ^ { p } + - \mathrm { D } _ { j } ^ { \dagger } (f ^ { * }) | \begin{array} { c }
{ p } \\
{ p }
\end{array}] \left(+\left(\frac{k}{n}\right)^{\frac{p}{2}}\|f\|_{p}^{p},\right.\right. \\
& \text { where- } \mathrm{D}_{j}^{\dagger}:=-\sum_{\ell} \ell_{\ell} \in \mathcal{K}_{j} \partial_{u_{\ell}}(\cdot) \otimes \otimes e_{\ell, 1} \text { is-the-gradient-over-the-basis-vectors-living-in- } \mathcal{K}_{j} \text {-- }
\end{aligned}
$$

1.2.- APPLICATIONS TO ABELIAN GROUPS

Remark 1.1.5. The constant depending-on σ in Theorem 1.0 .1 grows-as- $\sigma^{-\frac{p}{2}}$. One-can-also-track-the-dependence-on- p of -the-constant.- Using-free-generators-in-place- of-random-signs- - Theorem-1.1.2 holds- as- well- we- keep- constants- uniformly- bounded- replacing-noncommutative-by-free-Khintchine-inequalities-[28].- The-constants-in-Theorem-1.1.1-are-bounded-by- $p^{3 / 2}$,-but it is still open-whether this is optimal.-

1.1.4 Proof of Theorem 1.0 .2

Again- Theorem-1.1.1 gives-

$$
\frac{1}{\binom{n x}{p}} \sum_{\substack{S \subseteq[n] \\ \mathrm{s} \mid=k}}\left\|\mathrm{E}_{[n] \backslash \mathrm{S}} f\right\|_{p}^{p} \asymp_{p} \mathrm{~A}+\mathrm{B}^{-}
$$

as ${ }^{-1}$ - the- proof- of- Theorem-1.0.1.- Following- our- argument- there,- we- use- our- estimate-$\mathrm{A}-\lesssim_{p} \mathrm{~A}_{1}^{\prime}+\mathrm{A}_{2}^{\prime}$ and-we-bound- A_{2}^{\prime} in-the-same-way.- To-estimate- A_{1}^{\prime} we-use-our-distinguished-family-of-derivatives-and-Theorem-1.1.1 to-deduce-

$$
\mathrm{A}_{1}^{\prime}=-\frac{k}{n} \sum_{j=1}^{n}\left(\sum_{\ell \geq 1}\left(\left.R_{u_{j \ell}} \partial_{j} f\right|^{2}\right)^{\frac{1}{2}}{ }_{p}^{p} \lesssim_{p} \frac{k}{n} \sum_{j=1}^{n} \partial_{j} f_{p}^{p}\right.
$$

The-estimate-for-B-then-follows-by-the-same-considerations-as-in-Theorem1.0.1-

1.2 Applications to abelian groups

We-now-focus-our-attention-on-concrete-realizations-of-Theorems 1.0.1 and 1.0.2 for-certain-commutative-group-algebras.- In-all-the-cases-in-this-section,-we-choose- $\mathrm{E}_{[n] \backslash}$ of-the-form-

$$
\mathrm{E}_{[n] \backslash \mathrm{S}} f=-\sum_{g \in \mathrm{~B}_{\mathrm{S}}}\left(\hat{f}(g) \lambda(g)^{-} \text {for-some-subgroup- } \mathrm{B}_{\mathrm{S}} \text { of- } \mathrm{G} .\right.
$$

Due-to-that-fact,-we-know-that-they-are-conditional-expectations,-and-therefore-completely-contractive-maps.-This-allows-us to-safely-apply-Theorems 1.0.1 and 1.0 .2 without-checking-that-hypothesis.- We- will- give-the-details-for-the-cases- $\mathrm{G}^{-}=-\mathbb{Z}^{n}$ and- $-\mathrm{G}^{-}=-\mathbb{Z}_{2 m}^{n}$, - yielding-inequalities-in- $L_{p}\left(\mathbb{T}^{n}\right)$-and- $L_{p}\left(\mathbb{Z}_{2 m}^{n}\right)$,-respectively.-

1.2.1 Classical tori

Define-

$$
\begin{aligned}
& \psi_{1}(g)=-\left|g_{1}\right|+\cdots+\left|g_{n}\right|, \\
& \psi_{2}(g)=g_{1}^{2}+g_{2}^{2}+\cdots+g_{n}^{2},
\end{aligned}
$$

with- $g=\left(g_{1}, g_{2}, \ldots, g_{n}\right)-\in \mathbb{Z}^{n}$.- Both-functions-are-symmetric-and-vanish-at-0.- Moreover,-conditional- negativity- follows- easily.- In- the case- of ψ_{1}, - it- suffices- to- check- it- for- each-summand- $\left|g_{j}\right|$ which- are- conditionally- negative- from- subordination- with- respect- to- g_{j}^{2} -

These-functions-are-denoted-as the-word-and the-Euclidean-length-respectively.-We-analyze-balanced-Fourier-truncations-using-both-geometries.-
A)- The-Euclidean-length.- The- length- ψ_{2} induces-the-standard- cocycle- $(\mathcal{H}, \alpha, \beta)$ - where-$\mathcal{H}=-\mathbb{R}^{n}$ with- the- usual- Euclidean- inner- product,- the- trivial- action- and- the- canonical inclusion- $\beta=$-Id.- We- use- the-standard- decomposition- $\mathcal{H}=-\bigoplus_{j}\left(\mathcal{H}_{j}\right.$ with- $\mathcal{H}_{j}=-\mathbb{R} e_{j}$ the-subspace-generated-by-the- j-th-element-of-the-canonical-basis.- therefore,- given- $\mathrm{S} \subseteq[n]$, denote-by- \mathbb{Z}^{S} the-subgroup-of-elements-with-vanishing-entries-outside- S and-consider-the-truncations-

$$
\mathrm{E}_{[n] \backslash \mathrm{S}} f(x)=-\sum_{g \in \mathbb{Z}^{\mathrm{S}}}\left(\hat{f}(g) e^{2 \pi i\langle x, g\rangle} \quad \text { for-any- } \quad f \in L_{p}\left(\mathbb{T}^{n}\right) \simeq L_{p}\left(\mathcal{L}\left(\mathbb{Z}^{n}\right)\right),\right.
$$

where- $e^{2 \pi i\langle\cdot, g\rangle} \mapsto \lambda(g)$-defines-a-trace-preserving $-*$-homomorphism.- The-cocycle-derivatives-coincide- in- this- case- with- the- classical- ones- $\partial_{e_{j}} \lambda(g)=2 \pi i g_{j} \lambda(g)$ - and- the- infinitesimal-generator- Δ-is-the-usual-Laplacian-(up-to-a-universal-constant)-with-spectral-gap- 1 .- Then,Theorem 1.0.1 yields-

$$
\begin{equation*}
\frac{1-}{\binom{n}{k}} \sum_{\substack{\mathbf{S} \subseteq[n] \\ \mathbf{S} \mid=k}} \sum_{g \in \mathbb{Z}^{\mathbf{S}}}\left(\hat{f}(g) e^{2 \pi i\langle\cdot, g\rangle}{ }_{L_{p}\left(\mathbb{T}^{n}\right)}^{p} \lesssim_{p} \frac{k}{n} \sum_{j=1}^{n}\left\|\partial_{e_{j}} f\right\|_{L_{p}\left(\mathbb{T}^{n}\right)}^{p}+-\left(\frac{k}{n}\right)^{\frac{p}{2}}\|f\|_{L_{p}\left(\mathbb{T}^{n}\right)}^{p}\right. \tag{1.2}
\end{equation*}
$$

for- any- mean-zero- $f \in L_{p}\left(\mathbb{T}^{n}\right)$.- This- seems- to- be- the- most- natural- generalization- of-Naor's- inequality- for- classical- tori,- but- it- is- not the- most- efficient.- Indeed,- using- the-same-Hilbert-space-decomposition-as- above,- one- can- consider-the- alternative-absorbent-derivatives- $\partial_{j} \lambda(g)=-\delta_{g_{j} \neq 0} \lambda(g)$,- which-satisfy- $\partial_{e_{j}} \circ \partial_{j}=-\partial_{e_{j}}$ - In-particular-Theorem-1.0.2 yields-

$$
\frac{1-}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \tag{1.3}\\
\mathrm{S} \mid=k}} \sum_{g \in \mathbb{Z}^{s}}\left(\widehat { f } (g) e ^ { 2 \pi i \langle \cdot , g \rangle } \begin{array} { l }
{ p } \\
{ L _ { p } (\mathbb { T } ^ { n }) }
\end{array} \lesssim _ { p } \frac { k } { n } \sum _ { j = 1 } ^ { n } \left(\partial_{j} f\left\|_{L_{p}\left(\mathbb{T}^{n}\right)}^{p}+-\left(\frac{k}{n}\right)^{\frac{p}{2}}\right\| f \|_{L_{p}\left(\mathbb{T}^{n}\right)}^{p} .\right.\right.
$$

This-is-a-stronger-inequality-since-

$$
\left\|\partial_{j} f\right\|_{L_{p}\left(\mathbb{T}^{n}\right)}=-\frac{1}{2 \pi} \sum_{g_{j} \neq 0} \frac{1-\widehat{g_{j}} \widehat{g_{e_{j}}} f(g) e^{2 \pi i \leftharpoonup \cdot g\rangle} L_{p_{p}\left(\mathbb{T}^{n}\right)} \leq C_{p}\left\|\partial_{e_{j}} f\right\|_{L_{p}\left(\mathbb{T}^{n}\right)}}{}
$$

Indeed,-the-symbol- $m(g)=1 / g_{j}$ defines-an- L_{p}-bounded-multiplier-as-a-consequence-of-K.-de-Leeuw-restriction-theorem-and-Hörmander-Mikhlin-multiplier-theorem- [13, $\sqrt{21},-58]$.- As-we-shall-see- (1.3)-naturally-appears-using-the-word-length.-

Remark 1.2.1. Consider- $f:-\mathbb{T}^{n} \rightarrow \mathbb{C}$ with-

$$
f(x)=-\sum_{g \in \mathbb{Z}^{n}}\left(\hat{f}(. g) e^{2 \pi i\langle x, g\rangle} \quad \text { and }-\widehat{f}(0)=-0\right.
$$

28-

1.2.- APPLICATIONS TO ABELIAN GROUPS

Given-S $\subseteq[n]$,-the-classical-Poincaré-inequality-gives-

$$
\begin{aligned}
& =-\frac{1}{\binom{n X}{h}} \sum_{\substack{\begin{subarray}{c}{|\leq[n]\\
| \mathbf{S} \mid=k} }}\end{subarray}}\left([\sum _ { j \in S } \not f _ { j } \partial _ { e _ { j } } f] \left\{_{p}^{p}\right.\right. \\
& \leq \frac{1}{\binom{n=}{f}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
|\mathbf{S}|=k}}\left(\sum_{j \in \mathrm{~S}} f_{j} \partial_{e_{j}} f_{p}^{p}=-\sum_{j=1}^{n} f_{j} \partial_{e_{j}} f^{p}{ }_{p}^{p}\right.
\end{aligned}
$$

for ${ }^{-} \sigma_{j}(\varepsilon, \mathrm{~S})={ }^{-} \varepsilon_{j} \otimes \delta_{j \in \mathrm{~S}}$,-as-defined-at-the-beginning-of-this-chapter.- Applying- [34]-gives-

$$
\frac{1^{-}}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\|\mathbf{S}|=k}} \sum_{g \in \mathbb{Z}^{\mathbf{S}}}\left(\widehat{f}(g) e^{2 \pi i\langle\cdot, g\rangle}{ }_{p}^{p} \lesssim_{p} \frac{k}{n} \sum_{j=1}^{n}\left\|\partial_{e_{j}} f\right\|_{p}^{p}+-\left(\frac{k}{n}\right)^{\frac{p}{2}}|\nabla f|_{p}^{p} .\right.
$$

Inequalities- 1.2 -and- 1.3 -improve-the-above-inequality-replacing- $|\nabla f|$ by- f.-
B)-The-word-length.- Let-us-now-study-which-inequality-do-we-get-with-the-word-length.-The-cocycle-associated-to-it-is-infinite-dimensional,-with-an-orthonormal-basis-which-can-be-described- as- oriented- edges- in the- coordinate-axes- of- the- Cayley- graph- of- \mathbb{Z}^{n}.- More-precisely,-the-associated-Gromov-form-on- $\mathbb{R}\left[\mathbb{Z}^{n}\right]$ - is-

$$
\left\langle\delta_{g}, \delta_{h}\right\rangle_{\psi_{1}}=-\frac{1}{2}\left(\psi_{1}(g)+\psi_{1}(h)-\psi_{1}(h-g)\right)=\sum_{j=1}^{n} \min -\left\{\left|h_{j}\right|,\left|g_{j}\right| \quad \delta_{g_{j} \cdot h_{j}>0} .\right.
$$

Given- $g \in \mathbb{Z}^{n}$ and- $j \in[n]$,-define-

$$
g_{[j]}^{-}=-g-\operatorname{sgn}\left(g_{j}\right) e_{j} \quad \text { with }-\operatorname{sgn}(0)-=-0 .
$$

Then,-we-may-construct-the-following-elements-in- $\mathbb{R}\left[\mathbb{Z}^{n}\right]$ -

$$
w_{g, j}=-\delta_{g}-\delta_{g_{[j]}^{-}} \quad \text { and }-\quad u_{j}(\ell)=-w_{\ell e_{j}, j} .
$$

Lemma 1.2.2. If $\mathcal{H}_{\psi_{1}}=-\mathbb{R}\left[\mathbb{Z}^{n}\right] / \operatorname{Ker}\langle\cdot, \cdot\rangle_{\psi_{1}}$, the following properties hold:

- $\left\langle u_{j}(\ell), u_{j}(\ell)\right\rangle_{\psi_{1}}=1-$ for all $(j, \ell)^{-\in[n]-\times \mathbb{Z} \backslash\{0\} .}$
- $\left\langle u_{j}(\ell), u_{j^{\prime}}\left(\ell^{\prime}\right)\right\rangle_{\psi_{1}}=0$ - whenever $j \neq-j^{\prime}$ or $\ell \neq \ell^{\prime}$.
- $w_{g, j}=-u_{j}\left(g_{j}\right)-$ since the difference belongs to $\operatorname{Ker}\langle\cdot, \cdot\rangle_{\psi_{1}}$.

Proof. First,-let $-(j, \ell)-\in[n]-\times \mathbb{Z} \backslash\{0\}$.- Then, ${ }^{-}$there-holds-

$$
\begin{aligned}
\left\langle u_{j}(\ell), u_{j}(\ell)\right\rangle_{\psi_{1}} & =-\left\langle\delta_{\ell e_{j}}-\delta_{(\ell-\operatorname{sgn}(\ell)) e_{j}}, \delta_{\ell e_{j}}-\delta_{(\ell-\operatorname{sgn}(\ell)) e_{j}}\right\rangle_{\psi_{1}} \\
& =-|\ell|-2(|\ell|-1)-+|\ell|-1=1 .
\end{aligned}
$$

Whenever $\ell \neq-\ell^{\prime}$,-it-follows-that-

$$
\begin{aligned}
\left\langle u_{j}(\ell),\right. & \left.u_{j}\left(\ell^{\prime}\right)\right\rangle_{\psi_{1}}=-\left\langle\delta_{\ell e_{j}}-\delta_{(\ell-\operatorname{sgn}(\ell)) e_{j}}, \delta_{\ell^{\prime} e_{j}}-\delta_{\left(\ell^{\prime}-\ell^{\prime}\right) e_{j}}\right\rangle_{\psi_{1}} \\
& =-\left\langle\delta_{\ell e_{j}}, \delta_{\ell^{\prime} e_{j}}\right\rangle_{\psi_{1}}-\left\langle\delta_{\ell e_{j}}, \delta_{\left(\ell^{\prime}-\ell^{\prime}\right) e_{j}}\right\rangle_{\psi_{1}}-\left\langle\delta_{(\ell-\operatorname{sgn}(\ell)) e_{j}}, \delta_{\ell^{\prime} e_{j}}\right\rangle_{\psi_{1}}+-\left\langle\delta_{(\ell-\operatorname{sgn}(\ell)) e_{j}}, \delta_{\left(\ell^{\prime}-\ell^{\prime}\right) e_{j}}\right\rangle_{\psi_{1}} \\
& =-\min \left\{|\ell|,\left|\ell^{\prime}\right|\right\} \delta_{\ell \cdot \ell^{\prime}>0}-\min \left\{|\ell|,\left|\ell^{\prime}\right|-1\right\} \delta_{\ell \cdot\left(\ell^{\prime}-\operatorname{sgn}\left(\ell^{\prime}\right)\right)>0} \\
& -\min \left\{|\ell|-1,\left|\ell^{\prime}\right|\right\} \delta_{(\ell-\operatorname{sgn}(\ell)) \cdot \ell^{\prime}>0}+\min \left\{|\ell|-1,\left|\ell^{\prime}\right|-1\right\} \delta_{(\ell-\operatorname{sgn}(\ell)) \cdot\left(\ell^{\prime}-\operatorname{sgn}\left(\ell^{\prime}\right)\right)>0},
\end{aligned}
$$

so-we-can-assume-that- $\ell \cdot \ell^{\prime}>0$-and- $|\ell|<\left|\ell^{\prime}\right|$,- what- yields-that-the-scalar-product-above-vanishes.- Whenever $-j \neq-k$, -it- is-trivial- that $-\left\langle u_{j}(\ell), u_{k}\left(\ell^{\prime}\right)\right\rangle_{\psi_{1}}=-0$.- On- the-other-hand,- the-third-claim-follows-by-induction-from-the-identity-

$$
w_{g, j}=-w_{g_{[k]}^{-}, j}
$$

for-any- $j \neq-k$.- Indeed,-denoting $-g_{[j, k]}^{-}=\left(g_{[j]}^{-}\right)_{[k]}^{-}$, , the-inner-product-

$$
\begin{aligned}
\left\langle w_{g, j}-w_{g_{[k]}^{-}, j},\right. & \left.w_{g, j}-w_{g_{[k]}^{-}, j}\right\rangle_{\psi_{1}}=\left\langle\left\langle\delta_{g}-\delta_{g_{[j]}^{-}}-\delta_{g_{[k]}^{-}}+\delta_{g_{[j, k]}^{-}}, \delta_{g}-\delta_{g_{[j]}^{-}}-\delta_{g_{[k]}^{-}}+\delta_{g_{[j, k]}^{-}}\right\rangle_{\psi_{1}}\right. \\
& =-\left\langle\delta_{g}, \delta_{g}\right\rangle_{\psi_{1}}-\left\langle\delta_{g}, \delta_{g_{[j]}^{-}}\right\rangle_{\psi_{1}}-\left\langle\delta_{g}, \delta_{g_{[k]}^{-}}\right\rangle_{\psi_{1}}+\left\langle\delta_{g}, \delta_{g_{[j, k]}^{-}}\right\rangle_{\psi_{1}} \\
& -\left\langle\delta_{g_{[j]}^{-}}, \delta_{g}\right\rangle_{\psi_{1}}+\left\langle\delta_{g_{[j]}^{-}}, \delta_{g_{[j]}^{-}}\right\rangle_{\psi_{1}}+\left\langle\left\langle\delta_{g_{[j]}^{-}}, \delta_{g_{[k]}^{-}}\right\rangle_{\psi_{1}}-\left\langle\delta_{g_{[j]}^{-}}, \delta_{g_{[j, k]}^{-}}\right\rangle_{\psi_{1}}\right. \\
& -\left\langle\delta_{g_{[k]}^{-}}, \delta_{g}\right\rangle_{\psi_{1}}+-\left\langle\delta_{g_{[k]}^{-}}, \delta_{g_{[j]}^{-}}^{-}\right\rangle_{\psi_{1}}+\left\langle\left\langle\delta_{g_{[k]}^{-}}, \delta_{g_{[k]}^{-}}\right\rangle_{\psi_{1}}-\left\langle\delta_{g_{[k]}^{-}}, \delta_{g_{[j, k]}^{-}}\right\rangle_{\psi_{1}}\right. \\
& +-\left\langle\delta_{g_{[j, k]}^{-}}, \delta_{g}\right\rangle_{\psi_{1}}-\left\langle\delta_{g_{[j, k]}^{-},}, \delta_{g_{[j]}^{-}}\right\rangle_{\psi_{1}}-\left\langle\delta_{g_{[j, k]}^{-}}, \delta_{g_{[k]}^{-}}\right\rangle_{\psi_{1}}+-\left\langle\delta_{g_{[j, k]}^{-},}, \delta_{g_{[j, k]}^{-}}\right\rangle_{\psi_{1}}
\end{aligned}
$$

vanishes-due-to-cancellations.-

Lemma-1.2.2,-together-with-the-identity-

$$
\begin{aligned}
\delta_{g} & =\sum_{j=1, g_{j} \neq\left(\sum _ { 0 } ^ { n } \left(\sum_{k=0}^{\left|g_{j}\right|-1} \delta_{\left(g_{1}, \ldots, g_{j}-k \operatorname{sgn}\left(g_{j}\right), 0, \ldots, 0\right)}-\delta_{\left(g_{1}, \ldots, g_{j}-(k+1) \operatorname{sgn}\left(g_{j}\right), 0, \ldots, 0\right)}\right.\right.} \\
& =\sum_{j=1, g_{j} \neq 0}^{n}\left(\sum_{k=0}^{\left|g_{j}\right|-1} \delta_{g_{j}-k \operatorname{sgn}\left(g_{j}\right)}-\delta_{g_{j}-(k+1) \operatorname{sgn}\left(g_{j}\right)},\right.
\end{aligned}
$$

this-implies - that the-set-

$$
\left\{u_{j}(\ell):(j, \ell)-\in[n]-\times \mathbb{Z} \backslash\{0\}\right\}(
$$

1.2.- APPLICATIONS TO ABELIAN GROUPS

is-an-orthonormal-basis-for- $\mathcal{H}_{\psi_{1}}$ - The-cocycle-map-is-given-by- $\beta(g)=-\delta_{g}$ and -the-orthogonal-action- α satisfies- $\alpha_{g}\left(\delta_{h}\right)=-\delta_{g+h}-\delta_{g}$.- This-means-that-for-any- $g \in \mathbb{Z}^{n}$ we-have-

$$
\alpha_{g}\left(u_{j}(\ell)\right)=-\delta_{g+\ell e_{j}}-\delta_{g+\ell e_{j}-(\operatorname{sgn}(\ell)) e_{j}} .
$$

Therefore,- the-subspaces- $\mathcal{H}_{\psi_{1}, j}=-\operatorname{span}\left\{u_{j}(\ell):-\ell \in \mathbb{Z} \backslash\{0\}\right\}$ are- α-invariant-for- $j \in[n]$. This-proves-that-the-same-conditional-expectations- $\mathrm{E}_{[n] \backslash S}$ considered-before-still-define-an-admissible-family- of- Fourier-truncations.- The- cocycle-derivative- associated- to- $u_{j}(\ell)$-acts-as-follows:-

$$
\begin{aligned}
\partial_{u_{j}(\ell)} \lambda(g) & =2 \pi i\left\langle u_{j}(\ell), \delta_{g}\right\rangle_{\psi_{1}} \lambda(g) \\
& =2 \pi i\left(\min -\left\{\left|g_{j}\right|,|\ell| \delta_{g_{j} \cdot \ell>0}-\min -\left\{\left|\phi_{j}\right|,|\ell|-1-\delta_{g_{j} \cdot(\ell-\operatorname{sgn}(\ell))>0}\right) \lambda(g)-\right.\right. \\
& =2 \pi i \delta_{\left\{g_{j} \cdot \ell>0,\left|g_{j}\right| \geq|\ell|\right\}} \lambda(g) .
\end{aligned}
$$

The-Laplacian-is-

$$
\Delta_{\psi_{1}} f=-\sum_{g \in \mathbb{Z}^{n}}\left(\psi_{1}(g) \widehat{f}(g) \lambda(g),\right.
$$

whose-spectral-gap-is-still- $\sigma=-\min _{j} \psi_{1}\left(e_{j}\right)=-1$.- Theorem 1.0 .1 yields-

$$
\frac{1-}{\binom{n}{k}} \sum_{\substack{S \subset[n] \tag{1.4}\\
\mathrm{S}[=k}} \sum_{g \in \mathbb{Z}^{\mathbf{S}}}\left(\widehat{f}(g) e^{2 \pi i\langle\cdot g\rangle,} \begin{array}{l}
L_{p}\left(\mathbb{T}^{n}\right) \\
\lesssim p \\
n \\
j=1
\end{array}\left\|\left|\mathrm{D}_{j} f\right|\right\|_{L_{p}\left(\mathbb{T}^{n}\right)}^{p}+-\left(\frac{k}{n}\right)^{\frac{p}{2}}\|f\|_{L_{p}\left(\mathbb{T}^{n}\right)}^{p},\right.
$$

with-

$$
\left\|\left|\mathrm{D}_{j}(f)\right|\right\|_{L_{p}\left(\mathbb{T}^{n}\right)}=-\left\|\left|\mathrm{D}_{j}\left(f^{*}\right)\right|\right\|_{L_{p}\left(\mathbb{T}^{n}\right)}=-\left(\sum_{\ell \in \mathbb{Z} \backslash\{0 \mid\{ }\left(\left|\partial_{u_{j}(\ell)} f\right|^{2}\right)^{\frac{1}{2}} L_{L_{p}\left(\mathbb{T}^{n}\right)} .\right.
$$

Remark 1.2.3. Note- that- $\left|\partial_{u_{j}(\ell)}(f)\right| \neq-\left.\left|\partial_{u_{j}(\ell)}\left(f^{*}\right)\right|\right|^{-}$Thus,- nontrivial- cocycle- actions-lead- to- noncommutative-phenomena-even-when-working- with-abelian-groups,-as- pointed-out-in- 40 .- In- spite- of- that,- observe- that- $\left\langle\delta_{-g}, u_{j}(\ell)\right\rangle_{\psi}=-\left\langle\delta_{g}, u_{j}(-\ell)\right\rangle_{\psi}$ which- implies-$\left\|\left|\mathrm{D}_{j}(f)\right|\right\|_{p}=-\left\|\left|\mathrm{D}_{j}\left(f^{*}\right)\right|\right\|_{p}$ as-claimed-above.-

On-the-other-hand,-taking-

$$
\partial_{j} \lambda(g):=-\frac{1-}{2 \pi i}\left(\partial_{u_{j}(1)}+\partial_{u_{j}(-1)}\right)=-\delta_{g_{j} \neq 0} \lambda(g)^{-}
$$

we $^{-}$get $-\partial_{u_{j}(\ell)} \circ \partial_{j}=\partial_{u_{j}(\ell)}$ for-any $-(j, \ell)-\in[n]-\times \mathbb{Z} \backslash\{0\}$.- Thus,-Theorem 1.0 .2 gives ${ }^{-}$

$$
\frac{1-}{\binom{n}{k}} \sum_{\substack{s \subseteq[n] \\ \mathbf{s} \mid=k}} \sum_{g \in \mathbb{Z}^{s}}\left(\hat{f}(. g) e^{2 \pi i\langle\cdot, g\rangle\rangle}{ }_{L_{p}\left(\mathbb{T}^{n}\right)} \lesssim_{p} \frac{k}{n} \sum_{j=1}^{n}\left\|\partial_{j} f\right\|_{L_{p}\left(\mathbb{T}^{n}\right)}^{p}+-\left(\frac{k}{n}\right)^{\frac{p}{2}}\|f\|_{L_{p}\left(\mathbb{T}^{n}\right)}^{p}\right.
$$

for-any-mean-zero- $f \in L_{p}\left(\mathbb{T}^{n}\right)$.- This-recovers-inequality-(1.3)-and-improves- 1.4).-

1.2.2 Discrete tori

Consider- the- word-length- $|g|=-\min \{g, 2 m-g\}$ in- $\mathbb{Z}_{2 m}$ - $^{-}$As-shown- in- [42],- it- defines- aconditionally negative-symmetric-length.- In particular the-same-holds for the-corresponding-length-in-the-product- $\mathbb{Z}_{2 m}^{n}$

$$
\psi(g)=-\left|g_{1}\right|+\left|g_{2}\right|+\cdots+-\left|g_{n}\right| \quad \text { for }-g=\left(g_{1}, \ldots, g_{n}\right)-\in \mathbb{Z}_{2 m}^{n}
$$

This-word-length-has-many-similarities-with-the-previous-one-

$$
\left\langle\delta_{g}, \delta_{h}\right\rangle_{\psi}=-\frac{1}{2}(\psi(g)+-\psi(h)-\psi(h-g))\left(=-\frac{1}{2}-\sum_{j=1}^{n}\left|g_{j}\right|+\left|h_{j}\right|-\left|h_{j}-g_{j}\right| .\right.
$$

Given- $g \in \mathbb{Z}_{2 m}^{n}$ and- $j \in[n]$,-define

$$
w_{g, j}=-\delta_{g}-\delta_{g-e_{j}} \quad \text { and }-u_{j}(\ell)=-w_{\ell e_{j}, j} \quad \text { for }-1-\leq \leq 2 m
$$

If- $\mathcal{H}_{\psi}=-\mathbb{R}\left[\mathbb{Z}_{2 m}^{n}\right] / \operatorname{Ker}\langle\cdot, \cdot\rangle_{\psi}$, -we-find-that,-in-an-analogous-way-as-in-Lemma 1.2 .2 ,

- $\left\langle u_{j}(\ell), u_{j}(\ell)\right\rangle_{\psi}=-1$ for-all- $(j, \ell)-\in[n]-\times[m]$.-
- $\left\langle u_{j}(\ell), u_{j^{\prime}}\left(\ell^{\prime}\right)\right\rangle_{\psi}=-0$-whenever $-j \neq j^{\prime}$ or $\ell \neq \ell^{\prime}, \ell^{\prime}+m$.-
- $w_{g, j}=-u_{j}\left(g_{j}\right)$-since-the-difference-belongs-to-Ker $\langle\cdot, \cdot\rangle_{\psi^{-}}$.
- $u_{j}(\ell)=-u_{j}(\ell+m)$-since-the-difference-belongs-to- $\operatorname{Ker}\langle\cdot, \cdot\rangle_{\psi}{ }^{-}$
- $\left\langle\delta_{\ell e_{j}}, \delta_{\ell^{\prime} e_{j}}\right\rangle_{\psi}=-\min -\left\{\ell, 2 m-\ell^{\prime}, \max \left\{0, m-\ell^{\prime}+\ell\right\} \quad\right.$ for $-1-\ell \leq \ell^{\prime} \leq 2 m$.-

Altogether,-this-implies-that-the-set-

$$
\left\{u_{j}(\ell):(j, \ell)-\in[n]-\times[m]\right\}(
$$

is-an-orthonormal-basis-for- \mathcal{H}_{ψ}. The-cocycle-map-is-given-by- $\beta(g)=-\delta_{g}$ and -the-orthogonal-action- α satisfies- $\alpha_{g}\left(\delta_{h}\right)=\delta_{g+h}-\delta_{g}$.- This-means-that-for-any- $g \in \mathbb{Z}_{2 m}^{n}$ we-have-

$$
\alpha_{g}\left(u_{j}(\ell)\right)=-\delta_{g+\ell e_{j}}-\delta_{g+(\ell-1) e_{j}}
$$

Therefore,- the-subspaces- $\mathcal{H}_{\psi, j}=-\operatorname{span}\left\{u_{j}(\ell):-\ell \in[m]\right\}$ give-again-an- α-invariant-splittingof $-\mathcal{H}_{\psi}$ with $-j$ running- over- $[n]$.- In- particular,- the- conditional- expectations $\mathrm{E}_{[n] \backslash S}$ over-the-subgroups- $\mathbb{Z}_{2 m}^{S}$ define- an- admissible- family- of- Fourier- truncations- and- the- cocycle-derivatives-are-given-by-

$$
\partial_{u_{j}(\ell)} \lambda(g)=2 \pi i \delta_{\left\{\ell \leq g_{j}<\ell+m\right\}} \lambda(g) .
$$

The-associated-Laplacian-has-spectral-gap-equal- to- $1 .-$ As-before,- Theorem-1.0.1 yields-a-statement-that-we-omit-because-it-can-readily-be-improved.-If-we-set-as-before- $\partial_{j} \lambda(g)=:=$

1.2.- APPLICATIONS TO ABELIAN GROUPS

$\delta_{g_{j} \neq 0} \lambda(g)$-for $-j \in[n]$,-we-immediately-see-that $-\partial_{u_{j}(\ell)} \circ \partial_{j}=-\partial_{u_{j}(\ell)}$. - Moreover,-we-can-rewrite it-as-follows-

$$
\partial_{j} \lambda(g)=\frac{1-}{2 \pi i}\left(\partial_{u_{j}(1)} \lambda(g)+\partial_{u_{j}(m)} \lambda(g)\right)-\delta_{g_{j}=m} \lambda(g) .
$$

Next,-note-that-we-may-write-the-last-term-as-follows-

$$
\delta_{g_{j}=m} \lambda(g)=-\mathrm{E}_{\{0, m\}, j}\left(\frac{1-}{\nmid \pi i} \partial_{u_{j}(1)} \lambda(g)\right)=-\frac{1-}{4 \pi i} \mathrm{E}_{\{0, m\}, j}\left(\oint_{u_{j}(1)} \lambda(g)+\partial_{u_{j}(m)} \lambda(g)\right),
$$

where- $\mathrm{E}_{\{0, m\}, j}$ is- the- conditional- expectation- onto- $\mathbb{Z}_{2 m}^{j-1} \times\{0, m\} \times \mathbb{Z}_{2 m}^{n-j}$.- Then,- after applying-Theorem 1.0 .2 one-gets-the-following-for-mean-zero- $f:-\mathbb{Z}_{2 m}^{n} \rightarrow \mathbb{C}$

$$
\begin{align*}
\frac{1-}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}} \sum_{\substack{ \\
\mathbb{Z}_{2 m}^{\leq}}}\left(\widehat{f}(g) e^{\frac{\pi i}{m}\langle\cdot, g\rangle}{ }_{p}^{p}\right. & \lesssim p \frac{k}{n} \sum_{j=1}^{n}\left\|\partial_{j} f\right\|_{p}^{p}+\left(\frac{k}{n}\right)^{\frac{p}{2}}\|f\|_{p}^{p} \tag{1.5}\\
& \lesssim \frac{k}{n} \sum_{j=1}^{n}\left(\partial_{u_{j}(1)}+\partial_{u_{j}(m)}\right) f_{p}^{p}+\left(\frac{k}{n}\right)^{\frac{p}{2}}\|f\|_{p}^{p} .
\end{align*}
$$

Remark 1.2.4. Inequality- 1.5 - for $-\mathbb{Z}_{2 m}^{n}$ with- $m=-1$ - generalizes - Naor's- inequality- N_{p}) for-the-hypercube.- Just-identify- $g \in \mathbb{Z}_{2}^{2}$ with- $\exp (\pi i g)-\epsilon\{ \pm 1\}$.- Then-note-that- $\partial_{j}^{1}=2 \partial_{j}^{2}$, where- ∂_{j}^{1} is- the-discrete-derivative- used- by-Naor- and $-\partial_{j}^{2}$ is- our- choice- of ∂_{j} in- 1.5 - for-$m=-1 .-$ Moreover,- we-can- consider- weighted- forms- of- Naor's- inequality- by- considering-different-measures-on-the-same-group- \mathbb{Z}_{2}^{n} to-get-different-cocycle-representations.- We-next show-that-this-does-not-lead-to-an-improvement-over-the-result-in- 60 .-Indeed,-let-G- $=-\mathbb{Z}_{2}^{n}$ and-equip $-\Gamma-=-\widehat{\mathrm{G}}-=\Omega_{n}$ with -the-measure -

$$
\mu=-\sum_{j=1}^{n} \not \alpha_{j} \delta_{w_{j}},
$$

with $-\alpha_{j} \geq 0^{-}$and $-w_{j}=-(1, \ldots, 1,-1,1, \ldots, 1)^{-}=-(1,1, \ldots, 1)^{-}-2 e_{j}$ for $-j \in[n]$.- IdentifyingG with-the-power-set-of- $[n]$-we-identify- $g=-e_{A}=-\sum_{j}\left(\in_{A} e_{j}\right.$ with- A.- Following-Example-B-from-[40,-Subsection-1.4],-we-consider-the-conditionally-negative-length-function-

$$
\psi(\mathrm{A}):=-1-W_{\mathrm{A}}{\stackrel{1}{L_{2}(\Gamma, \mu)}}_{2}^{2}
$$

Then- ψ may-be-represented-by-the-cocycle- $\left(\mathcal{H}_{\psi}, \alpha, \beta\right)$-with-

$$
\mathcal{H}_{\psi}=-L_{2}(\Gamma, \mu), \quad \alpha_{\mathrm{A}}(u)=-W_{\mathrm{A}} \cdot u, \quad \beta(\mathrm{~A})=1-W_{\mathrm{A}} .
$$

Then- $\left\{\psi_{j}=-\alpha_{j}^{-\frac{1}{2}} \delta_{w_{j}}:=j \in[n]\right.$ - is-an-ONB-and-the-cocycle-derivatives-are-given-by-

$$
\begin{aligned}
\partial_{u_{j}} W_{\mathrm{A}} & =-\frac{2 \pi i}{\sqrt{\alpha_{j}}}\left\langle\beta(\mathrm{~A}), \delta_{w_{j}}\right\rangle_{\psi} W_{\mathrm{A}} \\
& =4 \pi i \sqrt{\alpha_{j}} \delta_{j \in \mathrm{~A}} W_{\mathrm{A}}=2 \pi i \sqrt{\alpha_{j}} \partial_{j} W_{\mathrm{A}},
\end{aligned}
$$

where- ∂_{j} denotes-the- j-th-discrete-derivative.- Then,-Riesz-transforms-take-the-form-

$$
R_{u_{j}} f=-\sum_{\mathrm{A} \subseteq[n]} \frac{\left\langle\beta(\mathrm{A}), \delta_{w_{j}}\right\rangle_{\psi}}{\sqrt{\ell_{j} \psi(\mathrm{~A})^{-}}} \widehat{f}(\mathrm{~A}) W_{\mathrm{A}}=-\sum_{\substack{\mathrm{A} \subseteq[n] \\ j \in \mathrm{~A}}}\left(\frac{\sqrt{\alpha_{j}}}{\sqrt{\sum_{\ell \in A} \alpha_{\ell}}} \widehat{f}(\mathrm{~A}) W_{\mathrm{A}} .\right.
$$

Consider- the- decomposition- $\mathcal{H}_{\psi, j}=-\mathbb{R} \delta_{w_{j}}{ }^{-}$Note- $\alpha_{\mathrm{A}}\left(\delta_{w_{j}}\right)=-W_{\mathrm{A}} \delta_{w_{j}}=(-1)^{\delta_{j \in \mathrm{~A}}} \delta_{w_{j}}$, ${ }^{\text {- }}$ - ${ }^{-}$ $\alpha_{\mathbf{A}}\left(\mathcal{H}_{\psi, j}\right) \subseteq \mathcal{H}_{\psi, j}$ and- the-decomposition- is- equivariant.- Therefore,- the- associated-condi-tional-expectation-can-be-chosen-to-be-

$$
\mathrm{E}_{[n] \backslash \mathrm{S}} f=-\sum_{\beta(\mathrm{A}) \in \mathcal{H}_{\mathrm{S}}} \widehat{f}(\mathrm{~A}) W_{\mathrm{A}}=-\sum_{\mathrm{A} \subseteq \mathrm{~S}} \widehat{f}(\mathrm{~A}) W_{\mathrm{A}} .
$$

Finally,-Theorem 1.0.1 yields-

$$
\begin{aligned}
\frac{1}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
|\mathrm{S}|=k}}(& \sum_{\mathrm{A} \subseteq \mathrm{~S}} \widehat{f}(\mathrm{~A}) W_{\mathrm{A}}^{p}{ }_{L_{p}\left(\Omega_{n}\right)}^{p} \\
& \lesssim \frac{1-}{\sigma^{p / 2}} \frac{k}{n} \sum_{j=1}^{n} \alpha_{j}^{\frac{p}{2}}\left\|\partial_{j} f\right\|_{L_{p}\left(\Omega_{n}\right)}^{p}+\left(\frac{k}{n}\right)^{\frac{p}{2}}\|f\|_{L_{p}\left(\Omega_{n}\right)}^{p} \\
& =\frac{k}{n} \sum_{j=1}^{n}\left(\frac{\alpha_{j}}{\min _{k \in[n]} \alpha_{k}}\right)^{\frac{p}{2}}\left\|\partial_{j} f\right\|_{L_{p}\left(\Omega_{n}\right)}^{p}+\left(\frac{k}{n}\right)^{\frac{p}{2}}\|f\|_{L_{p}\left(\Omega_{n}\right)}^{p}
\end{aligned}
$$

since $-\sigma=-\min _{k \in[n]} \psi(\{k\})=-4 \min _{k \in[n]} \alpha_{k}$. . Thus-taking- $\alpha_{j}=-1$-for-all- j is-optimal. -
Remark 1.2.5. It-is-natural-to-ask-if-the-situation-changes-much-when-the-cyclic-groups under- consideration- have- odd- cardinal.- The- function- $\psi(g)=-\sum_{j}^{n} /=1\left|g_{j}\right|$ with- $\left|g_{j}\right|=-$ $\min \left\{g_{j}, 2 m+1-g_{j}\right\}$ is- a- conditionally- negative- length- on- $\mathbb{Z}_{2 m+1}^{n}$, - and- so- there- exists an-associated-cocycle-induced-by-the-Gromov-form-

$$
\begin{aligned}
\left\langle\delta_{g}, \delta_{h}\right\rangle & =-\frac{1}{2^{-}}(\psi(g)+\psi(h)--\psi(g-h))(\\
& =-\sum_{j=1}^{n} \min -\left\{g_{j}, 2 m+1-h_{j}, \max -\left\{\varphi, m-h_{j}+g_{j}+-\frac{1^{-}}{2^{-}}\right\} .\right.
\end{aligned}
$$

It-defines-a-cocycle-Hilbert-space- \mathcal{H}_{ψ} with-dimension- $2 m n$.-Indeed,-it-holds-

$$
w_{g, j}=u_{j}\left(g_{j}\right)-\text { and }-u_{j}(\ell)=-u_{j}(\ell+m-1) \text {-for-any }-j \in[n],
$$

so- our- question- can-be-reduced- to- the-study- of- the- case- $n=-1$.- Therefore,- the- matrix-

1.2.- APPLICATIONS TO ABELIAN GROUPS

associated-to-scalar-product-is-

		2	$m-1-$	m	$m+1-$	$m+2$	$2 m-1$	
1 -	1	$1-$	1-	1	1/2	$0-$	0	0 -
2 -	0	$2-$	$2-$	2	$3 / 2$	1/2-	0	0 -
$m-1-$	1	$2-$	$m-1$ -	$m-1$ -	$\frac{2(m-2)+1}{2}$	$\frac{2(m-3)+1}{2}$	1/2	0
m	1	$2-$	$m-1-$	m	$\frac{2(m-1)+1}{2}$	$\frac{2(m-2)+1}{2}$	$3 / 2$	1/2
$m+1-$	$1 / 2$	3/2-	$\frac{2(m-2)+1}{2}$	$\frac{2(m-1)+1}{2}$	${ }_{\text {m }}$	${ }^{2}-1$	2	,
$m+2-$	0	$1 / 2$		$\frac{2(m-2)+1}{2}$	$m-1$	$m-1$ -	2	1
				2				
	${ }^{0}$		0	1/2	$1-$	$1-$		1-

Let- us- denote- this- matrix- by- A.- By- applying- the- elementary- row- operations- row ${ }_{j}=-$ row $_{j}-$ row $_{j-1}$ for $-j=2, \ldots, m$ and row $_{j}=$-row $_{j}-$ row $_{j+1}$ for- $j=-m+1, \ldots, 2 m+-1$,-we-get-the-matrix-

	1	$2-$	m -	m	$m+1-$	$m+2$	$2 m-1$	$2 m$
	${ }^{1}$	$1-$	$1-$	1	$1 / 2$	0	0	
2	(0	$1-$		1	1	$1 / 2$	0	$0-$
$m-1$ -	0 -	$0-$	$1-$	$1-$	$1-$	$1-$	$1 / 2$	$0-$
m	$0-$	$0-$	$0-$	$1-$	$1-$	$1-$	$1-$	1/2-
$m+1-$	1/2-	$1-$	$1-$	$1-$	$1-$	0	0	0
$m+2$	0	1/2	1	1	$1-$	$1-$	0	0
$2 m$	(0	$1 / 8$ $0-$	\ldots 0	\ldots	.	\cdots	.	$1{ }^{-}$

By-doing the-operations-row ${ }_{j}=$ row $_{j}-$ row $_{j+m}$,-and-considering the-linear-system- $A x=-0$, we-obtain- $x_{j}=-x_{j-m}$ for $-j \in[m]$.- Then,- this-reduces-our-problem-to-solving- the-system$B y=-0$-where- $y=\left(x_{1}, \ldots, x_{m}\right)$-and- B is-the- $m \times m$ matrix-

$$
\begin{aligned}
& \quad 1 \\
& 1- \\
& 2^{-} \\
& \ldots \\
& m-1- \\
& m
\end{aligned} \quad\left(\begin{array}{ccccc}
\beta / 2 & 1- & \ldots & m-1 & m \\
1 & 3 / 2- & \ldots & 1 & 1- \\
\cdots & \ldots & \ldots & \ldots & \ldots \\
1 & 1- & \ldots & 3 / 2 & 1- \\
1 & 1- & \ldots & 1 & 3 / 2^{-}
\end{array}\right)(
$$

Now,-by-doing-row-operations-row $=-$ row $_{j}-$ row $_{m}$,-we-obtain- $x_{j}=-x_{m}$ for-any- $j \in[m-1]$, so $^{-}(m+1 / 2) x_{m}=-0$ - and- every-variable- x_{j} vanishes-for-any- $j \in[2 m]$.- Therefore, $-A$ has rank- $2 m$,- and-since-it- is-symmetric,- it-is-diagonalizable-with-nonzero-diagonal- elements.-This-provides-an-orthogonal-basis-of-cardinal- $2 m$ for- $\mathbb{R}\left[\mathbb{Z}_{2 m+1}\right]$.- Therefore,-Theorems 1.0 .1 and -1.0 .2 apply-in-this-setting.

1.3 Applications to free products

We-now- explore-applications- of- Theorem-1.0.2 after-replacing- the-direct-products-in-the-previous-section-by-free-products.- Given-a-free-product- G - $=-\mathrm{G}_{1} * \mathrm{G}_{2} * \ldots * \mathrm{G}_{n}$ a-general-element- $g \in \mathrm{G}$-can-always-be-written-in-reduced-form- $g=-g_{i_{1}} g_{i_{2}} \cdots g_{i_{s}}$ where- $g_{i_{k}} \in \mathrm{G}_{i_{k}}$ and$i_{1} \neq-i_{2} \neq \cdots \neq-i_{s}$. We-shall-be-working-with-the-free-group- $\mathbb{F}_{n}=-\mathbb{Z} * \mathbb{Z} * \cdots * \mathbb{Z}$ and-with-the-free-product- $\mathbb{Z}_{2 m}^{* n}$ of- n copies-of- $\mathbb{Z}_{2 m}$. - In-both-cases-we-shall-write- $g_{1}, g_{2}, \ldots, g_{n}$ for-the-canonical-generators-and- a^{-}- eneric-element-will-be-a-word-of-the-form-

$$
w=-g_{i_{1}}^{\ell_{1}} g_{i_{2}}^{\ell_{2}} \cdots g_{i_{s}}^{\ell_{s}}
$$

with $-i_{1} \neq-i_{2} \neq \cdots \neq-i_{s}$ and $-\ell_{k}$ in- \mathbb{Z} or $-\mathbb{Z}_{2 m}$ accordingly.-

1.3.1 The free group

Define-

$$
|w|=\sum_{j=1}^{r} \mid\left\langle\ell_{j}\right| \quad \text { for }-w=g_{i_{1}}^{\ell_{1}} \ldots g_{i_{r}}^{\ell_{r}} .
$$

Haagerup-proved-in- 27$]$-that-it-is-conditionally-negative.- The-cocycle-structure-naturally-induced-by-the-word-length- $|\cdot|$ can- be- described-through- the-Hilbert- space- generated-by-outgoing oriented- edges-in-its-Cayley-graph.- To-be-more- precise,- let us- consider-thefollowing partial-order-on \mathbb{F}_{n}. Given $-w_{1}=g_{i_{1}}^{\ell_{1}} \ldots g_{i_{r}}^{\ell_{r}}$ and $-w_{2}=g_{j_{1}}^{t_{1}} \ldots g_{j_{s}}^{t_{s}}$ with $-\ell_{j}, t_{j} \in \mathbb{Z} \backslash\{0\}$, we-say-that- $w_{1} \leq w_{2}$ when-

- $r \leq s$,
- $g_{i_{k}}^{\ell_{k}}=g_{j_{k}}^{t_{k}}$ for $-1-\leq k \leq r-1$,
- $g_{i_{r}}=g_{j_{r}},-\ell_{r} t_{r}>0$-and $-\left|\ell_{r}\right| \leq\left|t_{r}\right|$.

Any- $w_{1} \leq w_{2}$ is- called- an- initial- subchain- of- w_{2}.- As- we- did- with- elements- of- cyclic-groups-equipped-with- their-natural- order-structure,- we- can- now- define- predecessors.- If$w=g_{i_{1}}^{\ell_{1}} \ldots g_{i_{r}}^{\ell_{r}} \neq e$, -we-denote

$$
w^{-}=-g_{i_{1}}^{\ell_{1}} \ldots g_{i_{r}}^{\ell_{r}-\operatorname{sgn}\left(\ell_{r}\right)} .
$$

The-Gromov-form-takes-the-following-expression-in-this-case-

$$
\left\langle\delta_{w_{1}}, \delta_{w_{2}}\right\rangle_{|\cdot|}=-\frac{1}{2}\left(\left|w_{1}\right|+-\left|w_{2}\right|-\left|w_{1}^{-1} w_{2}\right|\right)=-\left|\min \left\{w_{1}, w_{2}\right\}\right|,
$$

where- $\min \left\{w_{1}, w_{2}\right\}$ denotes-the-longest-word-which-is-an-initial-chain-of-both- w_{1} and- w_{2}. Given- $w \neq e$ in- \mathbb{F}_{n},-we-define- $u_{w}=\delta_{w}-\delta_{w^{-}} \in \mathbb{R}\left[\mathbb{F}_{n}\right]$.

Lemma 1.3.1. If $\mathcal{H}_{|\cdot|}=-\mathbb{R}\left[\mathbb{F}_{n}\right] / \operatorname{Ker}\langle\cdot, \cdot\rangle_{|\cdot|}$, the following properties hold:

- $\operatorname{Ker}\left(\langle\cdot, \cdot\rangle_{|\cdot|}\right)=-\mathbb{R} \delta_{e}$.

1.3.- APPLICATIONS TO FREE PRODUCTS

- $\left\langle u_{w}, u_{w}\right\rangle_{|\cdot|}=1$ - for $w \in \mathbb{F}_{n} \backslash\{e\}$.
- $\left\langle u_{w_{1}}, u_{w_{2}}\right\rangle_{|\cdot|}=0$-for $w_{1} \neq w_{2}$ in $\mathbb{F}_{n} \backslash\{e\}$.

Proof. The-first-claim-is-trivial.- On-the-other-hand,-for-any-w $\in \mathbb{F}_{n} \backslash\{0\}$,

$$
\begin{aligned}
\left\langle u_{w}, u_{w}\right\rangle_{|\cdot|} & =-\left\langle\delta_{w}-\delta_{w^{-}}, \delta_{w}-\delta_{w^{-}}\right\rangle=-\left\langle\delta_{w}, \delta_{w}\right\rangle-2\left\langle\delta_{w}, \delta_{w^{-}}\right\rangle+\left\langle\delta_{w^{-}}, \delta_{w^{-}}\right\rangle \\
& =-|w|-2(|w|-1)--|w|-1=1 .
\end{aligned}
$$

Moreover,-if- $w_{1} \neq-w_{2}$,-some-cases-can-be-distinguished.- Suppose- $w_{1}<w_{2}$.- Then,-

$$
\begin{aligned}
\left\langle u_{w_{1}}, u_{w_{2}}\right\rangle & =-\left\langle\delta_{w_{1}}, \delta_{w_{2}}\right\rangle-\left\langle\delta_{w_{1}}, \delta_{w_{2}^{-}}\right\rangle-\left\langle\delta_{w_{1}^{-}}, \delta_{w_{2}}\right\rangle+-\left\langle\delta_{w_{1}^{-}}, \delta_{w_{2}^{-}}\right\rangle \\
& =-\left|w_{1}\right|-\left|w_{1}\right|-\left(\left|w_{1}\right|-1\right)-+\left|w_{1}\right|-1=0 .
\end{aligned}
$$

In-any-other-case, w_{1} and- w_{2} belong-to-two-different-branches- of- the-free-group.- Then, denote- $w\left(w_{1}, w_{2}\right)$-as-the-longest-common-subchain-for- w_{1} and $-w_{2}$.- Therefore,-

$$
\begin{aligned}
\left\langle u_{w_{1}}, u_{w_{2}}\right\rangle & =-\left\langle\delta_{w_{1}}, \delta_{w_{2}}\right\rangle-\left\langle\delta_{w_{1}}, \delta_{w_{2}^{-}}\right\rangle-\left\langle\delta_{w_{1}^{-}}, \delta_{w_{2}}\right\rangle+-\left\langle\delta_{w_{1}^{-}}, \delta_{w_{2}^{-}}\right\rangle \\
& =-w\left(w_{1}, w_{2}\right)-w\left(w_{1}, w_{2}\right)-w\left(w_{1}, w_{2}\right)+w\left(w_{1}, w_{2}\right)=0,
\end{aligned}
$$

and-the-statement-is-proved.-

Lemma 1.3.1- together-with- the-identity-

$$
\delta_{w_{0}}=\sum_{w \leq w_{0}}\left(u_{w} \text { for-any- } w_{0} \in \mathbb{F}_{n} \backslash\{e\},\right.
$$

this-implies-that-

$$
\left\{u_{w}:-w \in \mathbb{F}_{n} \backslash\{e\}\right\}
$$

is-an-orthonormal-basis-of- $\mathcal{H}_{|\cdot|}=-\mathbb{R}\left[\mathbb{F}_{n}\right] / \mathbb{R} \delta_{e}$.- The-cocycle-map-and-the-cocycle-action-are-determined-as-usual-by $-\beta(w)=-\delta_{w}$ and $-\alpha_{w}\left(\delta_{w^{\prime}}\right)=-\delta_{w w^{\prime}}-\delta_{w}$. The-cocycle-derivative-in-thedirection of $-u_{w}$ is

$$
\partial_{u_{w}} \lambda\left(w^{\prime}\right)=2 \pi i\left\langle\beta\left(w^{\prime}\right), u_{w}\right\rangle \lambda\left(w^{\prime}\right)=2 \pi i \delta_{w \leq w^{\prime}} \lambda\left(w^{\prime}\right)-\Rightarrow \partial_{u_{w}} f=2 \pi i \sum_{w \leq w^{\prime}}\left(\widehat{f}\left(w^{\prime}\right) \lambda\left(w^{\prime}\right) .\right.
$$

Next,- we-decompose- $\mathcal{H}_{|\cdot|}$ as-

$$
\mathcal{H}_{|\cdot|}=\bigoplus_{j=1}^{n} \mathcal{H}_{|\cdot|, j} \quad \text { with }-\mathcal{H}_{|\cdot|, j}=-\operatorname{span}\left\{\psi_{w}:-g_{j} \leq w \text { or }-g_{j}^{-1} \leq w .\right.
$$

This-leads-to-consider-the-Fourier-truncations-

$$
\mathrm{E}_{[n] \backslash \mathrm{S}} f:=-\sum_{w \in \mathbb{F}_{\mathrm{S}}}(\hat{f}(w) \lambda(w) .
$$

Being-conditional-expectations,- these-Fourier-truncations-are-completely-contractive-and-pairwise- β-orthogonality- holds- since- we-trivially- have- $\beta\left(\mathbb{F}_{\mathbf{S}}\right)=-\beta\left(\mathbb{F}_{\mathrm{S}}^{-1}\right)-\subseteq \mathcal{H}_{|\cdot|, \mathbf{S}^{-}}$Next,-taking-the-derivatives-

$$
\partial_{j}:=-\frac{1-}{2 \pi i}\left(\partial_{u_{g_{j}}}+\partial_{u_{g_{j}^{-1}}}\right) \quad \text { for } \quad j \in[n],
$$

we-can-readily-check-that- $\partial_{u_{w}} \circ \partial_{j_{1}}=-\partial_{u_{w}}$ whenever- $u_{w} \in \mathcal{H}_{|\cdot|, j_{1}}$. - In-conclusion,- we-have-checked-all- the-hypotheses-to-apply-Theorem-1.0.2 for-our-family-of-Fourier-truncations.-In-this-case-we-get-

$$
\begin{equation*}
\frac{1-}{\binom{n}{k}} \sum_{\substack{\begin{subarray}{c}{|\subseteq[n]\\
| S \mid=k} }}\end{subarray}} \sum_{w \in \mathbb{F}_{\mathrm{S}}}\left(\hat { f } (w) \lambda (w) ^ { - } { } _ { p } ^ { p } \lesssim _ { p } \frac { k } { n } \sum _ { j = 1 } ^ { n } \left[\left(\partial_{j}(f){ }_{p}^{p}+-\partial_{j}\left(f^{*}\right)_{p}^{p}\right]+-\left(\frac{k}{n}\right)^{\frac{p}{2}}\|f\|_{p}^{p} .\right.\right. \tag{1.6}
\end{equation*}
$$

Inequality- 1.6 -is-very-close-to-the-conjectured free-form-of-Naor's-inequality- $\left(\mathrm{FN}_{p}\right)$-at-the-beginning-of-this-chapter,-with-an-extra-adjoint-term-which-we-shall-eliminate-at-the-end-of-the-chapter-by-proving-an-even-stronger-inequality.-

1.3.2 The free product $\mathbb{Z}_{2 m}^{* n}$

A-similar-analysis-applies-as-well-in-this-case.- Given-two-reduced-words-w $w_{1}=g_{i_{1}}^{\ell_{1}} \ldots g_{i_{r}}^{\ell_{r}}$ and- $w_{2}=-g_{j_{1}}^{t_{1}} \ldots g_{j_{s}}^{t_{s}}$ with- $\ell_{j}, t_{j} \in[2 m-1]$,-we-say-that- $w_{1} \leq w_{2}$ if-and-only-if

- $r \leq s$,
- $i_{k}=-j_{k}$ for - any $-k \in[r]-$ and $-\ell_{k}=-t_{k}$ for - any $-k \in[r-1]$,
- either $-\ell_{r}, t_{r} \in[m]-$ and $-i_{r} \leq j_{r}$, or $-i_{r}, j_{r} \in[2 m-1]-\backslash[m-1]$-and $-i_{r} \geq j_{r}$.-

The-map- $\psi:-\mathbb{Z}_{2 m}^{* n} \rightarrow \mathbb{R}_{+}$given-by-

$$
w=-g_{i_{1}}^{\ell_{1}} \ldots g_{i_{r}}^{\ell_{r}} \mapsto \psi(w)=\sum_{k=1}^{r}\left|g_{i_{j}}^{\ell_{j}}\right|=\sum_{k=1}^{r}\left(\operatorname{nin}\left\{\ell_{k}, 2 m-\ell_{k}\right\}\right.
$$

is-a-conditionally-negative-length-function- [27],-with-associated-Gromov-form-

$$
\left.\begin{array}{rl}
\left\langle\delta_{w_{1}}, \delta_{w_{2}}\right\rangle_{\psi} & =\frac{1}{2}\left(\psi\left(w_{1}\right)+\psi\left(w_{2}\right)-\psi\left(w_{1}^{-1} w_{2}\right)\right) \tag{1.7}\\
& =\psi\left(\min \left\{w_{1}, w_{2}\right\}\right)\left(-\frac{1}{2}\left(\psi\left(\eta_{1}\right)+\psi\left(\eta_{2}\right)-\psi\left(\eta_{1}^{-1} \eta_{2}\right)\right) \cdot(\right.
\end{array}\right\}
$$

where- $\min \left\{w_{1}, w_{2}\right\}$ is- again- the-longest common-subchain- and $-w_{j}=-\min \left\{w_{1}, w_{2}\right\} \eta_{j}$ for$j=1,2 .-$ The-second term-above-is-always- 0 -in-the-free-group- \mathbb{F}_{n},-but-not-necessarily-in-this-case.- Given- $w=-g_{i_{1}}^{\ell_{1}} \ldots g_{i_{r}}^{\ell_{r}} \neq e$ we-define- $w^{-}=-g_{i_{1}}^{\ell_{1}} \ldots g_{i_{r}}^{\ell_{r}-1}$ and-construct $-u_{w}=-\delta_{w}-\delta_{w^{-}}$ as-usual.- Then,-we-find that-

- $\left\langle u_{w}, u_{w}\right\rangle_{\psi}=-1$-for-every- $w \in \mathbb{Z}_{2 m}^{* n} \backslash\{e\} .-$

1.3.- APPLICATIONS TO FREE PRODUCTS

- $\left\langle u_{w_{1}}, u_{w_{2}}\right\rangle_{\psi}=-0$ - when $-e \neq-w_{1}^{-1} w_{2} \neq-g_{j}^{m}$ for $-j \in[n]$.
- $\left\langle u_{w_{1}}, u_{w_{2}}\right\rangle_{\psi}=-0$ - when $-w_{1}^{-1} w_{2}=-g_{j}^{m}$ and-both $-w_{1}, w_{2}$ end- with $-g_{j}^{ \pm 1}$.
- If $-w=-g_{i_{1}}^{\ell_{1}} \ldots g_{i_{r}}^{\ell_{r}}$, then $-u_{w}=-u_{w g_{i_{r}}^{m}}$ in $-\mathcal{H}_{\psi}=-\mathbb{R}\left[\mathbb{Z}_{2 m}^{* n}\right] / \operatorname{Ker}\langle\cdot, \cdot\rangle_{\psi}$.

This- proves ${ }^{-t h a t-}$

$$
\left\{u_{w}:-w=-g_{i_{1}}^{\ell_{1}} \ldots g_{i_{r}}^{\ell_{r}} \in \mathbb{Z}_{2 m}^{* n} \backslash\{e\} \text { with }-\ell_{r} \in[m]\right\}(
$$

is- an- orthonormal- basis- of- $\mathcal{H}_{\psi}=-\mathbb{R}\left[\mathbb{Z}_{2 m}^{* n}\right] / \operatorname{Ker}\langle\cdot, \cdot\rangle_{\psi}{ }^{-}$- We- set- as- usual- $\beta(w)=-\delta_{w}$ and $\alpha_{w}\left(\delta_{w^{\prime}}\right)=-\delta_{w w^{\prime}}-\delta_{w} .^{-}$Among-the-above- properties- it- is-perhaps-convenient-to-justify-the-last-one.- Note-that $\left\langle u_{w}+-u_{w g_{i r}^{m}}^{m}, u_{w}+-u_{w g_{i r}^{m}}\right\rangle_{\psi}=-0$-if-and-only-if- $\left\langle u_{w}, u_{w g_{i r}^{m}}\right\rangle_{\psi}=-1$-but-we-have-

$$
\begin{aligned}
\left\langle u_{w}, u_{w g_{i_{r}}^{m}}\right\rangle_{\psi} & =-\frac{1}{2}\left(\left(-\psi\left(g_{i_{r}}^{m}\right)\left(\begin{array}{l}
\left.-\psi\left(\left(w^{-}\right)^{-1} w g_{i_{r}}^{m}\right)+\psi\left(f_{i_{r}}^{m-1}\right)-\psi\left(\left(w^{-}\right)^{-1} w g_{i_{r}}^{m-1}\right)\right)(\\
\\
\end{array}\right)=-\frac{1}{2}\left(\left(-\psi\left(g_{i_{r}}^{m}\right)-\psi\left(g_{i_{r}}^{(n+1}\right)+\psi\left(g_{i_{r}}^{m-1}\right)--\psi\left(g_{i_{r}}^{m}\right)\right)\left(\begin{array}{l}
\\
\\
\end{array}\right)=\frac{1}{2}(-m+m-1+m-1-m)=-1 .\right.\right.\right.
\end{aligned}
$$

If $-w=-g_{i_{1}}^{\ell_{1}} \ldots g_{i_{r}}^{\ell_{r}}$ with- $\ell_{r} \in[m]$,-derivatives-are-given-by-

$$
\begin{equation*}
\partial_{u_{w}} \lambda\left(w^{\prime}\right)=2 \pi i\left\langle\beta\left(w^{\prime}\right), u_{w}\right\rangle_{\psi} \lambda\left(w^{\prime}\right)=2 \pi i \delta_{w^{\prime} \in W(w)} \lambda\left(w^{\prime}\right)- \tag{1.8}
\end{equation*}
$$

where- $W(w)$-is-the-set-of-those-words- $w^{\prime}=-g_{j_{1}}^{t_{1}} \ldots g_{j_{s}}^{t_{s}}$ satisfying

$$
\begin{equation*}
r \leq s, \quad i_{k}=-j_{k} \text { for }-k \leq r, \quad \ell_{k}=t_{k} \text { for }-k \leq r-1-\quad \text { and }-\quad \ell_{r} \leq t_{r} \leq \ell_{r}+m-1 . \tag{1.9}
\end{equation*}
$$

Indeed, - just- write $-\beta\left(w^{\prime}\right)=-\delta_{w^{\prime}}=-u_{w^{\prime}}+\delta_{w^{\prime}-}=-u_{w^{\prime}}+u_{w^{\prime}}+\delta_{w^{\prime--}}$ and-so-on.- The-inner-product-with- u_{w} will-be-0-unless-we-find- u_{w} in-our-telescopic-sum-above-just-once,-in-which-case-we-get-the-value-1.- Note-that-it-could-appear-twice-due-to-the-identity- $u_{w}=-u_{w g_{i r}^{m}}$ recalled-above.- In-that-case,-they-get-mutually-cancelled-and-we-get- 0 .- This-happens-when-$t_{r}-\ell_{r} \in[2 m-1]-\backslash[m-1]$.

It-remains-to-consider-Fourier-truncations.- As-for-the-free-group,-our-choice-is-the-condi-tional- expectation-into- the-subgroup- $\mathbb{Z}_{2 m}^{* S}=-\left\langle g_{j}:-j \in \mathrm{~S}\right\rangle$.- Then-we-consider- - ${ }^{*}$ - decompo-sition-

$$
\mathcal{H}_{\psi}=\bigoplus_{j=1}^{n} \mathcal{H}_{\psi, j} \quad \text { with }-\mathcal{H}_{\psi, j}=-\operatorname{span}\left\{\psi_{w}:-g_{j} \leq w \text { or }-g_{j}^{-1} \leq w\right.
$$

Our-Fourier-truncations-form-an-admissible-family.-Define-

$$
\partial_{j} \lambda(w)=-\frac{1-}{2 \pi i}\left(\partial_{u_{g_{j}}} \lambda(w)+\partial_{u_{g_{j}^{m}}} \lambda(w)\right)-\delta_{g_{i_{1}}^{\ell_{1}}=g_{j}^{m}} \lambda(w)^{-} \text {for-any- } w=g_{i_{1}}^{\ell_{1}} \ldots g_{i_{r}}^{\ell_{r}} .
$$

In- other-words, $-\partial_{j} \lambda(w)=-\delta_{i_{1}=j} \lambda(w)$ - for $-w \neq e$ and $-\partial_{u_{w}} \circ \partial_{j}=-\partial_{u_{w}}$ for $-u_{w} \in \mathcal{H}_{\psi, j}$ - $^{-}$The ${ }^{-}$ construction-above- yields-the-form-of-Theorem-1.0.2 on-the-von-Neumann-algebra- of-the-free-product $-\mathbb{Z}_{2 m}^{* n}$

$$
\frac{1^{-}}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\ \mathrm{S}[=k}} \sum_{w \in \mathbb{Z}_{2 n}^{* 5}}\left(\widehat { f } (w) \lambda (w) ^ { - - } { } _ { p } ^ { p } \lesssim _ { p } \frac { k } { n } \sum _ { j = 1 } ^ { n } \left(\partial_{j}(f){ }_{p}^{p}+\partial_{j}\left(f^{*}\right)_{p}^{p}+-\left(\frac{k}{n}\right)^{\frac{p}{2}}\|f\|_{p}^{p} .\right.\right.
$$

1.3.3 Free Hilbert transforms

Compared-to- $\left(\overline{\mathrm{FN}_{p}}\right)$, the-form-of-Theorem 1.0 .2 for-free-groups-gives-the-additional-terms-$\partial_{j}\left(f^{*}\right)$.- These-terms-seem-to- be- necessary- in- the- general- context- of- Theorem-1.0.2- but-they-are-removable-for-free-groups- -in-fact,-we-shall-prove-an-even-stronger-inequality -due-to-a-singular-behavior-of-word-length-derivatives-for-free-groups.- This-comes-from-the-following-identity-

$$
\left\langle\delta_{w_{1}}, u_{w_{2}}\right\rangle_{|\cdot|}=-\operatorname{sgn}\left(\left\langle\delta_{w_{1}}, u_{w_{2}}\right\rangle_{\cdot \mid}\right) \neq-\left\langle\beta\left(w_{1}\right), u_{w_{2}}\right\rangle
$$

since-the-above-inner-product-can-only-take-the-values- 0 - or- 1 .- This-means-in-particular-that-word-length-derivatives-can-beregarded-as free forms-of-directional-Hilbert transforms,-which-were-recently-investigated-by-Mei- and-Ricard-in-[55].- To-be-more-precise,-if- $\mathbb{A}_{\mathbf{S}}$ is-the-set-of-free-words-whose-first-letter-is-in- $\mathbb{F}_{\mathbf{S}}$, it-turns-out-that-distinguished-derivatives-satisfy-

$$
\partial_{j}=-\frac{1-}{2 \pi i}\left(\partial_{u_{g_{j}}}+\partial_{u_{g_{j}^{-1}}}\right)=\text {-Projection-onto- } \mathbb{A}_{\{j\}} .
$$

The-free-Hilbert-transforms-for-mean-zero- f are-defined-as-

$$
H_{\varepsilon}(f)=-\sum_{j=1}^{n} \not{ }_{j} \partial_{j}(f)-\text { for }-\varepsilon_{j}= - \pm 1
$$

Mei-and-Ricard-proved-in-555-the-following-crucial-inequality-

$$
\begin{equation*}
\left\|H_{\varepsilon} f\right\|_{L_{p}\left(\mathcal{L}\left(\mathbb{F}_{n}\right)\right)} \asymp_{p}\|f\|_{L_{p}\left(\mathcal{L}\left(\mathbb{F}_{n}\right)\right)} \quad \text { for-any- } \quad 1-<p<\infty \tag{1.10}
\end{equation*}
$$

Theorem 1.3.2. If $p \geq 2$-and $k \in[n]$, every mean-zero $f \in L_{p}\left(\mathcal{L}\left(\mathbb{F}_{n}\right)\right)$-satisfies

$$
\frac{1^{-}}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\ \mathrm{S}[=k}} \sum_{w \in \mathbb{A}_{S}}\left(\hat { f } (w) \lambda (w) ^ { - \frac { p } { L _ { p } (\mathcal { L } (\mathbb { F } _ { n })) } } \lesssim _ { p } \frac { k } { n } \sum _ { j = 1 } ^ { n } \left(\partial_{j}(f)_{L_{p}\left(\mathcal{L}\left(\mathbb{F}_{n}\right)\right)}^{p}+-\left(\frac{k}{n}\right)^{\frac{p}{2}}\|f\|_{L_{p}\left(\mathcal{L}\left(\mathbb{F}_{n}\right)\right)}^{p}\right.\right.
$$

Proof. Define ${ }^{-}$

$$
h=-\sum_{w \in \mathbb{A}_{\mathrm{S}}} \widehat{f}(w) \lambda(w)=-\sum_{j \in \mathrm{~S}} \partial_{j}(f) .
$$

1.3.- APPLICATIONS TO FREE PRODUCTS

Applying-inequality- 1.10 -we-obtain-

$$
\|h\|_{p} \asymp_{p} \mathbb{E} H_{\varepsilon}(h)_{p}=-\mathbb{E} \sum_{j \in S} \not{ }_{j} \partial_{j}(f){ }_{p}
$$

The-result-follows-from-Theorem-1.1.2 and-another-application-of- 1.10 -for- f -

Corollary 1.3.3. Inequality $\left(\overline{F_{p}}\right)$-holds for $p \geq$ 2- and any mean-zero $f \in L_{p}\left(\mathcal{L}\left(\mathbb{F}_{n}\right)\right)$.
Proof. It-follows-from-Theorem 1.3 .2 and-the-trivial-inequality-

$$
\sum_{w \in \mathbb{F}_{S}} \widehat{f}(w) \lambda(w)_{p}=-\sum_{w \in \mathbb{F}_{S}}\left(\hat{h}(w) \lambda(w)_{p}^{-} \leq\|h\|_{p}=-\sum_{w \in \mathbb{A}_{S}} \widehat{f}(w) \lambda(w)_{p}^{-}\right.
$$

where- h is-defined-as-in-the-proof-of-Theorem-1.3.2,-since-we-note-that- $\mathbb{F}_{\mathrm{S}} \subseteq \mathbb{A}_{\mathrm{s}}$. $^{-}$

Remark 1.3.4. It-is-conceivable-that-Theorem-1.3.2 or-at-least-Corollary 1.3 .3 could-have-been-proved-as-well-from-a-generalized-form-of-Theorem-1.0.2 in-the-line-of-Remark-1.1.4,-but-we-have-not-found-an-argument-using-such-an-approach.-

Remark 1.3.5. Hilbert- transforms- can- also- be- constructed- on- $\mathcal{L}\left(\mathbb{Z}_{2 m}^{* n}\right)$.- They- are- $L_{p^{-}}$ bounded-maps-as-well-there,-as-shown-in-[55,-Theorem-3.5].-Therefore,-Theorem -1.3 .2 can-also-be-proved-with-this-technique-replacing- \mathbb{F}_{n} by- $\mathbb{Z}_{2 m}^{* n}$ in-the-statement.-

Chapter 2

X_{p} inequalities and the metric geometry of Banach spaces

A-key-innovation-in-63]-is-the-introduction-of-a-family-of-inequalities,-termed- X_{p} inequal-ities.- Let-us-briefly-recall-the-results-in-that-paper.- We-view-the-set- $\mathbb{Z}_{8 m}^{n}$ as-a-probability-space-equipped- with- the-normalized-counting-measure.- A- metric- space- $(\mathbb{X}, d)^{-}$- is- said- to-be-a-metric X_{p} space if-for-each- $n \in \mathbb{N}$ and- $k \in[n]$,- there- exists- $m \in \mathbb{N}$ such-that-every-mapping- $f:-\mathbb{Z}_{8 m}^{n} \rightarrow \mathbb{X}$ satisfies-the-following-estimate-for- $p \geq 2$

$$
\begin{aligned}
& \quad \frac{1-}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}}\left(\mathrm{E}\left[d\left(\mathrm{M} \mathrm{I}_{4 m \varepsilon_{\mathrm{S}}} f(x), f(x)\right)^{p}\right]\right. \\
& \left(\mathrm{MX}_{p}\right)^{-} \quad \lesssim_{p} m^{p}\left(\frac { k } { n } \sum _ { j = 1 } ^ { n } \mathrm { E } [d (\mathrm { Y } _ { e _ { j } } f (x) , f (x)) ^ { p }] \left(1-\left(\frac{k}{n}\right)^{\frac{p}{2}} \mathrm{E}\left[d\left(\mathbb{X}\left(\bigwedge_{\varepsilon} f(x), f(x)\right)^{p}\right]\right)\right.\right.
\end{aligned}
$$

Above,- the-dummy-variable- (ε, x)-belongs-to ${ }^{-} \Omega_{n} \times \mathbb{Z}_{8 m}^{n},{ }^{-} \varepsilon_{\text {S }}$ denotes-the-S-truncated-vector ${ }^{-}$ $\sum_{j}\left(\in \mathrm{~S} \varepsilon_{j} e_{j}\right.$, -the-expectation- E is-taken-in-the-product-probability-space,-and-the-operatorsM_{v} are-just-translations-given-by-

$$
\mathrm{M}_{v} f(x)=-f(x+-v)
$$

They- are- Fourier ${ }^{-}$multipliers,- which- will- become- relevant- later.- Consider- the- Lebesgue-spaces- $L_{p}=-L_{p}(0,1) .-$ The-main-result-in-63]-then-asserts-that- L_{p} is-a-metric- X_{p} space, -while- L_{q} is-not-if- $2-<q<p$.- This-and-the-fact-that-being-a-metric- X_{p} space-is-invariantunder the-action-of-bi-Lipschitz-maps-provides the-quantitative-nonembeddability-argument-of- L_{q} into- L_{p} via-bi-Lipschitz-embeddings.- Given-two-metric-spaces- $\left(\mathbb{X}, d_{\mathbb{X}}\right)$ - and- $\left(\mathbb{Y}, d_{\mathbb{Y}}\right)$,-we-say-that-that- $\left(\mathbb{X}, d_{\mathbb{X}}\right)$-admits-a-bi-Lipschitz embedding into- $\left(\mathbb{Y}, d_{\mathbb{Y}}\right)$-whenever-there-exist$s \in(0, \infty)$-and- $D \geq 1$-and-a-map- $f: \mathbb{X} \rightarrow \mathbb{Y}$ such-that-there-holds-

$$
s d_{\mathbb{X}}(x, y)^{-} \leq d_{\mathbb{Y}}(f(x), f(y))-\leq s D d_{\mathbb{X}}(x, y)^{- \text {for-any- }} x, y \in \mathbb{X}
$$

Then,- the-bi-Lipschitz distortion of \mathbb{X} into- \mathbb{Y} will-be-defined-as-the-infimum- over- those-constants- D for-which-this-happens-for-some-s and- f,- and-we-will-denote-it-by- $c_{\mathbb{Y}}(\mathbb{X})$.-

Note-that-the-metric- X_{p} inequality-for- L_{p} is-not-true-independently-of-the-value-of- m. - It-is necessary-that-it-scales-at-least-so-that- $m \gtrsim \sqrt{\eta / k}$,-even-though-the-bound-was-not-found-yet-to-be-sharp-in-[63].-Little-after-it,-Naor-found-in- 60 -a-different-proof-of-the-metric- X_{p} inequality-which was-quantitatively-optimal.- Namely,-it turns-out that the necessary-bound$m \gtrsim \sqrt{\eta / k}$ is,-indeed,-sufficient.- Once- $\left(\sqrt{\mathrm{N}_{p}}\right)$-has-been-established,-the-metric- X_{p} inequality-for-all- classical- L_{p} spaces-follows-from-it- plus- the- natural-injection- of the-multiplicativegroup $-\Omega_{n}$ into- $\mathbb{Z}_{2 m}^{n}$ needed-to-define-the-multipliers- $\mathrm{M}_{\varepsilon}(f)(x)=-f(x+\varepsilon)$-for $-f:-\mathbb{Z}_{2 m}^{n} \rightarrow \mathbb{C}$. This- is- the-starting- point- of- our-work.- We-seek-new- metric- X_{p} inequalities that-can-be-proven-using-appropriate-versions-of- $\left(N_{p}\right)$.-In-chapter-1](or- $[8]$), a-wide-range-of-inequalities-of-this-kind-is-established-for-the-(noncommutative)- L_{p} spaces-associated-with-the-group-von-Neumann-algebra- $\mathcal{L}(G)$-of-a-discrete-group-G.- Seeking-the-greatest-possible-generality,-we-shall-consider-below-different-choices-of-abelian-groups-H-that-will-play-the-role-of- \mathbb{Z}_{2}^{n} in- 60 .- Therefore,-in-the-evaluation $-\mathrm{M}_{\varepsilon} f(x):=-f(x+\varepsilon)$,- the-variable $-\varepsilon \in \widehat{\mathrm{H}}$ but-that-may-not-be-the-case-for- x,-which-imposes-a-compatibility-condition-between-the two-variables.-This-is-a-crucial-difficulty-and- the-main-contribution-in-this-chapter-is-to-darify-when-a-chaos-type-inequality-like- $\left(\mathrm{N}_{p}\right)$ - as-those-obtained-in-chapter 1 -can-be-used-to-deduce-a-new-metric- X_{p}-type-inequality.-

Let-us-now-explain-our-abstract-result,-we-refer-to-chapter-1for-notation-regarding-analysis-on-group-von-Neumann-algebras.- Let-H-be-a-discrete-abelian-group-which-can-be-written-as-a-direct-product:-

$$
\mathrm{H}=\mathrm{H}_{1} \times \mathrm{H}_{2} \times \cdots \times \mathrm{H}_{n}
$$

equipped-with-its-counting-measure.- Given- $\mathrm{S} \subseteq[n]$,-we-define-the-truncation-of- H -on- S as-the-subgroup- $\mathrm{H}_{\mathrm{S}}=-x_{j \in \mathrm{~S}} \mathrm{H}_{j} \hookrightarrow \mathrm{H}$.- Truncations-are-transferred-to-the-dual-group- $\widehat{\mathrm{H}}$,-which-is-a-probability-space-with-Haar-measure- $d x$.- Assume-also-that- G^{-}- is-an-arbitrary-discrete-group,- and-let $p \geq 2$.- We-say- that- (H, G) - is- an- X_{p}-representable pair if-the-following-conditions-hold:-
(RP-1)- Balanced truncations. We-have-

$$
\frac{1^{-}}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\ \mathrm{S} \mid=k}}\left(\mathrm{E}_{[n] \backslash \mathrm{S}} \otimes \mathrm{Id}\right) h{ }_{p}^{p} \lesssim_{p} \frac{k}{n} \sum_{j=1}^{n}\left(\partial_{j} \otimes \mathrm{Id}\right) h_{p}^{p}+-\left(\frac{k}{n}\right)^{\frac{p}{2}}\|h\|_{p}^{p},
$$

for- $k \in[n]$,-any-mean-zero- $h \in L_{p}\left(\widehat{\mathrm{H}} ; L_{p}(\mathcal{L}(\mathrm{G}))\right)$,-and-where-

$$
\mathrm{E}_{[n] \backslash \mathrm{S}} f(x)=-\int\left(f\left(x_{\mathrm{S}}+z_{[n] \backslash \mathrm{S}}\right)-d z\right.
$$

is-the-conditional-expectation-onto-functions-which-only-depend-on-variables-in- $\widehat{\mathrm{H}}_{\mathrm{s}}$ -The- ∂_{j} are-linear-maps-which-play-the-role-of-directional-derivatives.-
(RP-2)-Compatibility conditions. There-exists-an-abelian-group-

$$
\Gamma=\Gamma_{1} \times \Gamma_{2} \times \cdots \times \Gamma_{n}
$$

and-a-map- $\eta: \widehat{\mathrm{H}} \rightarrow \widehat{\Gamma}$ guch-that-the-following-compatibility-conditions-hold:-
i)- Symmetri申 indusion. Given $\mathbf{S}^{S} \subseteq[n]$,- the ${ }^{-}$variables ${ }^{-} \eta_{\mathbf{S}^{\prime}}(y)^{-}:=-(\eta(y))_{\mathbf{S}^{\prime}}$ and $^{-}$ $-\eta_{\mathrm{S}}(y)$-(using-here-additive-notation)-have-the-same-distribution.
ii)- Uniformly bounded translations. There-exists-a-group-of-Fourier multipliers$\left\{\mathrm{M}_{\gamma}\right\}_{\gamma \in \widehat{\Gamma}}$, completely-and-uniformly-bounded-on- $L_{p}(\mathcal{L}(\mathrm{G}))$.

Theorem 2.0.1. Let $p \geq 2$ - and (H, G) - be an X_{p}-representable pair. Let $k \in[n]$ - and suppose that $m \in \mathbb{N}$ satisfies $m \geq \sqrt{\eta / k}$. Then, for every $f \in L_{p}(\mathcal{L}(\mathrm{G}))$-there holds

$$
\begin{aligned}
& \frac{1-}{\binom{n \pi}{\neq}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S}=k}} \int_{\widehat{\mathrm{H}}} \mathrm{M}_{4 m \eta_{\mathrm{S}}(y)} f-f_{p}^{p} d y \\
& \quad \lesssim p m^{p} \frac{k}{n} \sum_{j=1}^{n} \int\left(\partial_{j} \mathrm{M}_{2 \eta(y)} f_{p}^{p} d y+\left(\frac{k}{n}\right)^{\frac{p}{2}} \int_{\widehat{\mathrm{H}}} \mathrm{M}_{\eta(y)} f-f_{p}^{p} d y\right) \cdot
\end{aligned}
$$

Metric- X_{p} inequalities-from- 60,63$]$-apply-for-functions- $f:-\mathbb{Z}_{8 m}^{n} \rightarrow \mathbb{X}$.- Theorem-2.0.1 is-an inequality- for $-f \in L_{p}(\mathcal{L}(G))$,-so- that- it-should-be-regarded-as- a-generalization-where- we-replace- $\mathbb{Z}_{8 m}^{n}$ by-the-dual-group-of-G.- Note-that-its-dual-is-a-quantum-group-rather-than a-classical-group-when- G - is nonabelian.- Additionally,- the-role- of- H - is- merely- to- provide-an-index-set-over-which-translations-are-performed,-which- generalizes-the-former-role- of-\mathbb{Z}_{2}^{n}.- In- particular,- Theorem-2.0.1 generalizes- $\left(\mathrm{MX}_{p}\right)^{-}$- with- $(\mathrm{H}, \mathrm{G})^{-}=-\left(\mathbb{Z}_{2}^{n}, \mathbb{Z}_{8 m}^{n}\right)$,- auxiliarygroup $-\Gamma^{-}=-\mathbb{Z}_{8 m}^{n}$ and $-\eta$ being- the- natural inclusion-defined-coordinatewise-by-1- $\mapsto 1$ - and $(-1) \mapsto 8 m-1$. - Note- that -
$\left(\partial_{j}\right)-$

$$
\iint_{d_{2}^{n}} \partial_{j} \mathrm{M}_{2 \eta(y)} f_{p}^{p} d y \lesssim_{p}\left\|\mathrm{M}_{e_{j}} f-f\right\|_{p}^{p}
$$

holds-when- ∂_{j} is-the-aforementioned-discrete-derivative-in-the- j-th-direction.- The-role-ofΓ - was-hidden- in- $60,-63]$.- This- is- natural- since-it- is- possible- to- formulate- Theorem-2.0.1 without-appealing-to- the-existence- of $-\eta$ and- Γ.- Indeed,- one-can-find-axioms- on-a-family-of-multipliers- $\left\{\mathrm{M}_{y}\right\}_{y \in \mathrm{H}}$ and-their-powers--so-that-they-act-like-translations-which-are-formally-weaker than (RP-1) and (RP-2) and-suffice to-get the-conclusion-of-Theorem 2.0 .1 -We-have-chosen-to-formulate-our-result-in-this-manner-because-in-all-of-our-examples-we-may-identify the-auxiliary-objects η and- Γ,-which-is-an-efficient-way-of-checking that-we-can-apply-Theorem 2.0.1- However-the-existence-of-weaker-conditions-can-be-useful-for-future-constructions- and-we-will- detail- them- in- Section-2.1.- In- the-general- case,- the- improved-statement-that-one-gets-when-an-inequality-like- $\left(\partial_{j}\right)$-holds-is-a - true-metric-inequality,-while-
the-conclusion-of-Theorem-2.0.1 is-not-in-general.- In-our-other-examples,-we-shall-choose-derivatives-whose-relation-with-the-multipliers- M_{v} yields-the-stronger,-metric-statement.-

The- proof- of- Theorem-2.0.1 follows- the-strategy- in- 60.- Our- main- contribution- is- the-identification-of-the-right-conditions-under-which-said-strategy-can-be-extended-to-numer-ous- contexts,-including-noncommutative- ones.- We-illustrate- Theorem-2.0.1 with-several-concrete-scenarios,-some-of-which-we-describe-next.- In-each-case, (RP-1) is-checked-using-the-results-in-chapter-17and-we-focus-in-getting-fully-metric-statements.-
i)-Continuous metric X_{p} inequalities. Taking- $\mathrm{H}-=-\mathrm{G}-=-\mathbb{Z}^{n}$,-we-obtain-two-continu-ous-statements-in-the-n-dimensional-torus-using-two-different-choices-for-the-inclusion-η.- One-of-them-can-be-obtained-from-60-by-an-approximation-procedure,-while-the-other-seems-to-require-Theorem-2.0.1.-
ii)- Cyclic extensions of metric X_{p} inequalities. Let- η_{ℓ} be-the-inclusion-that-maps$\mathbb{Z}_{2 \ell}^{n}$ into $^{-}\{k:-k \in[\ell]$-or $-8 m \ell-k \in[\ell]\} \subseteq \mathbb{Z}_{8 m \ell^{-}}^{n}{ }^{-}$We-prove- ${ }^{-}$- metric- X_{p} inequality-which-reduces- to MX_{p} - for- $\ell=-1$. It-is-sharp-in-terms-of-the-scaling-parameter-m and-entails-the-same-metric-consequences-as-60].-
ii)- Transferred X_{p} inequalities. When-G-is-nonabelian,-we-first-observe-that-our-re-sults-in-chapter 1 hold-with-values-on-noncommutative- L_{p} spaces-over-QWEP-algebras-(see- [69]), - so- that- (RP-1) is-satisfied.- Next,- using- an-appropriate- corepresentation-for- (H, G)-we-obtain $-\mathrm{X}_{p}$ inequalities-on-the-free-group- \mathbb{F}_{n}. $^{-}$

The-above-scenarios-show-the-applicability-of-Theorem-2.0.1.- In-metric-terms-we-observe-that-noncommutative- L_{p} spaces-are-metric- X_{p} spaces.- This-implies-that-the-distortion-es-timates-for ${ }^{-} \ell_{q}$-grids-and- $L_{p^{-}}$-snowflakes-in- 60 -still-hold-when-considering-embeddings-into-noncommutative- L_{p}. Beyond-this, - we-have-not-found-significantly-new-applications-of-our-main-results-in-the-context-of-metric-geometry-so-far.- It-would-be-very-interesting-to-gen-eralize-Theorem 2.0 .1 -so-as-to-include- X_{p}-representable-pairs-(H, G)-admitting-nonabelian translations in-the-index-set-H.-

2.1 Metric X_{p} inequalities

We-emphasize-again-that-we-follow-the-strategy-of-proof-in-60-for-an- X_{p}-representable-pair(H, G),- as-defined-at-the-beginning-of-this-chapter.- Given- $S \subseteq[n]$ - consider-the-auxiliary-operator- T_{S} on- $\mathcal{L}(\mathrm{G})$-given-by-

$$
T_{\mathrm{S}} f=\int\left(\mathrm{M}_{2 \eta_{\mathrm{s}}(y)} f d y, \quad \text { for }{ }^{-} \quad f \in L_{p}(\mathcal{L}(\mathrm{G}))\right.
$$

2.1.- METRIC X_{P} INEQUALITIES

Proof of Theorem 2.0.1 For-each-S $\subseteq[n]$-with $-|\mathrm{S}|=-k$ and $-y \in \mathrm{H}^{-}$

$$
\begin{array}{rll}
\mathrm{M}_{4 m \eta_{\mathbf{S}}(y)} f-f_{p}^{p} & \lesssim_{p} & T_{[n] \backslash \mathrm{S}} f-f_{p}^{p} \\
& +- & \mathrm{M}_{4 m \eta_{\mathbf{S}}(y)} T_{[n] \backslash \mathrm{S}} f-T_{[n] \backslash \mathrm{S}} f{ }_{p}^{p} \\
& + & \mathrm{M}_{4 m \eta_{\mathrm{S}}(y)} f-\mathrm{M}_{4 m \eta_{\mathbf{S}}(y)} T_{[n] \backslash \mathrm{S}} f_{p}^{p}=:-\mathrm{A}+\mathrm{B}+\mathrm{C} .
\end{array}
$$

First,-we-claim-that

$$
\begin{equation*}
T_{\mathrm{S}} f-f{ }_{p}^{p} \lesssim_{p} \iint_{\text {车 }} \mathrm{M}_{\eta(y)} f-f{ }_{p}^{p} d y \text {. } \tag{2.1}
\end{equation*}
$$

Indeed,- by-convexity-of-the- L_{p} norm-

$$
\begin{aligned}
T_{\mathrm{S}} f-f{ }_{p}^{p} & =\int_{\widehat{\mathrm{H}}} \mathrm{M}_{2 \eta_{\mathrm{S}}(y)} f d y-f{ }_{p}^{p} \lesssim_{p} \iint_{\mathrm{t}} \mathrm{M}_{2 \eta_{\mathrm{S}}(y)} f-f{ }_{p}^{p} d y \\
& \leq 2^{p-1}\left(\int\left(\mathrm{M}_{2 \eta_{\mathrm{S}}(y)} f-\mathrm{M}_{\eta(y)} f{ }_{p}^{p} d y+\int_{\widehat{\mathrm{H}}} \mathrm{M}_{\eta(y)} f-f_{p}^{p} d y\right)(\right.
\end{aligned}
$$

Now, $-\eta(y)=-\eta_{S}(y)+\eta_{[n] \backslash S}(y)$-and- $\eta_{S}(y)-\eta_{[n] \backslash S}(y)$-are-identically-distributed-by (RP-2). Therefore,- by- the-properties- of-the-family- $\left\{\mathrm{M}_{\varepsilon}\right\}_{\varepsilon}$-also-in (RP-2) - the-first-term-above-satisfies-

$$
\begin{aligned}
\int_{\widehat{\mathrm{H}}}\left\|\mathrm{M}_{2 \eta_{\mathbf{s}}(y)} f-\mathrm{M}_{\eta(y)} f\right\|_{p}^{p} d y & =-\iint_{\|}\left\|\mathrm{M}_{\eta(y)} \mathrm{M}_{\eta_{\mathrm{s}}(y)-\eta_{[n] \backslash \mathrm{S}}(y)} f-\mathrm{M}_{\eta(y)} f\right\|_{p}^{p} d y \\
& \lesssim \int_{\widehat{\mathrm{H}}}\left\|\mathrm{M}_{\eta_{\mathrm{s}}(y)-\eta_{[n] \backslash \mathrm{S}}(y)} f-f\right\|_{p}^{p} d y \\
& =\int_{\widehat{\mathrm{H}}}\left\|\mathrm{M}_{\eta(y)} f-f\right\|_{p}^{p} d y
\end{aligned}
$$

which-implies-the-claim.- This- proves-that-

$$
\mathrm{A}+\mathrm{C}-\mathrm{A}-\iint_{\mathrm{f}} \mathrm{M}_{\eta(y)} f-f_{p}^{p} d y .
$$

For-the-term-B,-our-claim-is-the-following-

$$
\begin{align*}
& \frac{m^{-p}}{\binom{n}{k}}\left(\sum _ { \substack { \mathbf { S } \subseteq [n] \\
| \mathbf { S } | = k } } \left(\int_{\widehat{\mathrm{H}}} \mathrm{M}_{4 m \eta \mathbf{S}_{\mathbf{S}}(y)} T_{[n] \backslash \mathrm{S}} f-T_{[n] \backslash \mathrm{S}} f{ }_{p}^{p} d y\right.\right. \tag{2.2}\\
& \quad \lesssim \frac{k}{n} \sum_{j=1}^{n}\left(\int_{\widehat{\mathrm{H}}} \partial_{j} \mathrm{M}_{2 \eta(y)} f_{p}^{p} d y+\left(\frac{k}{n}\right)^{\frac{p}{2}} \int_{\widehat{\mathrm{H}}} \mathrm{M}_{\eta(y)} f-f_{p}^{p} d y .\right.
\end{align*}
$$

To-prove- 2.2 ,-we-start-once-more-with (RP-2) and-the-triangle-inequality-

$$
\begin{align*}
& \leq \sum_{j=1}^{m}\left(\int_{\widehat{\mathrm{H}}} \mathrm{M}_{4 j \eta_{\mathrm{S}}(y)} T_{[n] \backslash \mathrm{S}} f-\mathrm{M}_{4(j-1) \eta_{\mathrm{S}}(y)} T_{[n] \backslash \mathrm{S}} f{ }_{p}^{p} d y\right)^{\frac{1}{p}} \tag{2.3}\\
& =-\sum_{j=1}^{m}\left(\int_{\widehat{\mathrm{H}}} \mathrm{M}_{(4 j-2) \eta_{\mathrm{S}}(y)}\left[\mathrm{M}_{2 \eta_{\mathrm{S}}(y)} T_{[n] \backslash \mathrm{S}} f-\mathrm{M}_{-2 \eta_{\mathrm{S}}(y)} T_{[n] \backslash \mathrm{S}} f\right]^{-}{ }_{p}^{p} d y\right)^{\frac{1}{p}} \\
& \begin{array}{l}
\quad \lesssim m(\int(\underbrace{\mathrm{M}_{2 \eta_{\mathrm{S}}(y)} T_{[n] \backslash \mathrm{S}} f-\mathrm{M}_{-2 \eta_{\mathrm{S}}(y)} T_{[n] \backslash \mathrm{S}} f}_{F_{\mathrm{S}}(y)}{ }^{\left({ }^{p}\right)}{ }^{p} d y)^{\frac{1}{p}} . \\
\text { hat- } F_{\mathrm{S}}(y)=-\mathrm{E}_{[n] \backslash \mathrm{S}} h(y) \text {-with- }
\end{array}
\end{align*}
$$

$$
\begin{gathered}
h: \widehat{\mathrm{H}}_{\rightarrow} L_{p}(\mathcal{L}(\mathrm{G})), \\
h(y)=\mathrm{M}_{\mathrm{z}_{p}(y)} f-\mathrm{M}_{-2 \eta(y)} f .
\end{gathered}
$$

Indeed,-recall- that-

$$
\mathrm{E}_{[n] \backslash \mathrm{S}} g(x)=-\iint_{-} g\left(x_{\mathrm{S}}+-z_{[n] \backslash \mathrm{S}}\right) d z \text {. }
$$

Also,-denote-the-symbol-of- M_{ε} by- m_{ε},-so-that-

$$
\mathrm{M}_{\varepsilon} f=\sum_{w \in \mathrm{G}}\left(\mathrm{~m}_{\varepsilon}(w) \widehat{f}(w) \lambda(w)\right.
$$

where- $\lambda(g)$-denotes-the-left-regular-representation-of- G .- Then,- given-that- $\mathrm{E}_{[n] \backslash \mathrm{S}}$ is-linear,-and-using-again-the-equidistribution-property-in (RP-2), we-deduce-that-

$$
\begin{aligned}
\mathrm{E}_{[n] \backslash \mathrm{S}} h(y) & =-\sum_{w \in \mathrm{G}} \hat{f}(w) \lambda(w)\left[\mathrm{E}_{[n] \backslash S} \mathrm{~m}_{2 \eta(y)}(w)-\mathrm{E}_{\left.[n] \backslash \mathrm{S} \mathrm{~m}_{-2 \eta(y)}(w)\right]-}\right. \\
& =\sum_{w \in \mathrm{G}} \hat{f}(w) \lambda(w)-\left[\mathrm{m}_{2 \eta_{\mathbf{S}}(y)}(w)-\mathrm{m}_{-2 \eta_{\mathbf{S}}(y)}(w)\right]-\int_{\widehat{\mathrm{H}}} \mathrm{~m}_{2 \eta_{[n] \backslash \varsigma}(z)}(w)-d z \\
& =\mathrm{M}_{2 \eta_{\mathbf{S}}(y)} T_{[n] \backslash \mathrm{S}} f-\mathrm{M}_{-2 \eta_{\mathbf{S}}(y)} T_{[n] \backslash \mathrm{S}} f=-F_{\mathbf{S}}(y) .
\end{aligned}
$$

Moreover,-we-have-

$$
\begin{aligned}
\int_{\widehat{\mathrm{H}}} h(y)-d y & =-\iint_{[} \mathrm{E}_{[n] \backslash \mathrm{S}} h(y)-d y \\
& =\int_{\widehat{\mathrm{H}}}\left[\mathrm{M}_{2 \eta_{\mathrm{S}}(y)} T_{[n] \backslash \mathrm{S}} f-\mathrm{M}_{-2 \eta_{\mathrm{S}}(y)} T_{[n] \backslash \mathrm{S}} f\right] d y \\
& =\int_{\widehat{\mathrm{H}}} \mathrm{M}_{2 \eta_{\mathrm{S}}(y)} T_{[n] \backslash \mathrm{S}} f d y-\iint_{\hat{t}} \mathrm{M}_{2 \eta_{\mathrm{S}}(y)} T_{[n] \backslash \mathrm{S}} f d y=0-
\end{aligned}
$$

2.1.- METRIC X_{P} INEQUALITIES

since- $2 \eta_{S}(y)$-and- $-2 \eta_{S}(y)$-are-identically-distributed.- Therefore, $-h \in L_{p}^{\circ}\left(\widehat{\mathrm{H}} ; L_{p}(\mathcal{L}(\mathrm{G}))\right.$), -so we-raise-to-the-power- p and-average-over- $\mathrm{S} \subseteq[n]$-in- 2.3), and-by (RP-1) we-get-

$$
\begin{aligned}
& \frac{1-}{\binom{n x}{p}} \sum_{\substack{s \subseteq[n] \\
\mathbf{S} \mid=k}} \int_{\widehat{\mathrm{H}}} \mathrm{M}_{4 m \eta_{\mathbf{S}}(y)} T_{[n] \backslash \mathrm{S}} f-T_{[n] \backslash \mathrm{S}} f_{p}^{p} d y \\
& \lesssim_{p} \frac{m^{p}}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}}\left(\int \left(\int_{[\mid} \mathrm{E}_{[n] \backslash \mathrm{S}} h(y)^{-}{ }_{p}^{p} d y\right.\right. \\
& \lesssim_{p} \quad m^{p} \frac{k}{n} \sum_{j=1}^{n}\left(\int_{\widehat{\mathrm{H}}}\left(\partial_{j} \otimes \mathrm{Id}\right) h(y)^{-}{ }_{p}^{p} d y+-\left(\frac{k}{n}\right)^{\frac{p}{2}} \int_{\widehat{\mathrm{H}}}\|h(y)\|_{p}^{p} d y\right)(\\
& \lesssim m^{p} \frac{k}{n} \sum_{j=1}^{n}\left(\int_{\widehat{\mathrm{H}}} \partial_{j} \mathrm{M}_{2 \eta(y)} f_{p}^{p} d y+-\left(\frac{k}{n}\right)^{\frac{p}{2}} \int_{\widehat{\mathrm{H}}}\left\|\mathrm{M}_{\eta(y)} f-f\right\|_{p}^{p} d y\right) .(
\end{aligned}
$$

Therefore,-putting-all-together-we-get-

$$
\begin{aligned}
& \frac{1-}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}} \int_{\widehat{\mathrm{H}}} \mathrm{M}_{4 m \eta_{\mathrm{S}}(y)} f-f_{p}^{p} d y \\
& \quad \lesssim m^{p} \frac{k}{n} \sum_{j=1}^{n}\left(\int\left({ }_{f} \partial_{j} \mathrm{M}_{2 \eta(y)} f_{p}^{p} d y+\left(\left(\frac{k}{n}\right)^{\frac{p}{2}}+\frac{1-}{m^{p}}\right) \int_{\widehat{\mathrm{H}}} \mathrm{M}_{\eta(y)} f-f_{p}^{p} d y\right) \cdot\right.
\end{aligned}
$$

This-completes-the-proof-for-any- $m \geq \sqrt{n / k}$,-as-imposed-in-the-statement.

Remark 2.1.1. A- close- inspection- of the- proof- of- Theorem-2.0.1 shows- that one- can-exchange-requirement $(\mathrm{RP}-2)$ by-the-existence-of-a-family-of-invertible-operators- $\left\{\mathrm{M}_{y}\right\}_{y \in \hat{H}}$ satisfying-the-following-properties:-

- Product structure. $\mathrm{M}_{y}=\mathrm{M}_{y_{\mathrm{S}}} \mathrm{M}_{y_{[n] \backslash}}$.
- Uniform boundedness. $\max _{|k| \leq 4 m} \sup _{y \in \widehat{\mathrm{H}}}-\mathrm{M}_{y}^{k}{ }_{p \rightarrow p}<\infty$.
- Symmetry. $\mathrm{M}_{y}^{k} f$ and $-\mathrm{M}_{y}^{-k} f$ have-the-same-distribution-function-for-each- f.

The-above-conditions-are-formally-weaker-than (RP-2) -and-more-importantly,-they-clarify-the-fact-that- the-auxiliary-group- Γ - is- not-necessary-in- the-definition- of X_{p}-representable-pairs.- However,-in-this-chapter-we-have-chosen-to-work-with-the-stronger-condition $($ RP-2 $)$ because-in-all-of-our-examples-we-are-able-to-identify the-associated-group- Γ-and this-makes-checking-the-conditions-of-Theorem 2.0.1 simpler.-

Remark 2.1.2. In-many-of-the-cases-of-interest-there-holds-

$$
\begin{equation*}
\int\left(\partial_{j} \mathrm{M}_{2 \eta(y)} f{\underset{L}{L_{p}(\mathcal{L}(\mathrm{G}))}}_{p}^{t} y \lesssim_{p} \quad \mathrm{M}_{e_{j}} f-f{\underset{L_{p}(\mathcal{L}(\mathrm{G}))}{p}, ~}_{\text {, }}^{p}\right. \tag{2.4}
\end{equation*}
$$

for- ${ }^{-}$each- $j=1, \ldots, n .-$ This- improves ${ }^{-}$the- conclusion- of- Theorem-2.0.1 to- ${ }^{-}$- truly-metric-inequality,-which-resembles-the-one-in- 60 -more-closely.- This-highlights-the-importance-of-the-choice-of-the-family-of-derivatives-when-checking-conditions (RP-1) (RP-2) - One-case-in-which-this-holds-is-when-derivatives-and-conditional-expectations-are-related-by-

$$
\begin{equation*}
\partial_{j}=-\mathrm{Id}-\mathrm{E}_{\{j\}} \quad \text { for }-1-j \leq n, \tag{2.5}
\end{equation*}
$$

when- ∂_{j} is-also-known-as-the- j-th coordinate Laplacian operator [64.- In-turn,- 2.5 -holds-when- $\partial_{j} \chi_{w}(x)=-\delta_{w_{j} \neq 0} \chi_{w}(x)$-for-any-character $-\chi_{w}$ on- $\widehat{\mathrm{H}}$.

2.2 Intrinsic X_{p} inequalities

In-this-section-we-explore-intrinsic- X_{p} inequalities-in-the-framework-provided-by-Theorem2.0.1, The-term- "intrinsic" - means- here-that-there- exists-a-natural-inclusion- of- the-index-group- H -into- the X_{p}-group- G ,-so- there-is-no-need-to-use-an-auxiliary-group- Γ-other-than-G.- In-our-setting, this-unfortunately-forces-us-to-work-with- G- $^{-}=-$- - abelian.- An-extension-of-Theorem 2.0.1 including-noncommutative-translations-indexed-by-nonabelian-groups- H^{-} would- open-a-door-to- potential- applications- in- the- metric- geometry- of- noncommutative-L_{p}-spaces.- Intrinsic- X_{p} inequalities-will-be-complemented-below-with-"transferred- X_{p} inequalities" -which-refer-to-those-which-admit-some- Γ - $\neq-\mathrm{G}$,-including-nonabelian- X_{p}-groupsin the picture.- We-willillustrate this scenario in the-context-of free-groups-below.- In the-lan-guage-of-quantum-group-theory,-intrinsic-H-translations-are-given-by-G-comultiplications,-while-transferred- H -translations-require-more-general-G-corepresentations-in-terms-of- C .-

2.2.1 Continuous X_{p} inequalities

Let- $\mathrm{H}=\mathrm{G}=-\mathbb{Z}^{n}$,-so- that- the-dual-groups-are- n-dimensional- tori,- which-we-identify-with-$[-1 / 2,1 / 2)^{n}$ for-convenience.- We-also- pick- $\Gamma^{-}=-\mathbb{Z}^{n}$,-and-we-explore-two-different-choicesfor $-\eta:-\mathbb{T}^{n} \rightarrow \mathbb{T}^{n}$.- First,- we-take-the- map- $\eta(y)_{j}=-y_{j} / 4 m$,- so- each- component- of- η maps\mathbb{T}^{n} to- $[-1 /(8 m), 1 /(8 m))$.- The-following-encodes-what-follows-from-Theorem 2.0 .1 in-this-case.-

Proposition 2.2.1. If $p \geq 2, k \in[n]$-and $m \geq \sqrt{n / k}$, every $f:-\mathbb{T}^{n} \rightarrow \mathbb{C}$ satisfies

$$
\begin{aligned}
& \frac{1-}{\binom{n}{k}} \sum_{\substack{\mathrm{S}[[n] \\
\mathrm{S}[=k}} \int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} f(x+y \mathrm{~S})--f(x)^{-p} d y d x \\
& \quad \lesssim_{p} m^{p} \int_{\mathbb{T}^{n}} \int\left(f _ { n } \left\{\frac { k } { n } \sum _ { j = 1 } ^ { n } f (\not p + \frac { y _ { j } e _ { j } } { 4 m }) \left(-f(x)^{p}+-\left(\frac{k}{n}\right)^{\frac{p}{2}} f\left(x\left(+\frac{y}{4 m}\right)\left(f(x)^{-}\right\} d y d x .\right.\right.\right.\right.
\end{aligned}
$$

2.2.- INTRINSIC X_{P} INEQUALITIES

Proof. We-start-checking-that- $\left(\mathbb{Z}^{n}, \mathbb{Z}^{n}\right)$ - is- an- X_{p}-representable- pair.- Taking-the-group-$\Gamma=-\mathbb{Z}^{n}$, - it- is clear- that (RP-2) holds- with- our- choice- of $-\eta$ and-multipliers given- by- the-usual-translations $-\mathrm{M}_{\gamma} f(x)=-f(x+-\gamma)$-which-are-unitary-modulations-at- - - - Fourier-side. Second,- if- $\chi_{w}=-\exp (2 \pi i\langle w, \cdot\rangle)$-is- the-character-associated-with- $w \in \mathbb{Z}^{n}$,- we- consider-the-differential-operators-

$$
\partial_{j} \chi_{w}=-\delta_{w_{j} \neq 0} \chi_{w} \quad \text { for }-j \in[n] .
$$

By-Subsection 1.2.1, we-have-

$$
\frac{1-}{\binom{n}{p}} \sum_{\substack{(\underset{S}{\mathrm{~S}[n]=k}}}\left(\mathrm{E}_{[n] \backslash \mathrm{S}} f_{L_{p}\left(\mathbb{T}^{n}\right)}^{p} \lesssim \frac{k}{n} \sum_{j=1}^{n}\left\|\partial_{j} f\right\|_{L_{p}\left(\mathbb{T}^{n}\right)}^{p}+-\left(\frac{k}{n}\right)^{\frac{p}{2}}\|f\|_{L_{p}\left(\mathbb{T}^{n}\right)}^{p} .\right.
$$

In-particular,-by-Fubini's-theorem-we-get (RP-1).-Then,-Theorem 2.0.1 yields-

$$
\begin{align*}
& \frac{1-}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathbf{S} \mid=k}} \int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} f(x+y \mathbf{S})^{-}-f(x)^{-p} d y d x \tag{2.6}\\
& \quad \lesssim_{p} m^{p} \int_{\mathbb{T}^{n}} \int\left(f _ { n } \frac { k } { n } \sum _ { j = 1 } ^ { n } \partial _ { j } ^ { y } f \left(\not\left(+\frac{y}{2 m}\right)^{p}+-\left(\frac{k}{n}\right)^{\frac{p}{2}} f\left(x (+ - \frac { y } { 4 m }) \left(-f(x)^{p} d y d x,\right.\right.\right.\right.
\end{align*}
$$

using-the-superscripts-in-the-partial-derivatives-to-indicate-the-variable-over-which-differ-entiation-is-performed.- It-only-remains-to-estimate- 2.6 - to-establish- the-result.- In-order-to-do-that,-observe-that- 2.5 -holds-in-this-case.- Applying-it-to- $h(y)=-f(x+y / 2 m)$-andusing the-properties-of translations-we-get-

$$
\begin{aligned}
& \int_{\mathbb{T}^{n}} \int f_{n} \partial_{j}^{y} f\left(x+\frac{y}{2 m}\right)^{p} d y d x \\
& =-\int_{\mathbb{T}^{n}} \int f_{f^{n}} f\left(x+-\frac{y}{2 m}\right)-\mathrm{E}_{\{j\}}^{y} f\left(x+-\frac{y}{2 m}\right)^{p} d y d x \\
& =-\int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} f\left(\not\left(+-\frac{y}{2 m}\right)-\int_{\mathbb{T}} f\left(\not\left(+-\frac{y_{[n] \backslash\{j\}}+t e_{j}}{2 m}\right) d t^{p} d y d x\right.\right. \\
& \leq \int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} \int\left(f\left(x+-\frac{y}{2 m}\right)-f\left(\nprec+-\frac{y_{[n] \backslash\{j\}}+t e_{j}}{2 m}\right)^{p} d t d y d x\right. \\
& =-\int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} \int\left(f\left(\not f+\frac{y_{j} e_{j}}{2 m}\right)-f\left(x+\frac{t e_{j}}{2 m}\right)\right)^{d t d y d x} \\
& =-\int_{\mathbb{T}^{n}} \iint_{\chi^{n}} f\left(x+-\frac{y_{j} e_{j}}{2 m}\right)\left(-f(x)^{-}{ }^{p} d y d x \leq 2-\int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} f\left(x+-\frac{y_{j} e_{j}}{4 m}\right)\left(-f(x)^{-}{ }^{p} d y d x .\right.\right.
\end{aligned}
$$

Inserting that- in the-outcome-of-Theorem-2.0.1 yields-the-assertion.-

Remark 2.2.2. A-different-choice-of $-\eta:-\mathbb{T}^{n} \rightarrow \mathbb{T}^{n}$ is- given-by- $\eta(y)_{j}=-\operatorname{sgn}\left(y_{j}\right) / 8 m$ which-leads- to- an- inequality- closer- to- MX_{p}.- Recalling- that- we-identify- \mathbb{T} with- $[-1 / 2,1 / 2$),
it- turns- out- that- $4 m \eta(y)^{-} \equiv-e / 2^{-}$- for- $e=-(1,1, \ldots, 1)$,- and- one- can- prove- the-following-statement-for-every- $f:-\mathbb{T}^{n} \rightarrow \mathbb{C}$

$$
\begin{align*}
& \frac{1-}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathbf{S} \mid=k}} \int f_{\neq n} f\left(\nmid (+ - \frac { e _ { \mathbf { S } } } { 2 }) \left(f(x)^{--} d x\right.\right. \tag{2.7}\\
& \lesssim_{p} m^{p} \int\left(f _ { n } \frac { k } { n } \sum _ { j = 1 } ^ { n } f (\not p + - \frac { e _ { j } } { 8 m }) \left(f(x)^{-}+-\left(\frac{k}{n}\right)^{\frac{p}{2}} \frac{1-}{2^{n}} \sum_{\varepsilon \in \Omega_{n}}\left(f\left(\nmid+\frac{\varepsilon}{8 m}\right)-f(x)^{--} d x .\right.\right.\right.
\end{align*}
$$

The-proof-of- 2.7 - follows the-same-lines-as that-of-Proposition 2.2.1- It is-also-worth-noting-that-inequality- (2.7)-can-be-discretized-to-recover- $\left(\mathrm{MX}_{p}\right)$-and-a-limiting-procedure-allowsone to-pass-from- MX_{p} to- 2.7), we-omit the-details.- This-means that this-semi-continuous inequality-is-equivalent-to-Naor's-original- X_{p} inequality.-

Remark 2.2.3. It-is-also-possible-to-consider-the-usual-differential-structure-on- \mathbb{T}^{n} which-can-be-thought- of-as-the-most-natural.- In-that- case, L_{p} valued- versions- of- estimates-for-balanced-truncations-of-Fourier-series-hold-by-Fubini's-theorem-and-one-gets-the-following-

$$
\begin{aligned}
& \frac{1-}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}} \int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} f\left(x+y_{\mathrm{S}}\right)-f(x)^{p} d y d x \\
& \lesssim_{p} m^{p} \int_{\mathbb{T}^{n}} \iint_{n} \frac{k}{n} \sum_{j=1}^{n} \partial_{y_{j}} f\left(\nmid+\frac{y}{2 m}\right)^{p}\left(+-\left(\frac{k}{n}\right)^{\frac{p}{2}} f\left(\not p+\frac{y}{4 m}\right)-f(x)^{-}{ }^{p} d y d x,\right.
\end{aligned}
$$

which-can-be-seen-to-be-weaker than those from-Proposition 2.2.1-see-chapter 1 for-details.-

2.2.2 Cyclic groups with the word length

We-now-focus-on-a-discrete-inequality-that-is-a-strict-generalization-of- MX -- Consider-the-inclusion- $\eta_{\ell}:-\mathbb{Z}_{2 \ell}^{n} \rightarrow \mathbb{Z}_{8 \ell m}^{n}$ given-by-

$$
\begin{equation*}
\eta_{\ell}(x)=-\left(\beta_{\ell}\left(x_{1}\right), \ldots, \beta_{\ell}\left(x_{n}\right)\right),(\tag{2.8}
\end{equation*}
$$

where- $\beta_{\ell}(y)=-y-\ell$ when $-0-\leq y \leq \ell-1$-and $-\beta_{\ell}(y)=-y-(\ell(-1)$ - when- $\ell \leq y \leq 2 \ell-1$.-

Proposition 2.2.4. If $p \geq 2, k \in[n]-$ and $m \geq \sqrt{n / k}$, every $f:-\mathbb{Z}_{8 \ell m}^{n} \rightarrow \mathbb{C}$ satisfies

$$
\begin{aligned}
& \frac{m^{-p}}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
|\mathbf{S}|=k}}\left(\frac { 1 - } { (8 \ell m) ^ { n } (2 \ell) ^ { n } } \sum _ { x \in \mathbb { Z } _ { 8 \ell m } ^ { n } } \sum _ { y \in \mathbb { Z } _ { 2 \ell } ^ { n } } f \left(\not 2\left(+4 m \eta_{\ell}(y) \mathrm{s}\right)-f(x)^{p}\right.\right. \\
& \quad \lesssim_{p}(4 \ell)^{p-1} \frac{k}{n} \sum_{j=1}^{n} \frac{1-}{(8 \ell m)^{n}} \sum_{x \in \mathbb{Z}_{8 \ell m}^{n}} f\left(x+e_{j}\right)--f(x)^{-p} \\
& \quad+\quad\left(\frac{k}{n}\right)^{\frac{p}{2}} \frac{1}{(8 \ell m)^{n}(2 \ell)^{n}} \sum_{x \in \mathbb{Z}_{8 \ell m}^{n}} \sum_{y \in \mathbb{Z}_{2 \ell}^{n}} f\left(x+\eta_{\ell}(y)\right)^{--} f(x)^{-p} .
\end{aligned}
$$

2.2.- INTRINSIC X_{P} INEQUALITIES

Proof. Choose $-\ell \geq 1$ - and-take- $(\mathrm{H}, \mathrm{G})^{-}=-\left(\mathbb{Z}_{2 \ell}^{n}, \mathbb{Z}_{8 \ell m}^{n}\right)$ - with-auxiliary- group- $\Gamma^{-}=-\mathrm{G}$.- We-want- to- check- that this- is- an- X_{p}-representable- pair.- It- is- clear- that the- range- of- β_{ℓ} is-$-[\ell]-\cup[\ell] \subseteq \mathbb{Z}_{8 \ell m}^{n}$. - When- $\ell=-1$,-it-recovers- the-map-that sends- 0 - to- -1 and 1 to $1 .-$ In addition,-a-simple-observation-yields-that- $-\beta_{\ell}(y)=-\beta_{\ell}(2 \ell-1-y)$-which-implies-condition-(RP-2) i).- Next,-denoting-again-characters-by- χ_{w} for-each- $w \in \mathbb{Z}_{2 \ell}^{n}$,-we-choose-conditional-expectations-given-by-

$$
\mathrm{E}_{[n] \backslash \mathrm{S}} \chi_{w}=-\delta_{w \in \mathbb{Z}_{2 \ell}^{\mathrm{S}}} \chi_{w} .
$$

By-Subsection- 1.2 .2 and-Fubini's- theorem, $(\mathrm{RP}-1)$ holds- with-derivatives- given- again- by-$\partial_{j}:-\chi_{w} \mapsto \delta_{w_{j} \neq 0} \chi_{w}$. Finally,- the - map $-\mathrm{M}_{\gamma}:^{-} \chi_{w} \mapsto \chi_{w}(\gamma) \chi_{w}$ is- a- completely-bounded-multiplier- on- $L_{p}\left(\mathbb{Z}_{8 \ell m}^{n}\right)$,- so- the-family- $\left\{\mathrm{M}_{\gamma}\right\}_{\gamma \in \Gamma}$ satisfies-(RP-2) ii).- The- application- of Theorem-2.0.1 yields ${ }^{-}$

$$
\begin{align*}
& \frac{m^{-p}}{\binom{n}{k}}\left(\sum _ { \substack { \mathbf { S } \subseteq [n] \\
| \mathbf { S } | = k } } \left(\frac { 1 - } { (8 \ell m) ^ { n } (2 \ell) ^ { n } } \sum _ { x \in \mathbb { Z } _ { 8 \ell m } ^ { n } } \sum _ { y \in \mathbb { Z } _ { 2 \ell } ^ { n } } f \left(\not\left(+4 m \eta_{\ell}(y) \mathrm{S}\right)-f(x)^{p}\right.\right.\right. \tag{2.9}\\
& \quad \lesssim p \frac{k}{n} \sum_{j=1}^{n} \frac{1-}{(8 \ell m)^{n}(2 \ell)^{n}} \sum_{x \in \mathbb{Z}_{8 \ell m}^{n}} \sum_{y \in \mathbb{Z}_{2 \ell}^{m}} \partial_{j}^{y} f\left(x+2 \eta_{\ell}(y)\right)^{p} \\
& \quad+\quad\left(\frac{k}{n}\right)^{\frac{p}{2}} \frac{1-}{(8 \ell m)^{n}(2 \ell)^{n}} \sum_{x \in \mathbb{Z}_{8 \ell m}^{n}} \sum_{y \in \mathbb{Z}_{2 \ell}^{n}(}\left(x+\eta_{\ell}(y)\right)-f(x)^{-{ }^{p}} .
\end{align*}
$$

Since- 2.5 -holds-in-this-setting-too,-we-get-

$$
\begin{aligned}
& \sum_{x \in \mathbb{Z}_{8 \ell m}^{n}} \sum_{y \in \mathbb{Z}_{2 \ell}^{n}}\left(\partial_{j}^{y} f\left(x+2 \eta_{\ell}(y)\right)^{p}\right. \\
& =-\sum_{x \in \mathbb{Z}_{8 \ell m}^{n}} \sum_{y \in \mathbb{Z}_{2 \ell}^{n}}\left(f\left(x+2 \eta_{\ell}(y)\right)-\mathrm{E}_{\{j\}}^{y} f\left(x+2 \eta_{\ell}(y)\right)^{p}\right. \\
& =-\sum_{x \in \mathbb{Z}_{8 \ell m}^{n}} \sum_{y \in \mathbb{Z}_{2}^{n}}\left(\frac { 1 - } { 2 \ell } \sum _ { t \in \mathbb { Z } _ { 2 \ell } } \left(f\left(x+2 \eta_{\ell}(y)\right)--f\left(x+2 \eta_{\ell}\left(y_{[n] \backslash\{j\}}+t e_{j}\right)\right)^{p}\right.\right. \\
& \leq \sum_{x \in \mathbb{Z}_{8 \ell m}^{n}} \sum_{y \in \mathbb{Z}_{2,}^{n}}\left(\frac { 1 } { 2 \ell } \sum _ { t \in \mathbb { Z } _ { 2 \ell } } \left(f\left(x+2 \eta_{\ell}(y)\right)--f\left(x+2 \eta_{\ell}\left(y_{[n] \backslash\{j\}}+t e_{j}\right)\right)^{p}\right.\right. \\
& =-(2 \ell)^{n-2} \sum_{x \in \mathbb{Z}_{\text {8en }}^{n}}\left(\sum _ { y _ { j } \in \mathbb { Z } _ { 2 \ell } } \sum _ { t \in \mathbb { Z } _ { 2 \ell } } \left(f\left(x+2 \beta_{\ell}\left(y_{j}\right) e_{j}\right)-f\left(x+2 \beta_{\ell}(t) e_{j}\right)^{-p},\right.\right.
\end{aligned}
$$

by- the- definition- of- $\mathrm{E}_{[n] \backslash \mathrm{S}}$ and- convexity.- Since- $\left|\beta_{\ell}\left(y_{j}\right)^{-}-\beta_{\ell}(t)\right| \leq 2 \ell$,- the- translation-invariance-of- the-Haar-measure-yields-

$$
\begin{aligned}
(2 \ell)^{n-2} \sum_{x \in \mathbb{Z}_{8 \ell m}^{n}} \sum_{y_{j}, t \in \mathbb{Z}_{\ell}}(& f\left(x+2 \beta_{\ell}\left(y_{j}\right) e_{j}\right)--f\left(x+2 \beta_{\ell}(t) e_{j}\right)^{-p} \\
& \leq(2 \ell)^{n}(4 \ell)^{p-1} \sum_{x \in \mathbb{Z}_{8 \ell+r_{0}}^{n}}\left(f\left(x+-e_{j}\right)^{--}-f(x)^{p},\right.
\end{aligned}
$$

which-yields-the-result-when-inserted-in- 2.9 .- This-completes-the-proof.

Remark 2.2.5. In-our-cyclic-metric- X_{p} inequalities,-a-similar-computation-as-the-one-in [63],-Proposition-1.4]-shows-that-the-condition- $m \geq \sqrt{n / k}$ is-necessary-in-Proposition 2.2.4.

2.3 Transferred X_{p} inequalities

Now-we-apply-Theorem 2.0 .1 to-some-pairs-(H, G) with $\mathrm{H}-=-\mathbb{Z}_{2}^{n}$ and-nonabelian-G.-Clearly,-the-choices-of the-auxiliary-group- Γ-and-G-in-each-case-must-be-related.- We-give-the-details-for-one-particular-choice-and-comment-on-a-few-more-later.- We-choose- Γ - $=-\mathbb{Z}_{8 m}^{n}$ and

$$
\mathrm{G}=-\mathbb{Z}_{8 m}^{* n} .
$$

Given- $u \in \mathbb{Z}_{8 m}^{n}$, -we-consider-the-character- $\chi_{u}: \mathbb{Z}_{8 m}^{* n} \rightarrow \mathbb{C}$ determined-by-

$$
\left.\chi_{u}(w)=-\exp -\frac{2 \pi i}{8 m} \sum_{j=1}^{n} u_{j} \sum_{t: k_{t}=j} \ell_{t}\right)\left(\text { for }-w=g_{k_{1}}^{\ell_{1}} g_{k_{2}}^{\ell_{2}} \ldots g_{k_{r}}^{\ell_{r}} .\right.
$$

It- is clear- that- $\chi_{u}(w) \chi_{v}(w)=-\chi_{u+v}(w) .-$ Next,- we- define- the- Fourier multipliers- M_{u} : $\mathcal{L}\left(\mathbb{Z}_{8 m}^{* n}\right)-\rightarrow \mathcal{L}\left(\mathbb{Z}_{8 m}^{* n}\right)$-determined-by- $\lambda(w)-\mapsto \chi_{u}(w) \lambda(w)$-for-the-left-regular-representation- λ on $-\mathbb{Z}_{8 m}^{* n}$.-

Lemma 2.3.1. M_{u} is a normal unital trace-preserving $*-h o m o m o r p h i s m ~ o n ~ \mathcal{L}\left(\mathbb{Z}_{8 m}^{* n}\right)$.
Proof. M_{u} is-clearly-unital-and-

$$
\mathrm{M}_{u}\left(\lambda(w)^{*}\right)=\mathrm{M}_{u}\left(\lambda\left(w^{-1}\right)\right)=\overline{\chi_{u}(w)}-\lambda(w)^{*}=\mathrm{M}_{u}(\lambda(w))^{*}
$$

Next-we-claim-that- $\mathrm{M}_{u}\left(\lambda\left(w w^{\prime}\right)\right)=-\mathrm{M}_{u}(\lambda(w)) \mathrm{M}_{u}\left(\lambda\left(w^{\prime}\right)\right)$.- It-is-clear-that-this-identity-holds-when-both- w and $-w^{\prime}$ are-powers-of-a-fixed-generator $-g_{j}$.- More-precisely,-we-have-

$$
\mathrm{M}_{u}\left(\lambda\left(g_{j}^{\ell_{1}+\ell_{2}}\right)\right)=-\mathrm{M}_{u}\left(\lambda\left(g_{j}^{\ell_{1}}\right)\right)-\mathrm{M}_{u}\left(\lambda\left(g_{j}^{\ell_{2}}\right)\right) .
$$

Now,-let-us-consider-two-reduced-words-given-by-

$$
w=-g_{k_{1}}^{\ell_{1}} g_{k_{2}}^{\ell_{2}} \ldots g_{k_{r}}^{\ell_{r}} \quad \text { and }-\quad w^{\prime}=-g_{k_{1}^{\prime}}^{\ell_{1}^{\prime}} g_{k_{2}^{\prime}}^{\ell_{2}^{\prime}} \ldots g_{k_{s}^{\prime}}^{\ell_{s}^{\prime}} .
$$

If- $k_{r} \neq-k_{1}^{\prime}$ the-claim-trivially-holds. - If $-k_{r}=-k_{1}^{\prime}$ and $-\ell_{r}+\ell_{1}^{\prime} \not \equiv 0-(\bmod -8 m)$, then-

$$
\mathrm{M}_{u}\left(\lambda\left(w w^{\prime}\right)\right)=-\mathrm{M}_{u}\left(\lambda\left(g_{k_{1}}^{\ell_{1}} \ldots g_{k_{r-1}}^{\ell_{r-1}}\right)\right)-\mathrm{M}_{u}\left(\lambda\left(g_{k_{r}}^{\ell_{r}+\ell_{1}^{\prime}}\right)\right)-\mathrm{M}_{u}\left(\lambda\left(g_{k_{2}^{\prime}}^{\ell_{2}^{\prime}} \ldots g_{k_{s}^{\prime}}^{\ell_{s}^{\prime}}\right)\right)
$$

which-yields-the-same-conclusion.- For-the-remaining-case,-we-may-write-w $w{ }^{\prime}$ as-

$$
w w^{\prime}=\underbrace{g_{k_{1}}^{\ell_{1}} \ldots g_{k_{r-1}}^{\ell_{r-1}}}_{\rho} \underbrace{g_{k_{2}^{\prime}}^{\ell_{2}^{\prime}} \ldots g_{k_{s}^{\prime}}^{\ell_{s}^{\prime}}}_{\rho^{\prime}}
$$

2.3.- TRANSFERRED X_{P} INEQUALITIES

Arguing-as-above,-if- $k_{r-1} \neq k_{2}^{\prime}$ or $-\ell_{r-1}+\ell_{2}^{\prime} \not \equiv 0-(\bmod -8 m)$-we-get-

$$
\begin{aligned}
\mathrm{M}_{u}\left(\lambda\left(w w^{\prime}\right)\right)^{-} & =\mathrm{M}_{u}(\lambda(\rho)) \mathrm{M}_{u}\left(\lambda\left(\rho^{\prime}\right)\right)^{-} \\
& =\mathrm{M}_{u}(\lambda(\rho)) \mathrm{M}_{u}\left(\lambda\left(g_{k_{r}}^{\ell_{r}+\ell_{1}^{\prime}}\right)\right) \mathrm{M}_{u}\left(\lambda\left(\rho^{\prime}\right)\right)-=-\mathrm{M}_{u}(\lambda(w)) \mathrm{M}_{u}\left(\lambda\left(w^{\prime}\right)\right) .
\end{aligned}
$$

One-can- iterate- this- process- to- deduce-the-claim.- Thus, M_{u} is- $\mathrm{a}^{-} *-$-homomorphism- on-$\operatorname{span}\left\{\lambda(w):-w \in \mathbb{Z}_{8 m}^{* n}\right\}$.- In-particular,-it-is-a-completely-positive-unital-map.- Moreover,-it-is-trace-preserving-since- $\tau\left(\mathrm{M}_{u}(\lambda(w))\right)=-\chi_{u}(w) \tau(\lambda(w))$-and- $\chi_{u}(e)=-1$.- Finally,-note- that for-any- $f, g \in \mathcal{L}\left(\mathbb{Z}_{8 m}^{* n}\right)$-there-holds

$$
\begin{aligned}
& \tau\left(\mathrm{M}_{u}(f) g^{*}\right)=-\tau\left[\left(\sum _ { w \in \mathbb { Z } _ { 8 n } ^ { * * } } \left(\widehat { f } \left(w \chi_{u}(w \lambda(w))\left(\sum_{\eta \in \mathbb{Z}_{8 n}^{* n}}(\widehat{g}(\eta)-\lambda(\eta))^{*}\right](\right.\right.\right.\right. \\
& =-\sum_{w \in \mathbb{Z}_{8 m}^{* n}} \widehat{f}(w) \chi_{u}(w) \overline{\hat{g}(w)}=-\sum_{w \in \mathbb{Z}_{8 n}^{* *}}\left(\widehat{f}(w) \overline{\chi_{-u}(w) \widehat{g}(w)}=-\tau\left(f\left(\mathrm{M}_{-u} g\right)^{*}\right) .\right.
\end{aligned}
$$

Since- M_{-u} extends-to-a-bounded-map-on- $L_{1}\left(\mathcal{L}\left(\mathbb{Z}_{8 m}^{* n}\right)\right),-\mathrm{M}_{u}$ is- $w^{*}-$ continuous.-

Before-exploring- X_{p} inequalities-for-free-groups,-we-shall- need-to- use- Theorem-1.0.2 with-values- in- a- noncommutative- L_{p}-space- over- a- QWEP- von- Neumann- algebra- \mathcal{M}.- More-precisely,-given-a-mean-zero- $f: \Omega_{n} \rightarrow \mathcal{M}$ we-claim-that-

$$
\begin{align*}
& \frac{1-}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}}\left(\mathrm{E}_{[n] \backslash \mathrm{S}} \otimes \mathrm{Id}\right) f f_{L_{p}\left(\Omega_{n} ; L_{p}(\mathcal{M})\right)}^{p} \tag{2.10}\\
& \quad \varliminf_{p} \frac{k}{n} \sum_{j=1}^{n}\left(\partial_{j} \otimes \mathrm{Id}\right) f{ }_{L_{p}\left(\Omega_{n} ; L_{p}(\mathcal{M})\right)}^{p}+\left(\frac{k}{n}\right)^{\frac{p}{2}}\|f\|_{L_{p}\left(\Omega_{n} ; L_{p}(\mathcal{M})\right)}^{p}
\end{align*}
$$

where- $\mathrm{E}_{[n] \backslash S}$ and $-\partial_{j}$ stand-for the-original-conditional-expectation-and-directional-derivative-used-by-Naor in- 60$]$.- To-check that- (2.10)-holds,-one-can-see that the proof-of-Theorem 1.0 .2 goes-through-in-the-operator-valued-setting-as-long-as-dimension-free-bounds-hold-for-op-erator-valued-Riesz-transforms-[40],-which-just-requires-to-use-the-same-argument-together-with-Fubini's- theorem-from- 36].-

Proposition 2.3.2. If $p \geq 2, k \in[n]-$ and $m \geq \sqrt{n / k}$, every $f \in L_{p}\left(\mathcal{L}\left(\mathbb{Z}_{8 m}^{* n}\right)\right)$-satisfies

$$
\begin{aligned}
& \frac{1}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}} \frac{1-}{2^{n}} \sum_{\varepsilon \in \Omega_{n}}\left(\mathrm{M}_{4 m \varepsilon_{\mathrm{s}}} f-f_{L_{p}\left(\mathcal{L}\left(\mathbb{Z}_{8 m}^{* n}\right)\right)}^{p}\right. \\
&\left.\quad{ }_{j} m^{p} \frac{k}{n} \sum_{j=1}^{n} \mathrm{M}_{e_{j}} f-f_{p}^{p}+\left(\frac{k}{n}\right)^{\frac{p}{2}} \frac{1-}{2^{n}} \sum_{\varepsilon \in \Omega_{n}} \mathrm{M}_{\varepsilon} f-f_{p}^{p}\right) \cdot(
\end{aligned}
$$

Proof. We-apply-Theorem-2.0.1 to- $(\mathrm{H}, \mathrm{G})=-\left(\mathbb{Z}_{2}^{n}, \mathbb{Z}_{8 m}^{* n}\right)$,-so-we-need-to-check-that-it-is-an X_{p}-representable-pair.- Condition (RP-1) follows-from- 2.10 -since- $\mathcal{L}\left(\mathbb{Z}_{8 m}^{* n}\right)$-is-a-QWEP-von-

Neumann-algebra.- Consider-the-auxiliary-group- $\Gamma^{-}=-\mathbb{Z}_{8 m}^{n}$ with-the-inclusion- η defined-as in (2.8) - for $-\ell=-1$. Condition $($ RP-2 $)$ i)- is- then-automatically-satisfied.- Finally,-according-to-Lemma 2.3.1 we-know-that- M_{γ} extends-to-a-completely-contractive-map-on- $L_{p}\left(\mathcal{L}\left(\mathbb{Z}_{8 m}^{* n}\right)\right)$ for-any- $1-\leq p \leq \infty$.- Therefore, -the-family- $\left\{\mathrm{M}_{\gamma}\right\}_{\gamma \in \mathbb{Z}_{8 m}^{n}}$ can-be- used-to-check (RP-2) ii)-and-Theorem-2.0.1 leads-to-

$$
\begin{aligned}
& \left.\frac{1}{\binom{n}{f}} \begin{array}{l}
\left(\sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}} \frac{1-}{2^{n}} \sum_{\varepsilon \in \Omega_{n}} \mathrm{M}_{4 m \varepsilon \mathrm{~s}} f-f_{L_{p}\left(\mathcal{L}\left(\mathbb{Z}_{8 m}^{* n}\right)\right)}^{p}\right. \\
\quad \lesssim_{p} m^{p} \frac{k}{n} \sum_{j=1}^{n}\left(\frac { 1 } { 2 ^ { n } } \sum _ { \varepsilon \in \Omega _ { n } } \left(\left(\partial_{j} \otimes \mathrm{Id}\right) \mathrm{M}_{2 \varepsilon} f_{p}^{p}+\left(\frac{k}{n}\right)^{\frac{p}{2}} \frac{1}{2^{n}} \sum_{\varepsilon \in \Omega_{n}}\left(\mathrm{M}_{\varepsilon} f-f_{p}^{p}\right),(\right.\right.
\end{array}\right) .
\end{aligned}
$$

for- every- $f \in L_{p}\left(\mathbb{Z}_{8 m}^{n} ;-L_{p}\left(\mathbb{Z}_{8 m}^{* n}\right)\right)$.- Finally,- the-computations-for-discrete-derivatives- from Subsection-2.2.2 imply-that-condition-2.4 -holds,- yielding-the-result.-

The-example-above-is-clearly-not-the-only-possible-choice-that-we-can-make-for-the-groups-Γ-and-G-in-the-pair.-In-general,-given-abelian-groups- $\Gamma_{1}, \ldots, \Gamma_{n}$ and- Γ - $=-\Gamma_{1} \times \Gamma$ - $\times \cdots \times \Gamma_{n}$ so-that-there-is-a-nice-map-

$$
\eta: \Omega_{n} \rightarrow \widehat{\Gamma}
$$

one can take- $\mathrm{G}=-\Gamma_{1} * \ldots * \Gamma_{n}$ and-construct-a family-of-multipliers- $\left\{\mathrm{M}_{\gamma}\right\}_{\gamma \in \widehat{\Gamma}}$ as-above.- Once the- properties of the-family- are-checked,- the-above-scheme- yields-a-metric- X_{p} inequality-for-the-pair- $\left(\mathbb{Z}_{2}^{n}, \Gamma, \mathrm{G}\right)$.-For-example,-the-interested-reader-can-check-that-a-representation-in-the-spirit-of-Lemma-2.3.1 for $-\Gamma=-\mathbb{Z}^{n}$ and- $G=-\mathbb{F}_{n}$ (the-free-group-of $-n$ generators)-holds. This- yields-the-following-free-metric- X_{p} inequality-in-the-free-group-algebra-

$$
\begin{aligned}
& \frac{1}{\binom{n}{k}} \sum_{\substack{\mathrm{S}[n] \\
\mathrm{S}[=k}} \frac{1-}{2^{n}} \sum_{\varepsilon \in \Omega_{n}} \mathrm{M}_{4 m \varepsilon \mathrm{~s}} f-f{\underset{L_{p}\left(\mathcal{L}\left(\mathbb{F}_{n}\right)\right)}{p}}_{\quad \lesssim_{p} m^{p} \frac{k}{n} \sum_{j=1}^{n} \mathrm{M}_{e_{j}} f-f_{L_{p}\left(\mathcal{L}\left(\mathbb{F}_{n}\right)\right)}^{p}+\left(\frac{k}{n}\right)^{\frac{p}{2}} \frac{1-}{2^{n}} \sum_{\varepsilon \in \Omega_{n}}\left(\mathrm{M}_{\varepsilon} f-f_{L_{p}\left(\mathcal{L}\left(\mathbb{F}_{n}\right)\right)}^{p}\right) .} \quad .
\end{aligned}
$$

2.4 Metric consequences

We-conclude-by-collecting-a-few-metric-consequences-of-the-results-in-the-previous-sections.-In- [60],-Naor-gave-two-sufficient-hypothesis-for-a-Banach-space-X to-be-a-metric- X_{p} space:-a-Banach- X_{p} inequality-and-operator-valued-dimension-free-estimates-for-Riesz-transforms.-In-particular,-any-mean-zero- $f: \Omega_{n} \rightarrow \mathbb{X}$ must-satisfy-

$$
\frac{1-}{2^{n}} \sum_{\varepsilon \in \Omega_{n}} \sum_{j=1}^{n} f_{j}\left(\partial_{j} \otimes \mathrm{Id}\right) f_{L_{p}\left(\Omega_{n} ; \mathbb{X}\right)}^{p} \simeq_{p} \quad\left(\Delta^{1 / 2} \otimes \mathrm{Id}\right) f_{L_{p}\left(\Omega_{n} ; \mathbb{X}\right)}^{p} .
$$

When- $\mathbb{X}=-L_{p}(\mathcal{M})$, -the-Banach- X_{p} inequality-is-Theorem 1.1 .2 - while-the-Riesz-transform-estimates-can-be-found-in- 40$]$ - when- \mathcal{M} is- QWEP,-as- explained- in- the-previous-section.-

2.4.- METRIC CONSEQUENCES

This-latter-fact-had-previously-been-announced-for-the-Schatten-classes- S_{p} in- 60,61 .- The-result-that-we-get-is-the-following:-

Theorem 2.4.1 (Noncommutative- L_{p} spaces-are-metric- X_{p} spaces). Let \mathcal{M} be a QWEP von Neuman algebra. Then, if $p \geq 2, k \in[n]$ and $m \geq \sqrt{\eta / k}$, every $f:-\mathbb{Z}_{8 m}^{n} \rightarrow L_{p}(\mathcal{M})$
satisfies

$$
\begin{aligned}
& \frac{m^{-p}}{\binom{n}{k}}\left(\sum _ { \substack { \mathrm { S } \subseteq [n] \\
| \mathbf { S } | = k } } \left(\frac{1-}{(16 m)^{n}} \sum_{x \in \mathbb{Z}_{8 m}^{n}} \sum_{\varepsilon \in \Omega_{n}} f(x+4 m \varepsilon \mathrm{~S})--f(x){\underset{L_{p}(\mathcal{M})}{p}}^{p}\right.\right. \\
& \lesssim_{p} \frac{k}{n} \sum_{j=1}^{n} \frac{1-}{(8 m)^{n}} \sum_{x \in \mathbb{Z}_{8 m}^{n}} f\left(x+e_{j}\right)--f(x)^{-}{ }_{L_{p}(\mathcal{M})}^{p} \\
& +^{-}\left(\frac{k}{n}\right)^{\frac{p}{2}} \frac{1-}{(16 m)^{n}} \sum_{x \in \mathbb{Z}_{8 m}^{n}} \sum_{\varepsilon \in \Omega_{n}}\left(f(x+\varepsilon)--f(x)^{-}{ }_{L_{p}(\mathcal{M})}^{p} .\right.
\end{aligned}
$$

Theorem-2.4.1 provides- a- large- class- of- examples- of metric- X_{p} spaces- beyond- the-class-of- (commutative) $-L_{p}$ spaces.- Also,- as- shown- in- 60 ,- being- a-metric- X_{p} space- implies-lower-estimates-on-the-distorsion-of-bi-Lipschitz-embeddings-of-nonlinear-sets.- Indeed,-let-$c_{L_{p}(\mathcal{M})}(\mathbf{X})$-denote- the-smallest-norm-of- ${ }^{-}$-bi-Lipschitz-map- $\mathbf{X} \rightarrow L_{p}(\mathcal{M})$.- Then- we-have-the-following:-

Corollary 2.4.2. Let \mathcal{M} be QWEP- and $2-<q<p$. Then
i) $-c_{L_{p}(\mathcal{M})}\left([m]_{q}^{n}\right)\left(\asymp_{p, q} \min -\left\{q^{\frac{(p-q)(q-2)}{q^{2}(p-2)}}, m^{1-\frac{2}{q}}\right\} \cdot(\right.$
ii)- If $c_{L_{p}(\mathcal{M})}\left(\left(L_{q},\|x-y\|_{q}^{\theta}\right)\right)<\infty$, then necessarily $\theta \leq q / p$.

Here- $[m]_{q}^{n}$ denotes-the-grid- $\left\{1, . I^{\prime}, m\right\}^{n}$ equipped-with-the-distance- $d_{\ell_{q}^{n}}(x, y)=-\|x-y\|_{\ell_{q}^{n}}$. We-refer-to- $60,-63$ - for-a-precise-definition-on- θ-snowflakes- $\left(L_{q},\|x-y\|_{q}^{\theta}\right)$.- We-end- with a- note- about- the- optimality of the- discrete- cyclic- inequalities from- Section-2.2. Given$m, n \geq 2$,-we-know-from- [63]-Lemma-3.1]-that-there-exists- $h_{m}^{n}:-\mathbb{Z}_{m}^{n} \rightarrow\{0, \ldots, 4 m\}^{2 n}$ suchthat

$$
\left.\sum_{j=1}^{n} \exp -\left(\frac{2 \pi i x_{j}}{m}\right)-\exp -\left(\frac{2 \pi i y_{j}}{m}\right)^{q}\right)^{\frac{1}{q}} \sim h_{m}^{n}(x)^{-}-h_{m}^{n}(y)^{-}{ }_{q}
$$

holds-(up-to-absolute-constants)-for-any- $x, y \in \mathbb{Z}_{m}^{n}$ and- $q \geq 2$.- Given-a-bi-Lipschitz-map $g:-[16 m]_{q}^{2 n} \rightarrow L_{p}$ with-bi-Lipschitz-norm- D, -set- $F=-g \circ h_{4 m, n}$.- Then,--arguing-as-in-63,-Theorem-1.14]-we-get-

$$
\frac{1}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\ \mathrm{S}[=k}} \frac{1-}{(4 m)^{2 n}} \sum_{x, y \in \mathbb{Z}_{4}^{n},}\left(F(x+y \mathrm{~S})^{-}-F(x)^{-{ }^{p}}{ }_{L_{p}}^{p} \gtrsim_{p} m^{p} k^{\frac{p}{q}} e^{\frac{2 \pi i}{4 m}}-1-\right.
$$

CHAPTER-2.- X_{P} INEQUALITIES-AND-THE-METRIC-GEOMETRY-OF-BANACH-

SPACES-
Next,-we-make-the-choices $k=-\left\lceil n^{\frac{p(q-2)}{q(p-2)}}\right\rceil$ and $-m=-\left\lceil n^{\frac{p-q}{q(p-2)}}\right\rceil$,-which-ensure-that $m \gtrsim \sqrt{n / k}$,-and-so-we- can- apply-Proposition- 2.2 .4 to- F in- order- to- get- the-following- statement:- if-$2-<q<p$ and- $m, n, \ell \in \mathbb{N}$,-there-holds-

$$
c_{L_{p}}\left([m]_{q}^{n}\right)-\gtrsim_{p, q} \min \left\{\left|e^{i \pi / \ell}-1\right| n^{\frac{(p-q)(q-2)}{q^{2}(p-2)}}, m^{1-\frac{2}{q}}\right\} \gtrsim_{p, q, \ell} \min \left\{\ell^{\left(\frac{(p-q)(q-2)}{q^{2}(p-2)}\right.}, m^{1-\frac{2}{q}}\right\} \cdot(
$$

Thus, up to-constants-(which-get-worse-as- $\ell \rightarrow \infty$)-we-recover the-optimal-distortions found-in-60].-Also,-Naor's-result-for $-\theta$-snowflakes-in- 60$]$-follow-from-Proposition 2.2 .4 -

Problem 2.4.3. According to [61, Theorem 12]

$$
\begin{equation*}
c_{S_{p}}(\mathrm{X})^{-} \leq \operatorname{dim}(\mathrm{X})^{\frac{q}{2}\left(\frac{1}{q}-\frac{1}{p}\right)} \tag{2.11}
\end{equation*}
$$

for every linear subspace $\mathrm{X}-\subseteq S_{q}^{n}$ and any $2-<q<p<\infty$. Is there an embedding of X-into $S_{p}\left(\ell_{q}^{m}\right)$-with $m=-\operatorname{dim}(\mathrm{X})-$ and constants independent of m ? This is trivially true for row, column or diagonal subspaces and we know from [43, Theorem 2] that it holds for the full space $\mathrm{X}=-S_{q}^{n}$ with optimal m being $\operatorname{dim}(\mathrm{X})=-n^{2}$. If this was the case for general X , we would get $c_{S_{p}}(\mathrm{X})-\lesssim c_{S_{p}}\left(S_{p}\left(\ell_{q}^{m}\right)\right)$ - whose rightmost term is dominated by an operator space (matrix amplification)-form of $c_{S_{p}}\left(\ell_{q}^{m}\right)$. Using that S_{p} is a metric X_{p}-space and arguing as above

$$
\begin{equation*}
c_{S_{p}}\left(\ell_{q}^{m}\right) \smile \asymp_{p, q} m^{\frac{(p-q)(q-2)}{q^{2}(p-2)}} . \tag{2.12}
\end{equation*}
$$

Does $c_{S_{p}}\left(S_{p}\left(\ell_{q}^{m}\right)\right)$-behave like $c_{S_{p}}\left(\ell_{q}^{m}\right)$? If so, one could guess that

$$
\begin{equation*}
c_{S_{p}}(\mathrm{X})-\leq_{p, q} \operatorname{dim}(\mathrm{X})^{\frac{(p-q)(q-2)}{q^{2}(p-2)}} \quad \text { for every } \quad \mathrm{X}-\subseteq S_{q}^{n} ?- \tag{2.13}
\end{equation*}
$$

This would already improve (2.11)- and it is best possible for $\mathrm{X}=-\ell_{q}^{n}=-\operatorname{diag}\left(S_{q}^{n}\right)$. It is still open to find the optimal distortion $c_{S_{p}}(\mathrm{X})$-for the full space $\mathrm{X}=-S_{q}^{n}$. In this case, we have the following bounds

$$
\begin{equation*}
\mathrm{A}:=-n^{\frac{(p-q)(q-2)}{q^{2}(p-2)}} \leq c_{S_{p}}\left(S_{q}^{n}\right) \leq \min \left\{\left\{\left\{^{\frac{1}{2}-\frac{1}{q}}, n^{\frac{1}{q}-\frac{1}{p}}\right\} \cdot(\right.\right. \tag{2.14}
\end{equation*}
$$

Indeed, the lower bound follows from 2.12- and the inclusion $\ell_{q}^{n} \subseteq S_{q}^{n}$. The upper bound follows easily using Hölder inequality. Note that (2.13)- gives $c_{S_{p}}\left(S_{q}^{n}\right)-\leq \mathrm{A}^{2}$ but (2.14)implies that no bound $c_{S_{p}}\left(S_{q}^{n}\right)=\mathrm{A}^{\beta}$ could be optimal for any $\beta>1$.

Chapter 3

Spin chaos and the Pisier inequality

In-another-attempt-of-extending- X_{p} inequalities,one-could-consider-different-generalizations-for-the-boolean-cube-apart-from-group-cocycles-as-studied-in-chapters 1 - and 2 -for-instance, general spin systems.-

We-will-follow-the-approach-by-Lust-Piquard- 49].- Let- U, Q, P be-the-Pauli-2-× ${ }^{2-m a t r i c e s-~}$ given-by-

$$
U=-\left(\left(\begin{array}{cc}
1 & 0^{-} \\
0^{-} & -1^{-}
\end{array}\right), Q=-\left(\begin{array}{ll}
0 & 1 \\
1 & 0^{-}
\end{array}\right), P=-\left(\left(\begin{array}{cc}
0^{-} & i \\
-i & 0^{-}
\end{array}\right)(\right.\right.
$$

These-operators-are-self-adjoint-and-unitary-and,-together-with-the-identity-1,-they-linearly-span-the-*-algebra- $\mathbb{M}_{2 \times 2}(\mathbb{C})$.- It-is-easy-to-check-that-they-satisfy-the-following-relations:-

$$
Q P=--P Q=-i U, \quad \operatorname{Tr}(Q)-=-\operatorname{Tr}(P)-=-\operatorname{Tr}(P Q)=0
$$

For- $1^{-} \leq j \leq n$, - $^{-}$we-define- ${ }^{-}$- ${ }^{-}{ }^{-} 2^{n} \times 2^{n}$ matrix-

$$
Q_{j}^{\prime}=-\mathbf{1} \otimes \ldots \otimes \mathbf{1} \otimes \underbrace{Q}_{j-t h} \otimes 1 \otimes \ldots \otimes \mathbf{1}
$$

It-is-worth-mentioning-that-the-*-algebra-generaded-by-these-operators-is-*-isomorphic-to- $L_{\infty}\left(\Omega_{n}\right)$.- On- the- other-hand, - we-define- analogously- P_{j}^{\prime} and $-U_{j} .^{-}$Let- \mathcal{M} be- the ${ }^{-}$von-Neumann- algebra- generated- by- the-sequences- $\left\{P_{j}^{\prime}\right\}_{j=1}^{n}$ and- $\left\{Q_{j}^{\prime}\right\}_{j=11^{-}}^{n}$ - They- are- clearly-unitary-self-adjoint-operators-and-they-satisfy-

$$
\begin{aligned}
& Q_{j}^{\prime} Q_{k}^{\prime}=-Q_{k}^{\prime} Q_{j}^{\prime}, \quad P_{j}^{\prime} P_{k}^{\prime}=-P_{k}^{\prime} P_{j}^{\prime}, \quad 1-\leq j, k \leq n \\
& Q_{j}^{\prime} P_{j}^{\prime}=-P_{j}^{\prime} Q_{j}^{\prime}, \quad \\
& Q_{j}^{\prime} P_{k}^{\prime}=-P_{k}^{\prime} Q_{j}^{\prime}, \quad 1-\leq j \neq k \leq n
\end{aligned}
$$

Now-for- $1^{-} \leq j, k \leq n$,-and-setting-a-family-of-signs- $\{\varepsilon(j, k)\}_{j, k \in[n]}$ satisfing- $\varepsilon(j, k)=-\varepsilon(k, j)-$ if- j is-different-from- $k,-$ and $-\varepsilon(j, j)=-1$,-we-can-construct-a-general spin system constituted-
by-the-operators-

$$
\begin{align*}
& Q_{j}^{\varepsilon}=-U_{1}^{\frac{1}{2}(1-\varepsilon(j, 1))} U_{2}^{\frac{1}{2}(1-\varepsilon(j, 2))} \ldots U_{j-1}^{\frac{1}{2}(1-\varepsilon(j, j-1))} Q_{j}^{\prime} \tag{3.1}\\
& P_{j}^{\varepsilon}=-U_{1}^{\frac{1}{2}(1-\varepsilon(j, 1))} U_{2}^{\frac{1}{2}(1-\varepsilon(j, 2))} \ldots U_{j-1}^{\frac{1}{2}(1-\varepsilon(j, j-1))} P_{j}^{\prime} . \tag{3.2}
\end{align*}
$$

Recall- that - the $-\operatorname{case}^{-} \varepsilon(j, k)-=-1-$ whenever $-j \neq-k$ corresponds- to- the- Walsh system,- i.e. -the-dual-group- of - the-boolean-cube,-as-long-as-the-choice- $\varepsilon(j, k)=-1$ - corresponds-to-thefermion system.- In-general,-they-fulfil- the-following-relations-

$$
\begin{array}{ll}
Q_{j}^{\varepsilon} Q_{k}^{\varepsilon}=-\varepsilon(j, k) Q_{k}^{\varepsilon} Q_{j}^{\varepsilon}, \quad P_{j}^{\varepsilon} P_{k}^{\varepsilon}=-\varepsilon(j, k) P_{k}^{\varepsilon} P_{j}^{\varepsilon}, \quad 1-j \neq-k \leq n \\
Q_{j}^{\varepsilon} P_{k}^{\varepsilon}=-\varepsilon(j, k) P_{k}^{\varepsilon} Q_{j}^{\varepsilon}, \quad 1-j, k \leq n .
\end{array}
$$

For-a-general-family-of-signs- ε as-above,-let- $\mathcal{R}_{n}^{\varepsilon}$ be-the-von-Neumann-subalgebra-generated-by- $\left\{Q_{j}^{\varepsilon}\right\}_{j \in[n]}$ in $-\mathbb{M}_{2^{n} \times 2^{n}}(\mathbb{C})$, i.e.,,

$$
\mathcal{R}_{n}^{\varepsilon}=-\operatorname{span}\left\{Q_{\mathrm{A}}^{\varepsilon}:-\mathrm{A} \subseteq[n]\right\},
$$

where,-if- $\mathrm{A}=-\left\{j_{1}<j_{2}<\ldots<j_{r}\right\} \subseteq[n]$,-we-set- $Q_{\mathrm{A}}^{\varepsilon}:=-Q_{j_{1}}^{\varepsilon} Q_{j_{2}}^{\varepsilon} \ldots Q_{j_{r}}^{\varepsilon}$ - It-is-easy-to-checkthat the-operators $\left\{Q_{j}^{\varepsilon}, P_{j}^{\varepsilon}\right\}_{j \in[n]}$ generate $\mathbb{M}_{2^{n}}:=\mathbb{M}_{2^{n} \times 2^{n}}(\mathbb{C})$.- We-will-equip-both-algebras\mathcal{M} and- $\mathcal{R}_{n}^{\varepsilon}$ with-the-tensor-product-of- n copies-of-the-usual-trace-in- $\mathbb{M}_{2 \times 2}(\mathbb{C})$,-i.e.

$$
\tau=-\frac{1-}{2^{n}} \bigotimes_{j=1}^{n} \operatorname{Tr}
$$

In-the-following,-and-whenever-it-does-not-lead-to-confusion,-we-will-omit-the-superscriptε when-referring-to-the-algebra- $\mathcal{R}_{n}^{\varepsilon}$ or-the-elements-of-general-spin-systems.-

In-analogy-with-the-Fourier-theory-developed-on-the-boolean-cube,-the-construction-of- \mathcal{R}_{n} as-the-linear-span-of- $\left\{Q_{\mathrm{A}}\right\}_{\mathrm{A} \subseteq[n]}$ leads-to-consider-a-similar- expansion-by-replacing-Walsh-functions-by-fermions:- if- $f \in \mathcal{R}_{n}$,-we-can-write-

$$
f=-\sum_{\mathrm{A} \subseteq[n]}\left(\hat{f}(\mathrm{~A})-Q_{\mathrm{A}},\right.
$$

where $-\widehat{f}(\mathrm{~A})=\tau\left(Q_{\mathrm{A}}^{*} f\right)$.- Moreover,-a-family-of-conditional-expectations-can-be-considered:-given-S $\subseteq[n]$, then $\mathcal{R}_{\mathrm{S}}=-\operatorname{span}\left\{Q_{\mathrm{A}}:-A \subseteq \mathrm{~S}\right\}$ is-a-subalgebra-of- \mathcal{R}_{n},-so-the-adjoint-operator-of- the- inclusion- i $_{S}:-L_{1}\left(\mathcal{R}_{\mathrm{S}}\right)-\longrightarrow L_{1}\left(\mathcal{R}_{n}\right)$ - which- will- be- denoted-by- $\mathrm{E}_{[n] \backslash \mathrm{S}}:-\mathcal{R}_{n} \longrightarrow \mathcal{R}_{\mathrm{S}}$ satisfies-

$$
\mathrm{E}_{[n] \backslash \mathrm{S}} f=-\sum_{\mathrm{A} \subseteq \subseteq} \hat{f}(\mathrm{~A})-Q_{\mathrm{A}} \quad \text { for-any }-f \in \mathcal{R}_{n} .
$$

This- operator- extends- to- a- completely- contractive-map- from- $L_{p}\left(\mathcal{R}_{n}\right)$ - onto- $L_{p}\left(\mathcal{R}_{\mathrm{S}}\right)$.- On-the-other-hand,-as-a-first-approach-to-the-analogous-concept-of-discrete-derivative-on-the-boolean-cube,-one-can-consider-in- $L_{2}\left(\mathcal{R}_{n}, \tau\right)$-for- $1^{-} \leq j \leq n$ the-operators- of- annihilation,-whose-action-on-the-elements-of-the-basis-of $-\mathcal{R}_{n}$ is-

$$
\begin{array}{ll}
D_{j}\left(Q_{\mathrm{A}}\right)=0, & \text { if }-j \notin \mathrm{~A}, \\
D_{j}\left(Q_{\mathrm{A}}\right)=Q_{j} Q_{\mathrm{A}}, & \text { if } j \in \mathrm{~A},
\end{array}
$$

and-the-operators-of-creation,-which-satisfy-

$$
\begin{array}{ll}
D_{j}^{*}\left(Q_{\mathrm{A}}\right)=0, & \text { if }-j \in \mathrm{~A}, \\
D_{j}^{*}\left(Q_{\mathrm{A}}\right)=-Q_{j} Q_{\mathrm{A}}, & \text { if }-j \notin \mathrm{~A} .
\end{array}
$$

These-maps-allow-us-to-define-the-number operator on- $L_{2}\left(\mathcal{R}_{n}, \tau\right)$,

$$
N=\sum_{j=1}^{n} p_{j}^{*} D_{j} .
$$

which-satisfies- $N\left(Q_{\mathrm{A}}\right)=-|\mathrm{A}| Q_{\mathrm{A}}$ for-any-subset-A of-[$\left.n\right]$.- Indeed,-one-can-consider,-for-any$j \in[n]$,-the- j-th discrete derivative

$$
\partial_{j}=2 Q_{j} D_{j},
$$

and - check- that- the- usual concept- of- the- Laplacian- operator- coincides- with- the- number-operator,-i.e.,-

$$
\Delta=-\frac{1}{4}-\sum_{j=1}^{n} \partial_{j}^{*} \partial_{j}=-\sum_{j=1}^{n} D_{j}^{*} D_{j}=-N .
$$

Moreover,- given- $\mathrm{S} \subseteq[n]$ - and- a- real- number- α,- we- can- consider- a- family- of- fractional Laplacians on $-\mathcal{R}_{n}$:-

$$
\Delta_{\mathrm{S}}^{\alpha} f=-\sum_{\substack{\mathrm{A} \subseteq[n] \\ \mathrm{A} \cap \mathrm{~S} \neq \emptyset}}\left(|\mathrm{A} \cap \mathrm{~S}|^{\alpha} \widehat{f}(\mathrm{~A})-Q_{\mathrm{A}} \quad \text { for-any }-f \in L_{2}\left(\mathcal{R}_{n}, \tau\right) .\right.
$$

This- yields-a-suitable-expression-for-the-Riesz transforms for-general-spin-systems:- given$j \in[n]$,-the- j-th Riesz transform R_{j} is-defined-by-

$$
\left\{\begin{array}{l}
R_{j}=-D_{j} N^{-1 / 2}=-\frac{1}{2} Q_{j} \partial_{j} \Delta_{[n]}^{-1 / 2} \text { on }-L_{2}^{\circ}\left(\mathcal{R}_{n}, \tau\right) \\
R_{j}\left(\mathbf{1}_{\mathcal{R}_{n}}\right)=0^{-}
\end{array}\right.
$$

where $-L_{p}^{\circ}\left(\mathcal{R}_{n}\right)=-\left\{f \in L_{p}\left(\mathcal{R}_{n}\right):-\tau_{\mathcal{R}_{n}}(f)=0\right\}=-\left\{f \in L_{p}\left(\mathcal{R}_{n}\right):-\widehat{f}(\emptyset)=0\right\}$.
In-parallel to-Theorem,1.1.1,-the-Riesz-transforms-estimates-for-spin-systems-are-contained-in-Lust-Piquard's-work-[49]:- given-2- $\leq p<\infty$,-for-any- $T \in L_{p}^{\circ}\left(\mathcal{R}_{n}\right)$,

$$
\begin{equation*}
c_{p}^{-1}\|T\|_{p} \leq \max -\left\{\left\|\left(\sum_{j=1}^{n}\left|R_{j}(T)\right|^{2}\right)^{1 / 2}{ }_{p},\right\|\left(\sum_{j=1}^{n}\left|R_{j}\left(T^{*}\right)\right|^{2}\right)^{1 / 2}{ }_{p}\right\} \leq K_{p}\|T\|_{p} \tag{3.3}
\end{equation*}
$$

where- $c_{p}=-O\left(p^{2}\right),-K_{p}=-O\left(p^{3 / 2}\right) .-$ On- the- other-hand,- as- well- as- for- the- boolean- cube-setting-[60],-we-consider-the-Rademacher projections:- given- $k \in[n]$,-the- k -th-Rademacherprojection of $-f \in \mathcal{R}_{n}$ is-

$$
\operatorname{Rad}_{k} f=\sum_{\substack{\mathrm{A} \subseteq[n] \\|\mathrm{A}|=k}}\left(\hat{f}(\mathrm{~A})-Q_{\mathrm{A}} .\right.
$$

Proposition 3.0.1. Given $2 \leq p<\infty, k \in[n]$, the norm of the operator

$$
\operatorname{Rad}_{k}:-L_{p}\left(\mathcal{R}_{n}\right)-\longrightarrow L_{p}\left(\mathcal{R}_{n}\right)^{-}
$$

is less or equal than $p^{k / 2}$.
Proof. Consider-the-noncommutative-Markov-semigroup- $S_{t}:{ }^{-} Q_{\mathrm{A}} \mapsto e^{-t|\mathrm{~A}|} Q_{\mathrm{A}}$.- If $p \geq 2$, $\left\|S_{t}\right\|_{2 \rightarrow p}=-1$-if-and-only-if- $e^{-2 t} \leq \frac{p-1}{q-1}$ ([10,- Theorem-4]-for-fermions,-and- [2,- Theorem-3]-for-general-spin-systems) -- Then, if-we-take- $t=-\frac{1}{2} \log (p-1)$,

$$
\begin{aligned}
\left\|\operatorname{Rad}_{k} f\right\|_{p} & =-\| \sum_{|\mathrm{A}|=k}\left(\hat{f}(\mathrm{~A})-Q_{\mathrm{A}}\left\|_{p}=-e^{t k}\right\| S_{t}\left(\sum_{|\mathrm{A}|=k} \widehat{f}(\mathrm{~A})-Q_{\mathrm{A}}\right) \|_{p}\right. \\
& \leq(p-1)^{k / \mathrm{E}}\left\|\sum_{|\mathrm{A}|=k} \widehat{f}(\mathrm{~A})-Q_{\mathrm{A}}\right\|_{2} \leq p^{k / 2} \| \sum_{|\mathrm{A}|=k}\left(\widehat{f}(\mathrm{~A})-Q_{\mathrm{A}} \|_{2}\right. \\
& =-p^{k / 2}\left(\sum_{|\mathrm{A}|=k}\left(\left.\widehat{f}(\mathrm{~A})\right|^{2}\right)^{-/ 2} \leq p^{k / 2}\|f\|_{2} \leq p^{k / 2}\|f\|_{p} .\right.
\end{aligned}
$$

The-above-proposition-shows that-boundedness-of-Rademacher-projections for-spin-systems-is-the-same-as-for-the-Walsh-system.- Indeed,-as-well-as-in-the-latter-case,it-also-provides-a-bound-for-the-norm-of-the-fractional-Laplacian-of-negative-exponent,-whose-proof-follows-verbatim-as-in-[60,-Lemma-10].-

Lemma 3.0.2. Suppose that $p \in[2, \infty)$-and $\alpha \in(0, \infty)$-satisfy $\alpha \leq \frac{5+\log p}{4}$. Then

$$
\sup _{n \in \mathbb{N}}\left\|\Delta_{[n]}^{-\alpha}\right\|_{p \rightarrow p} \lesssim \frac{(\log p)^{\alpha}}{2^{\alpha} \Gamma(1-+\alpha)}
$$

$3.1 \mathrm{X}_{p}$ inequality for spin chaos

We-are-interested-in-getting-an-operator-valued- X_{p} inequality-for-Rademacher-chaos,- via-Riesz-transforms-estimates-for-spin-systems-with-values-on-an-arbitrary-QWEP-von-Neu-mann-algebra.- Our-effort-will-give-rise to-an-operator-valued- X_{p} inequality for-Rademacher-chaos,-which-already-follows-from-Theorem 2.0.1 from-chapter-2, Despite-that,-we-include-a-different- proof- in-this-section.- However,- we-first- include- the-proof- of- the- X_{p} inequality-for-spin-chaos.-

Theorem 3.1.1 (X_{p} inequality-for-spin-chaos). Let $p \in[2, \infty), n \in \mathbb{N}$ and $k \in[n]$. Given $f \in L_{p}^{\circ}\left(\mathcal{R}_{n}\right)$, there holds

$$
\left(\frac { 1 - } { (\begin{array} { c }
{ n } \\
{ k }
\end{array}) } \sum _ { \substack { (\underset { S } { \mathrm { S } [= k } = k } } (\| \mathrm { E } _ { [n] \backslash \mathrm { S } } f \| _ { p } ^ { p }) ^ { 1 / p } \lesssim _ { p } \left(\frac{k}{n} \sum_{j=1}^{n}\left(\partial_{j} f\left\|_{p}^{p}+-\left(\frac{k}{n}\right)^{p / 2}\right\| f \|_{p}^{p}\right)^{1 / p} .\right.\right.
$$

3.1.- X_{P} INEQUALITY-FOR-SPIN-CHAOS-

Proof. For-every-S $\subseteq[n]$,-by- $\sqrt{3.3}$,-it-holds-

$$
\begin{aligned}
& \left\|\mathrm{E}_{[n] \backslash \mathrm{S}} f\right\|_{p} \lesssim p\left\|\left(\sum_{i=1}^{n}\left|R_{j} \mathrm{E}_{[n] \backslash \mathrm{S}} f\right|^{2}\right)^{1 / 2}\right\|_{p}+-\left\|\left(\sum_{j=1}^{n}\left|R_{j}\left(\mathrm{E}_{[n] \backslash \mathrm{S}} f\right)^{*}\right|^{2}\right)^{1 / 2}\right\|_{p} \\
& =-\left\|\left(\sum_{j \in \mathrm{~S}}\left|\mathrm{E}_{[n] \backslash \mathrm{S}} R_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p}+-\left\|\left(\sum_{j \in \mathrm{~S}}\left|\mathrm{E}_{[n] \backslash \mathrm{S}} R_{j}\left(f^{*}\right)\right|^{2}\right)^{1 / 2}\right\|_{p} \\
& =-\|\left(\mathrm{E}_{[n] \backslash \mathrm{S}} \otimes \mathrm{Id}\right)\left(\sum_{j \in \mathrm{~S}} k_{j} f \otimes e_{j, 1}\right) \mid\left(S_{p}\left[L_{p}\left(\mathcal{R}_{n}\right)\right]\right. \\
& +-\|\left(\mathrm{E}_{[n] \backslash \mathrm{S}} \otimes \mathrm{Id}\right) \cdot\left(\sum_{j \in \mathrm{~S}} \hat{R}_{j}\left(f^{*}\right)-\otimes e_{j, 1}\right) \mid S_{S_{p}\left[L_{p}\left(\mathcal{R}_{n}\right)\right]} \\
& \leq\left\|\sum_{j \in \mathrm{~S}} R_{j} f \otimes e_{j, 1}\right\|_{S_{p}\left[L_{p}\left(\mathcal{R}_{n}\right)\right]}+-\left\|\sum_{j \in \mathrm{~S}} \not_{j}\left(f^{*}\right)-\otimes e_{j, 1}\right\|_{S_{p}\left[L_{p}\left(\mathcal{R}_{n}\right)\right]} \\
& =-\|\left(\sum _ { j \in \mathrm { S } } (R _ { j } f | ^ { 2 }) ^ { 1 / 2 } \| _ { p } + - \| \left(\sum_{j \in \mathrm{~S}}\left(\left.R_{j}\left(f^{*}\right)\right|^{2}\right)^{1 / 2} \|_{p},\right.\right.
\end{aligned}
$$

since-the-conditional-expectation- $\mathrm{E}_{[n] \backslash S}$ is-completely-contractive-for-any-subset- $\mathrm{S} \subseteq[n]$.-Therefore,-for-any- $f \in L_{p}^{\circ}\left(\mathcal{R}_{n}\right)$,

$$
\frac{1}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}}\left(\left\lvert\, \mathrm{E}_{[n] \backslash \mathrm{S}} f\left\|_{p}^{p} \lesssim p \frac{1-}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}}\right\|\left(\sum _ { j \in \mathrm { S } } (R _ { j } f | ^ { 2 }) ^ { 1 / 2 } \| _ { p } ^ { p } + - \frac { 1 } { (\begin{array} { l }
{ n } \\
{ k }
\end{array}) } \sum _ { \substack { \mathrm { S } \subseteq [n] \\
\mathrm { S } | = k } } \| \left(\sum_{j \in \mathrm{~S}}\left(\left.R_{j}\left(f^{*}\right)\right|^{2}\right)^{1 / 2} \|_{p}^{p}\right.\right.\right.\right.
$$

Note- that- we-can- concentrate- on-bounding-the-first-summand- of- the- previous-line,-since$D_{j}\left(f^{*}\right)=\left(D_{j} f\right)^{*}$.- Now,-as-an-application-of-noncommutative-Khintchine-inequality-and-Theorem-1.1.2, we-obtain-

$$
\begin{aligned}
& \frac{1-}{\binom{n}{f}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S}[n=k}} \|\left(\sum_{j \in \mathrm{~S}}\left(\left.R_{j} f\right|^{2}\right)^{1 / 2}\left\|_{p}^{p}=-\frac{1-}{\binom{n}{k}} \sum_{\substack{\begin{subarray}{c}{\begin{subarray}{c}{\mathrm{~S}[n] \\
\mathrm{S} \mid=k} }} \end{subarray}}\end{subarray}}\right\| \sum_{j \in \mathrm{~S}} R_{j} f \otimes e_{j, 1} \|_{S_{p}\left[L_{p}\left(\mathcal{R}_{n}\right)\right]}^{p}\right. \\
& \lesssim p \frac{1-}{\binom{n}{k}} \sum_{\substack{s \subseteq[n] \\
\mathbf{S} \mid=k}}\left\|\sum_{j \in \mathrm{~S}} \varepsilon_{j} R_{j} f\right\|_{L_{p}\left(\Omega_{n} ; L_{p}\left(\mathcal{R}_{n}\right)\right)}^{p} \\
& \lesssim_{p}\left((\frac { p } { \sqrt { \operatorname { l o g } p } }) ^ { p } \left[\frac{\ell}{k} \sum_{j=1}^{n}\left(R_{j} f\left\|_{L_{p}\left(\mathcal{R}_{n}\right)}^{p}+-\left(\frac{l q}{q}\right)^{p / 2}\right\| \sum_{j=1}^{n} \not{ }_{j} R_{j} f \|_{L_{p}\left(\Omega_{n} ; L_{p}\left(\mathcal{R}_{n}\right)\right)}^{p}\right] .(\right.\right.
\end{aligned}
$$

Another-application-of-these-results-yields-

$$
\begin{aligned}
\left\|\sum_{j=1}^{n} \notin j R_{j} f\right\|_{L_{p}\left(\Omega_{n} ; L_{p}\left(\mathcal{R}_{n}\right)\right)}^{p} & \leq_{p}\left\|\left(\sum_{\dot{j}=1}^{n}\left|R_{j} f\right|^{2}\right)^{1 / 2}\right\|_{L_{p}\left(\mathcal{R}_{n}\right)}^{p}+\left\|\left(\sum_{(=1}^{n}\left|\left(R_{j} f\right)^{*}\right|^{2}\right)^{1 / 2}\right\|_{L_{p}\left(\mathcal{R}_{n}\right)}^{p} \\
& \lesssim_{p}\|f\|_{L_{p}\left(\mathcal{R}_{n}\right)}^{p},
\end{aligned}
$$

and-by-Lemma-3.0.2- $\left\|R_{j} f\right\|_{L_{p}\left(\mathcal{R}_{n}\right)}^{p} \leq\left\|D_{j} f\right\|_{L_{p}\left(\mathcal{R}_{n}\right)}^{p}=-\left\|\partial_{j} f\right\|_{L_{p}\left(\mathcal{R}_{n}\right)}^{p}$, - since- Q_{j} is-a-unitary operator.- In-conclusion,-

$$
\frac{1^{-}}{\binom{n}{k}} \sum_{\substack{\mathrm{S}[n] \\ \mathrm{S}[=k}} \|\left(\sum_{j \in \mathrm{~S}}\left(\left.R_{j} f\right|^{2}\right)^{1 / 2}\left\|_{p}^{p} \lesssim \frac{k}{n} \sum_{j=1}^{n}\right\| \partial_{j} f\left\|_{p}^{p}+-\left(\frac{k}{n}\right)^{p / 2}\right\| f \|_{p}^{p}\right.
$$

what-yields-the-statement-of-the-theorem.-

The- aforementioned- estimates- for- operator-valued- Riesz- transforms- will- follow- from- an-adaptation-of-Lust-Piquard-work-for-spin-systems-[49].- In-particular, it-will-be-sufficient-to-check-that-some-assumptions-from-Definition-1.1-and-Propositions-1.3-1.5-from-that-paper-hold.- For-that-purpose,-recall-that,-given-a-QWEP-von-Neumann-algebra- \mathcal{N} with-a-trace-$\tau_{\mathcal{N}},-$ any- $f \in \mathcal{R}_{n} \bar{\otimes} \mathcal{N}$ and- $g \in \mathbb{M}_{2^{n}} \bar{\otimes} \mathcal{N}$ admit-respectively-the-following-decomposition-

$$
\begin{gather*}
f=-\sum_{\mathrm{A} \subseteq[n]}\left(Q_{\mathrm{A}} \otimes \widehat{f}(\mathrm{~A}), \quad \text { where }-\widehat{f}(\mathrm{~A})-\in \mathcal{N},\right. \tag{3.4}\\
g=-\sum_{A, B \subseteq[n]} P_{\mathrm{A}} Q_{\mathrm{B}} \otimes \widehat{g}(\mathrm{~A}, \mathrm{~B}), \quad \text { where }-\widehat{g}(\mathrm{~A}, \mathrm{~B})-\in \mathcal{N} . \tag{3.5}
\end{gather*}
$$

Proposition 3.1.2. Let n be a natural number, and let $\left(\mathcal{N}, \tau_{\mathcal{N}}\right)$-be a $Q W E P$ von Neumann algebra. Consider a general spin system generated by the operators $\left\{P_{j}, Q_{j}\right\}_{j \in[n]}$. Then the following conditions hold:
(1) For any $j \in[n]$, it holds $\left(P_{j} \otimes \mathbf{1}\right)^{*}\left(P_{j} \otimes \mathbf{1}_{\mathcal{N}}\right)=\mathbf{1}_{\mathbb{M}_{2^{n}}} \otimes \mathbf{1}_{\mathcal{N}}$.
(2) If $j, k \in[n]-$ satisfy $k \neq-j$, then $\mathrm{E}_{\mathcal{R}_{n} \bar{\otimes} \mathcal{N}}\left(\left(P_{k} \otimes \mathbf{1}_{\mathcal{N}}\right)^{*} P_{j} \otimes \mathbf{1}_{\mathcal{N}}\right)=0$.
(3) Let $1-\leq p \leq \infty$ and δ be a vector of signs. Then any sequence $\left\{f_{j}\right\}_{j \in[n]}$ in $\mathcal{R}_{n} \bar{\otimes} \mathcal{N}$ satisfies the norm identity

$$
\left\|\sum_{j=1}^{n} \delta_{j}\left(P_{j} \otimes \mathbf{1}_{\mathcal{N}}\right) f_{j}\right\|_{L_{p}\left(\mathcal{R}_{n} \bar{\otimes} \mathcal{N}\right)}=-\left\|\sum_{j=1}^{n}\left(P_{j} \otimes \mathbf{1}_{\mathcal{N}}\right) f_{j}\right\|_{L_{p}\left(\mathcal{R}_{n} \bar{\otimes} \mathcal{N}\right)}
$$

(4) For any $f \in \mathcal{R}_{n} \bar{\otimes} \mathcal{N}$ and $j \in[n]$, the matrix $\left(P_{j} \otimes \mathbf{1}_{\mathcal{N}}\right) f\left(P_{j} \otimes \mathbf{1}_{\mathcal{N}}\right)^{*}$ is also an element of $\mathcal{R}_{n} \bar{\otimes} \mathcal{N}$.
(5) Fixed $j \in[n]$, let Π_{j} be the orthogonal projection from $L_{2}\left(\mathbb{M}_{2^{n}}\right)$-onto $P_{j} L_{2}\left(\mathbb{M}_{2^{n}}\right)$. Then, for any $f \in \mathcal{R}_{n} \bar{\otimes} \mathcal{N}$, and $g \in \mathbb{M}_{2^{n}} \bar{\otimes} \mathcal{N}$,

$$
\begin{aligned}
&\left\|\left(\Pi_{j} \otimes \mathrm{Id}\right)(f g)\right\|_{L_{2}\left(\mathbb{M}_{2^{n}} \bar{\otimes} \mathcal{N}\right)}=-\left\|f\left(\Pi_{j} \otimes \operatorname{Id}\right)(g)\right\|_{L_{2}\left(\mathbb{M}_{2^{n}} \bar{\otimes} \mathcal{N}\right)}, \\
&\left\|\left(\Pi_{j} \otimes \mathrm{Id}\right)(g f)\right\|_{L_{2}\left(\mathbb{M}_{2^{n}} \bar{\otimes} \mathcal{N}\right)}=-\left\|f\left(\Pi_{j} \otimes \operatorname{Id}\right)(g)\right\|_{L_{2}\left(\mathbb{M}_{2^{n}} \bar{\otimes} \mathcal{N}\right)} .
\end{aligned}
$$

(6) The sequence of operators $\left\{R_{j} \otimes \operatorname{Id}_{L_{2}(\mathcal{N})}\right\}_{j \in[n]}$ satisfy the following identity:

$$
\sum_{j=1}^{n}\left(R_{j} \otimes \operatorname{Id}_{L_{2}(\mathcal{N})}\right)^{*}\left(R_{j} \otimes \operatorname{Id}_{L_{2}(\mathcal{N})}\right)=-\operatorname{Id}_{L_{2}^{\circ}\left(\mathcal{R}_{n} \bar{\otimes} \mathcal{N}\right)}
$$

(7) For every $1-<p<\infty$, and every $f \in L_{p}^{\circ}\left(\mathcal{R}_{n} \bar{\otimes} \mathcal{N}\right)$, it holds

$$
\left\|\sum_{j=1}^{n}\left(P_{j} \otimes \mathbf{1}\right)\left(R_{j} \otimes \mathbf{1}_{\mathcal{N}}\right) f\right\|_{L_{p}\left(\mathbb{M}_{2^{n}} \bar{\otimes} \mathcal{N}\right)} \leq c(p)-\|f\|_{L_{p}\left(\mathcal{R}_{n} \bar{\otimes} \mathcal{N}\right)}
$$

Proof. Conditions- (1), (2)- and- (4)- can- be- reduced- to- statements- about- the- sequence$\left\{P_{j}\right\}_{j \in[n]}$ which-are-verified-at-Proposition-2.1-(b)-from-Lust-Piquard-work- 49].- On-the-other-hand,-fixed- $j \in[n]$, the- map- T_{j} on $-\mathbb{M}_{2^{n}}$ given-by-

$$
g \mapsto Q_{j}^{\prime} U_{j+1}^{(1 / 2)(1-\varepsilon(j, j+1))} \ldots U_{n}^{(1 / 2)(1-\varepsilon(j, n))} g U_{n}^{(1 / 2)(1-\varepsilon(j, n))} \ldots U_{j+1}^{(1 / 2)(1-\varepsilon(j, j+1))} Q_{j}^{\prime},
$$

is- $\mathrm{a}^{-}-$- - inner- isomorphism.- Recall- the- relations $-U Q=-Q U$ and $-U P=--P U$ and- that $\varepsilon(i, j)=-\varepsilon(j, i)$. Then,-it-is-easy-to-see-that- T_{j} fixes- Q_{k}^{ε} - If $-j<k$ then-

$$
T_{j} Q_{k}^{\varepsilon}=-Q_{j}^{\prime} U_{k}^{(1 / 2)(1-\varepsilon(j, k))} Q_{k}^{\varepsilon} U_{k}^{(1 / 2)(1-\varepsilon(j, k))} Q_{j}^{\prime}=-Q_{k}^{\varepsilon},
$$

if $-j=-k$ then $-T_{j} Q_{k}^{\varepsilon}=-Q_{k}^{\prime} Q_{k}^{\varepsilon} Q_{k}^{\prime}=-Q_{k}^{\varepsilon}$, -and-if $-j>k$ then $-T_{j} Q_{k}^{\varepsilon}=-Q_{k}^{\varepsilon}$.
On-the-other-hand, $-T_{j}$ fixes- P_{k}^{ε} if $-k \neq j$ due-to-a-similar-argument-as-above,-but-it-sends- P_{j}^{ε} to- $-P_{j}^{\varepsilon}$ since- $T_{j} P_{j}^{\varepsilon}=-Q_{j}^{\prime} P_{j}^{\varepsilon} Q_{j}^{\prime}=-Q_{j}^{\prime} Q_{j}^{\prime} P_{j}^{\varepsilon}=-P_{j}^{\varepsilon}$ - - In-particular,-it-is-a-trace-preserving isometry- $\mathrm{in}-\mathbb{M}_{2^{n}}$.- Therefore, $-T_{j} \otimes \operatorname{Id}_{\mathcal{N}}$ is-a-trace-preserving-isometry-on- $\mathbb{M}_{2^{n}} \bar{\otimes} \mathcal{N}$,- which-induces-an-isometry-on- $L_{p}\left(\mathbb{M}_{2}{ }^{n} \bar{\otimes} \mathcal{N}\right)$.- By-iteration-and-an-application-of-the-suitable-maps-depending-on-the-choice-of- δ,-this-implies-(3).-

The-decompositions-(3.4 -and- 3.5 -imply that-(5)-can-be-reduced to-checking the-identities-without-norms-for- $f \in \mathcal{R}_{n}$ and- $g \in \mathbb{M}_{2^{n}}$,-what-is-included-in-the-proof-of-Proposition-2.1-from- [49].-

Moreover,- (6)- is- a- direct- consequence- of the- properties- of- Riesz- transforms- on- general-spin- systems.- In- order- to- prove- (7),- consider- the- unitary- representation- on- the- torus-$R:-[0,2 \pi)-\longrightarrow \mathbb{M}_{2 \times 2}$ given-by-

$$
R_{\theta}=\left(\begin{array}{cc}
1 & 0^{-} \\
0^{-} & e^{i \theta}
\end{array}\right)(
$$

which-induces-a-unitary-representation- $\mathcal{R}:-\mathbb{T} \longrightarrow \mathbb{M}_{2^{n}}$ given-by-

$$
\mathcal{R}_{\theta}=\underbrace{R_{\theta} \times \ldots \times R_{\theta}}_{\left(n \operatorname{tim} \mathrm{~m}^{-}\right.}
$$

Now,-we-can-argue-as-in-[49,-Lemma-3.1-(b)]-and-apply-[49,-Lemma-1.1]:- given-a-simpletensor ${ }^{-} Q_{\mathrm{A}} \otimes \widehat{f}(\mathrm{~A})-\in \mathbb{M}_{2^{n}} \bar{\otimes} \mathcal{N}$ such-that- $A \neq \emptyset$,-it-holds-

$$
\begin{aligned}
& \frac{1-}{\sqrt{2 \pi}}\left(\Pi_{j} \otimes \mathrm{Id}\right)^{-} \text {p.v. } \iint_{\pi / 2}^{\boldsymbol{T} 2}\left(\mathcal{R}_{\theta} \otimes \mathbf{1}\right)\left(Q_{\mathrm{A}} \otimes \widehat{f}(\mathrm{~A})\right)\left(\mathcal{R}_{\theta} \otimes \mathbf{1}\right) \frac{\operatorname{sgn}(\theta)}{\left.\sqrt{\ell^{\log \left(\cos ^{2}(\theta)\right)^{-}}} d \theta\right)} \\
& =-\frac{1}{\sqrt{2 \pi}} \text { p.v. } \iint_{-\pi / 2}^{\boldsymbol{T} / 2} \cos (\theta)^{|\mathrm{A}|-1} \sin (\theta) \frac{\operatorname{sgn}(\theta)^{-}}{\sqrt{\log ^{2}\left(\cos ^{2}(\theta)\right)^{-}}} d \theta\left(P_{j} \otimes \mathbf{1}\right)\left(R_{j} \otimes \mathrm{Id}\right)\left(Q_{\mathrm{A}} \otimes \widehat{f}(\mathrm{~A})\right) \\
& =-|\mathrm{A}|^{-1 / 2}\left(P_{j} \otimes \mathbf{1}\right)\left(D_{j} \otimes \mathrm{Id}\right)\left(Q_{\mathrm{A}} \otimes \widehat{f}(\mathrm{~A})\right)^{-}=-\left(P_{j} \otimes \mathbf{1}\right)\left(R_{j} \otimes \mathrm{Id}\right)\left(Q_{\mathrm{A}} \otimes \widehat{f}(\mathrm{~A})\right) .
\end{aligned}
$$

Therefore,-by-summing-in- j and-setting- Π - $=-\sum_{1 \leq j \leq}\left(\Pi_{j}\right.$, we-obtain-

$$
\begin{aligned}
& \sum_{j=1}^{n}\left(\left(P_{j} \otimes \mathbf{1}\right)\left(R_{j} \otimes \mathrm{Id}\right) f=\right. \\
& \quad=\frac{1}{\sqrt{2 \pi}}(\Pi-\mathrm{Id})-\text { o p.v. } \iint_{-\pi / 2}^{\pi / 2}\left(\mathcal{R}_{\theta} \otimes \mathbf{1}\right)^{*} f\left(\mathcal{R}_{\theta} \otimes \mathbf{1}\right) \frac{\operatorname{sgn}(\theta)^{-}}{\sqrt{f^{\log \left(\cos ^{2}(\theta)\right)^{\prime}}} d \theta}
\end{aligned}
$$

Since- $\mathcal{R} \otimes$ Id-is-a-unitary-representation-of-T on- $\mathcal{R}_{n} \bar{\otimes} \mathcal{N}$,-an-application-of-[49]-Lemma-1.2]-is-possible.- Along-with-the-previous-identity,-this-yields, for $-1-<p<\infty$ and- $f \in \mathcal{R}_{n} \bar{\otimes} \mathcal{N}$

$$
\| \sum_{j=1}^{n}\left(\left(P_{j} \otimes \mathbf{1}\right)\left(R_{j} \otimes \mathrm{Id}\right) f\left\|_{L_{p}\left(\mathbb{M}_{2} n \bar{\otimes} \mathcal{N}\right)} \leq C(p)\right\| f \|_{L_{p}\left(\mathcal{R}_{n} \bar{\otimes} \mathcal{N}\right)}\right.
$$

with-constant $C(p)=-\|\Pi-\otimes \operatorname{Id}\|_{p \rightarrow p}\|H\|_{L_{p}(\mathbb{T}) \rightarrow L_{p}(\mathbb{T})}=-O\left((p /(p-1))^{3 / 2}\right)$ - where- H is- the-Hilbert-transform-on-the-torus.- Notice- that- Π - \otimes Id- is-bounded-by-a-constant- that- only depends on- p as ${ }^{-}$- consequence- [49,-Proposition-1.5-(b)],-since-conditions-(4)-an-(5)-hold.-

Although-validity-of-the-previous-conditions-is-sufficient-to-establish-operator-valued-Riesz-transform-estimates-in-a-similar-way-that-the-original-Lust-Piquard's-estimates-are-proved,-and-outline-of-the-proof-is-included-below.-

Theorem 3.1.3. Given $n \in \mathbb{N}$, let $\left(Q_{j}\right)_{1 \leq j \leq n},\left(P_{j}\right)_{1 \leq j \leq n}$ the generators of a general spin system, \mathcal{R}_{n} the von Neumann algebra generated by $\left(Q_{j}\right)_{1 \leq j \leq n},\left(R_{j}\right)_{1 \leq j \leq n}$ the associated Riesz transforms, and \mathcal{N} an arbitrary $Q W E P$ von Neumann algebra.
(1) Let $2 \leq p<\infty$. Then for every $f \in L_{p}^{\circ}\left(\mathcal{R}_{n} \bar{\otimes} \mathcal{N}\right)$,

$$
\begin{aligned}
c(p)^{-1} f \|_{p} & \leq \max -\left\{\|\left(\sum_{j=1}^{n} \gamma\left(\left.\left(R_{j} \otimes \mathrm{Id}\right) f\right|^{2}\right)^{1 / 2} L_{p}\left(\mathbb{M}_{2^{n}} \bar{\otimes} \mathcal{N}\right),\right.\right. \\
& \left.\|\left(\sum_{j=1}^{n}\left(P_{j} \otimes \mathbf{1}\right)\left|\left(R_{j} \otimes \operatorname{Id}\right)(f)^{*}\right|^{2}\left(P_{j} \otimes \mathbf{1}\right)\right)^{1 / 2} L_{p}\left(\mathbb{M}_{2} n \bar{\otimes} \mathcal{N}\right)\right\} \leq K(p)\|f\|_{p}
\end{aligned}
$$

with $c(p)=-K(p) K\left(p^{\prime}\right)=-O\left(p^{2}\right)$, and $K(p)=-O\left(p^{3 / 2}\right)$.
(2) Let $1-<p \leq 2$. Then for every $f \in L_{p}^{\circ}\left(\mathcal{R}_{n} \bar{\otimes} \mathcal{N}\right)$ -

$$
\begin{aligned}
K\left(p^{\prime}\right)-\|f\|_{p} \leq & \inf _{\left(R_{j} \otimes \mathrm{I}\right) f=a_{j}+b_{j}}\left\{\left(\sum_{j=1}^{n} a_{j}^{*} a_{j}\right)^{1 / 2},\right. \\
& \left.\left(\sum_{j=1}^{n}\left(P_{j} \otimes \mathbf{1}\right) b_{j} b_{j}^{*}\left(P_{j} \otimes \mathbf{1}\right)\right)^{1 / 2}{ }_{p}\right\} \leq C(p)\|f\|_{p}
\end{aligned}
$$

where the infimum runs over all decompositions of $\left(R_{j} \otimes \mathrm{Id}\right) f$ in \mathcal{R}_{n} and $K\left(p^{\prime}\right)=-$ $O\left(p^{\prime 3 / 2}\right)=-O\left(1 /(p-1)^{3 / 2}\right), C(p)=-K\left(p^{\prime}\right) K(p)=-O\left(1 /(p-1)^{2}\right)$.

Proof. Since-conditions-(1),- (2)-and- (3)-from-Proposition-3.1.2 hold,- an-application- of-[49,-Proposition-1.4]- yields:- for $-2 \leq p<\infty$ and $-f \in L_{p}^{\circ}\left(\mathcal{R}_{n} \bar{\otimes} \overline{\mathcal{N}}\right)$,-

$$
\begin{aligned}
\left\|\sum_{j=1}^{n}\left(P_{j} \otimes \mathbf{1}\right)\left(R_{j} \otimes \mathrm{Id}\right) f\right\|_{L_{p}\left(\mathcal{M}_{n} \bar{\otimes} \mathcal{N}\right)} & \leq K(p)-\max -\left\{\|\left(\sum_{j=1}^{n}\left|\left(R_{j} \otimes \mathrm{Id}\right) f\right|^{2}\right)^{1 / 2}{ }_{p},\right. \\
& \left.\|\left(\sum_{=1}^{n}\left(P_{j} \otimes \mathbf{1}\right)\left|\left(R_{j} \otimes \mathrm{Id}\right)(f)^{*}\right|^{2}\left(P_{j} \otimes \mathbf{1}\right)\right)^{1 / 2}{ }_{p}\right\} \\
& \leq K(p)-\left\|\sum_{j=1}^{n}\left(P_{j} \otimes \mathbf{1}\right)\left(R_{j} \otimes \mathrm{Id}\right) f\right\|_{p}
\end{aligned}
$$

with $-K(p)=-O\left(p^{1 / 2}\right)$,-and-for $-1-<p<2,-$

$$
\begin{aligned}
\| \sum_{j=1}^{n}\left(\left(P_{j} \otimes \mathbf{1}\right)\left(R_{j} \otimes \mathrm{Id}\right) f \|_{p}\right. & \leq \operatorname{inf-}_{\left(R_{j} \otimes \mathrm{I}\right) f=a_{j}+b_{j}}\left\{\left(\sum_{j=1}^{n} a_{j}^{*} a_{j}\right)^{1 / 2}, \quad\left(\sum_{j=1}^{n} P_{j} b_{j} b_{j}^{*} P_{j}\right)^{1 / 2}{ }_{p}\right. \\
& \leq K\left(p^{\prime}\right) \| \sum_{j=1}^{n}\left(\left(P_{j} \otimes \mathbf{1}\right)\left(R_{j} \otimes \mathrm{Id}\right) f \|_{L_{p}\left(\mathbb{M}_{2} n \bar{\otimes}\right)} .\right.
\end{aligned}
$$

Now- the- conditions- (6)- and- (7)- imply- the- statement- from- 49,- Proposition- 1.3]- so- for-$2-\leq<\infty$,

$$
\begin{aligned}
c(p)^{-1}\|f\|_{L_{p}\left(\mathcal{R}_{n} \bar{\otimes} \mathcal{N}\right)} & \leq \max -\left\{\|\left(\sum_{i=1}^{n}\left(\left.\left(R_{j} \otimes \mathrm{Id}\right) f\right|^{2}\right)^{1 / 2},\right.\right. \\
& \left.\|\left(\sum_{j=1}^{n}\left(P_{j} \otimes \mathbf{1}\right)\left|\left(R_{j} \otimes \mathrm{Id}\right)(f)^{*}\right|^{2}\left(P_{j} \otimes \mathbf{1}\right)\right)^{1 / 2} \quad{ }_{p}\right\} \leq K(p)\|f\|_{p},
\end{aligned}
$$

and, - for $-1-<p \leq 2$,

$$
\begin{aligned}
K\left(p^{\prime}\right)^{-1}\|f\|_{p} & \leq \inf _{\left(R_{j} \otimes \mathrm{I}\right) f=a_{j}+b_{j}}\left\{\left(\sum_{j=1}^{n} a_{j}^{*} a_{j}\right)^{1 / 2}, \quad\left(\sum_{p=1}^{n}\left(P_{j} \otimes \mathbf{1}\right) b_{j} b_{j}^{*}\left(P_{j} \otimes \mathbf{1}\right)\right)^{1 / 2}{ }_{p}\right. \\
& \leq C(p)-\|f\|_{p} .
\end{aligned}
$$

Corollary 3.1.4. Let $p \in[2, \infty)$ - and \mathcal{N} be an arbitrary $Q W E P$ von Neumann algebra. Then, for any $f \in L_{p}^{\circ}\left(\Omega_{n} ;-L_{p}(\mathcal{N})\right)$,

$$
\|f\|_{p} \lesssim_{p} \quad\left(\sum_{j=1}^{n}\left|\left(R_{j} \otimes \mathrm{Id}\right)(f)\right|^{2}\right)^{1 / 2}{ }_{p}+^{-}\left(\sum_{j=1}^{n}\left|\left(R_{j} \otimes \operatorname{Id}\right)\left(f^{*}\right)\right|^{2}\right)^{1 / 2}{ }_{p} \lesssim_{p}\|f\|_{p}
$$

Proof. As-a-consequence- of- the- anticommutation-relations,- there-holds- $P_{j} Q_{\mathrm{A}}=-Q_{\mathrm{A}} P_{j}$ whenever- $j \notin$ A.- Moreover,- since- $R_{j}(f)$-does not- depend- on- Q_{j},-it- follows- $R_{j}(f) P_{j}=-$ $P_{j} R_{j}(f)$,-so- P_{j} dissapears-from-the-estimate-in-Theorem-3.1.3 for- $2-\leq p<\infty$.

Given-a-QWEP-von-Neumann-algebra- \mathcal{N} with-a-normal-semifinite-faithful-trace,-their- L_{p} spaces, when- $2-\leq p<\infty$,- have-type-2.- Therefore,-since-they-have-non-trivial-type, - these-spaces-are-K-convex-67],i.e.- the-operators-

$$
\left\{\operatorname{Rad}_{\mathbf{k}} \otimes \operatorname{Id}_{L_{p}(\mathcal{N})}\right\}_{k \in \mathbb{N}}
$$

are-uniformly-bounded.- Moreover,-the-operator- $\Delta_{[n]}^{-1 / 2} \otimes \operatorname{Id}_{L_{p}(\mathcal{N})}$ is-uniformly-bounded-for-any-natural-number-n [62,-Theorem-5].-As-an-open-question,-we-ask-ourselves-if-a-similar-statement-can-be-proved-for-Laplacians-on-general-spin-systems-and,-as-a-consequence,-the-theorem-below-can-be-obtained-in-this-context.-

Theorem 3.1.5 (X_{p} inequality-for-operator-valued-Rademacher-chaos). Suppose that $p \in$ $[2, \infty), n \in \mathbb{N}$, and $k \in[n]$. Let \mathcal{N} a QWEP von Neumann algebra. Then every $f \in$ $L_{p}^{\circ}\left(\Omega_{n} ;-L_{p}(\mathcal{N})\right)$-satisfies

$$
\left.\frac{1-}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\ \mathrm{S} \mid=k}}\left(\left\|\left(\mathrm{E}_{[n] \backslash \mathrm{S}} \otimes \mathrm{Id}\right) f\right\|_{p}^{p}\right)^{1 / p} \lesssim_{p} \frac{k}{n} \sum_{j=1}^{n}\left\|\left(\partial_{j} \otimes \mathrm{Id}\right) f\right\|_{p}^{p}+-\left(\frac{k}{n}\right)^{p / 2}\|f\|_{p}^{p}\right)^{1 / p}
$$

Proof. By-Corollary 3.1.4-it-holds-

$$
\begin{aligned}
\frac{1-}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}}\left\|\left(\mathrm{E}_{[n] \backslash \mathrm{S}} \otimes \mathrm{Id}\right) f\right\|_{p}^{p} & \lesssim_{p} \frac{1^{-}}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \subseteq=k}}\left(\sum_{k=1}^{n}\left(\left.\left(R_{j} \otimes \mathrm{Id}\right)\left(\mathrm{E}_{[n] \backslash \mathrm{S}} \otimes \mathrm{Id}\right) f\right|^{2}\right)^{1 / 2}{ }_{p}^{p}\right. \\
& +-\frac{1-}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}}\left(\sum_{(=1}^{n}\left|\left(R_{j} \otimes \mathrm{Id}\right)\left(\mathrm{E}_{[n] \backslash \mathrm{S}} \otimes \mathrm{Id}\right) f^{*}\right|^{2}\right)^{1 / 2}{ }_{p}^{p} .
\end{aligned}
$$

Moreover,-since-the-conditional-expectations-are-completely-contractive,-

$$
\begin{aligned}
& \frac{1}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}}\left\|\left(\mathrm{E}_{[n] \backslash \mathrm{S}} \otimes \mathrm{Id}\right) f\right\|_{p}^{p} \\
& =-\frac{1-}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathbf{S} \mid=k}}\left(\left(\mathrm{E}_{[n] \backslash \mathrm{S}} \otimes \operatorname{Id}_{L_{p}(\mathcal{N})} \otimes \operatorname{Id}_{S_{p}}\right)\left(\sum_{j \in \mathrm{~S}}\left(R_{j} \otimes \operatorname{Id}\right) f \otimes e_{j, 1}\right) p_{p}^{p}\right. \\
& +-\frac{1-}{\binom{n}{k}} \sum_{\substack{\begin{subarray}{c}{\mathrm{~S}[n]=k} }}\end{subarray}}\left(\mathrm{E}_{[n] \backslash \mathrm{S}} \otimes \operatorname{Id}_{L_{p}(\mathcal{N})} \otimes \operatorname{Id}_{S_{p}}\right)\left(\sum_{j \in \mathrm{~S}}\left(R_{j} \otimes \mathrm{Id}\right) f \otimes e_{j, 1}\right) f_{p}^{p} \\
& \leq \frac{1}{\binom{n}{k}} \sum_{ \leq \frac { 1 } { (\begin{array} { l }
{ n } \\
{ k }
\end{array}) } \sum _ {\substack{ \substack{ (\begin{subarray}{c}{\mathrm{~S}[n] \\
\mathrm{S}=k} }}\end{subarray}} \sum_{j \in \mathrm{~S}}\left(R_{j} \otimes \mathrm{Id}\right) f \otimes e_{j, 1}{ }_{p}^{p}+\cdots-\frac{1-}{\binom{n}{k}} \sum_{\substack{\begin{subarray}{c}{\mathrm{~S}[n] \\
\mathrm{S}=k} }}\end{subarray}} \sum_{j \in \mathrm{~S}}\left(R_{j} \otimes \mathrm{Id}\right) f^{*} \otimes e_{j, 1}{ }_{p}^{p}} \\
& =-\frac{1}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}}\left(\sum_{j \in \mathrm{~S}}\left(\left.\left(R_{j} \otimes \mathrm{Id}\right) f\right|^{2}\right)^{1 / 2}{ }_{p}^{p}+\frac{1-}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}}\left(\sum_{j \in \mathrm{~S}}\left(\left.\left(R_{j} \otimes \mathrm{Id}\right) f^{*}\right|^{2}\right)^{1 / 2} p_{p}^{p} .\right.\right.
\end{aligned}
$$

Note- that-we-can- concentrate- on-bounding-the-first-summand- of - the- previous-line,- since$\left(D_{j} \otimes \mathrm{Id}\right)\left(f^{*}\right)^{-}=-\left(\left(D_{j} \otimes \mathrm{Id}\right) f\right)^{*} .^{-}$Now,- by- noncommutative- Khintchine- inequality- and-Theorem-1.1.2, ,

$$
\begin{aligned}
& \frac{1}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}}\left(\sum_{j \in \mathrm{~S}}\left(\left.\left(R_{j} \otimes \mathrm{Id}\right) f\right|^{2}\right)^{1 / 2} p_{p}^{p}\right. \\
& \quad \\
& \quad \underset{p}{ } \frac{1-}{\binom{n}{k}} \sum_{\substack{\mathrm{S} \subseteq[n] \\
\mathrm{S} \mid=k}} \mathbb{E}_{\delta} \sum_{j \in \mathrm{~S}} \oint_{j}\left(R_{j} \otimes \mathrm{Id}\right) f_{p}^{p} \\
& \quad \lesssim p \frac{k}{n} \sum_{j=1}^{n}\left\|\left(R_{j} \otimes \mathrm{Id}\right) f\right\|_{p}^{p}+-\left(\frac{k}{n}\right)^{p / 2} \mathbb{E}_{\delta} \sum_{j=1}^{n} \oint_{j}\left(R_{j} \otimes \mathrm{Id}\right) f{ }_{p}^{p} .
\end{aligned}
$$

Another-application-of-noncommutative-Khintchine-inequality-and-Theorem 3.1.4-implies-that-

$$
\mathbb{E}_{\delta} \sum_{j=1}^{n} \oint_{j}\left(R_{j} \otimes \mathrm{Id}\right) f{ }_{p}^{p} \lesssim_{p}\left(\sum_{\dot{j}=1}^{n}\left|\left(R_{j} \otimes \mathrm{Id}\right) f\right|^{2}\right)^{1 / 2}\left\|_{p}^{p} \lesssim_{p}\right\| f \|_{p}^{p} .
$$

Therefore,-the-boundedness-of- $\Delta_{[n]}^{-1 / 2} \otimes \operatorname{Id}_{L_{p}(\mathcal{N})}$ implies-the-inequality-

$$
\left\|\left(R_{j} \otimes \mathrm{Id}\right) f\right\|_{L_{p}\left(\Omega_{n} ; L_{p}(\mathcal{N})\right)} \lesssim_{p}\left(\mathbb{E}_{\varepsilon}\left\|\left(\varepsilon_{j} \partial_{j} \otimes \mathrm{Id}\right) f\right\|_{p}^{p}\right)^{1 / p}=-\left\|\left(\partial_{j} \otimes \mathrm{Id}\right) f\right\|_{p}
$$

In-conclusion,-

$$
(f _ { \substack { n \\
k \\
k \\
\hline } } ^ {\left.\substack{ \substack{ (\begin{subarray}{c}{\mathrm{~S} \mid=[n]} }}\end{subarray}}\left\|\left(\mathrm{E}_{[n] \backslash \mathrm{S}} \otimes \mathrm{Id}\right) f\right\|_{p}^{p}\right)^{1 / p} \lesssim_{p}\left(\frac{k}{n} \sum_{j=1}^{n}\left\|\left(\partial_{j} \otimes \mathrm{Id}\right) f\right\|_{p}^{p}+-\left(\frac{k}{n}\right)^{p / 2}\|f\|_{p}^{p}\right)^{1 / p}
$$

3.2 Dimension-free Pisier's inequality for spin chaos

In-this-section,-we-study-the-extension-of-a-dimension-free-Pisier's-inequality-on-the-Ham-ming-cube- Ω_{n} which-was-recently-introduced-by-Ivanisvili,- van-Handel- and-Volberg- 33].-This- estimate-constituted-the-key-fact-for-solving-a-long-standing- problem- in-the-metric-geometry-of-Banach-spaces:-Rademacher-and-Enflo-type-coincide-(see-[16, [52]).- The-afore-mentioned-inequality-can-be-stated- as-follows:- given-a-Banach-space- \mathbb{X} and- $p \in[1, \infty)$, there-holds-

$$
\begin{equation*}
\left(\mathbb{E}_{\varepsilon}\left\|f(\varepsilon)-\mathbb{E}_{\delta} f\right\|_{\mathbb{X}}^{p}\right)^{1 / p} \leq C \int\left(\left(\mathbb{E}_{\varepsilon} \mathbb{E}_{\eta} \sum_{j=1}^{n} \frac{\eta_{j}^{(r)}}{1+r \eta_{j}^{(r)}} \partial_{j} f_{\mathbb{X}}^{p}\right)^{1 / p} d t\right. \tag{3.6}
\end{equation*}
$$

where- \mathbb{E}_{ε} and $-\mathbb{E}_{\delta}$ respectively- denote- the- expectation- over $-\varepsilon \in \Omega_{n}$ and $-\delta \in \Omega_{n}$ chosen-uniformly-at-random.- However,- the-vector-

$$
\eta^{(r)}=\left(\eta_{1}^{(r)}, \ldots, \eta_{n}^{(r)}\right)
$$

is-set-to-be-a-vector-of-independent-identically-distributed-biased Rademacher-variables-sothat

$$
\operatorname{Pr}\left(\eta_{j}=-1\right)=-\frac{1+r}{2} \text { and }-\operatorname{Pr}\left(\eta_{j}=-1\right)=-\frac{1-r}{2-} .
$$

In-that-case, $-\mathbb{E}_{\eta} \eta_{j}=-r \neq 0$.- Alternatively, $-\sqrt{3.6}$-can-be-expresed-as-

$$
\left\|f-\left(\mathrm{E}_{[n]} \otimes \mathrm{Id}\right) f\right\|_{L_{p}\left(\Omega_{n} ; \mathbb{X}\right)} \leq C \int\left(\left(\mathbb{E}_{\eta} \sum_{j=1}^{n}\left(\frac{\eta_{j}^{(r)}}{1+r \eta_{j}^{(r)}}\left(\partial_{j} \otimes \mathrm{Id}\right) f_{L_{p}\left(\Omega_{n} ; \mathbb{X}\right)}^{p}\right)^{1 / p} d r\right.\right.
$$

Our- effort-goes- in-the-direction- of- replacing- the-Hamming- cube- Ω_{n} by- the-spin- algebra-\mathcal{R}_{n}.-For-that-purpose,-it-will-be-convenient-to-consider-operator-spaces-instead-of-Banach-spaces.-

Let- \mathcal{M} be-a-hyperfinite-von-Neumann-algebra,-i.e. $\mathcal{M}={\overline{U M_{\alpha}}}^{w^{*}}$ where- $\left(M_{\alpha}\right)_{\alpha}$ is a net-of-finite-dimensional- von-Neumann-algebras-directed-by-inclusion.- Also,- assume-that- \mathcal{M} is-equipped-with-a-normal-semifinite-faithful-trace,-and-let- $E \subseteq B(\mathcal{H})$-be-an-operator space,-that-is,-a-closed-subspace-of- $B(\mathcal{H})$.- Set-

$$
L_{1}(\mathcal{M} ; E)=-L_{1}(\mathcal{M}) \widehat{\otimes} E
$$

where- $\widehat{\otimes}$ denotes-the-operator-space-version-of-the-projective-tensor-product.- Then,- given-$1-<p<\infty$, -the-noncommutative vector valued L_{p}-space on \mathcal{M} with values in E is-defined-via-complex-interpolation-as-

$$
L_{p}(\mathcal{M} ;-E)=\left(\mathcal{M} \otimes_{\min } E, L_{1}(\mathcal{M} ;-E)\right)_{1 / p}
$$

Then- $L_{p}(\mathcal{M} ;-E)$-can-be-equipped-with-the-norm-

$$
\|x\|_{L_{p}(\mathcal{M} ; E)}=-\inf \left\{\|a\|_{L_{2 p}(\mathcal{M})}\|y\|_{\mathcal{M} \otimes_{\min } E}\|b\|_{L_{2 p}(\mathcal{M})}:-x=-a \cdot y \cdot b\right\}
$$

where- $y \in \mathcal{M} \otimes E$, - and -

$$
a, b \in V=-\bigcup_{\substack{e \in \mathcal{P}\left(\mathcal{H}(1) \\ \tau_{\mathcal{M}}(e)<b_{\infty}\right.}}(e \mathcal{M} e
$$

Here- $\mathcal{P}(\mathcal{M})$-denotes-the-lattice-of-orthogonal-projections-in- \mathcal{M}.- Moreover,-if- \mathcal{M} is-finite-dimensional,-the-following-duality-identity-holds-completely-isometrically-for-1- $\leq p<\infty$,-

$$
\begin{equation*}
L_{p}(\mathcal{M} ;-E)^{*}=-L_{p^{\prime}}\left(\mathcal{M} ;-E^{*}\right) \tag{3.7}
\end{equation*}
$$

Take $-\mathcal{M}=-\mathcal{R}_{n} .{ }^{-}$Then, ${ }^{-}$every- $-f \in L_{p}\left(\mathcal{R}_{n} ;-E\right)$-admits-the-expansion-

$$
f=-\sum_{\mathrm{A} \subseteq[n]}\left(Q_{\mathrm{A}} \otimes \widehat{f}(\mathrm{~A})\right.
$$

for-some-coefficients- $\widehat{f}(\mathrm{~A})-\in E$.-

Theorem 3.2.1. Fix $1-\leq p<\infty$ and $n \in \mathbb{N}$. Then for any operator space $E \subseteq B(\mathcal{H})$-and $f \in L_{p}\left(\mathcal{R}_{n}, E\right)$, there holds

$$
\left\|f-\left(\mathrm{E}_{[n]} \otimes \mathrm{Id}\right) f\right\|_{L_{p}\left(\mathcal{R}_{n} ; E\right)} \leq C \iint_{\ell}^{\not}\left(\mathbb{f}_{\eta} \sum_{j=1}^{n}\left(\frac{\eta_{j}^{(r)}}{1+r \eta_{j}^{(r)}}\left(\partial_{j} \otimes \mathrm{Id}\right) f_{L_{p}\left(\mathcal{R}_{n} ; E\right)}^{p}\right)^{1 / p} d r\right.
$$

where the random variables $\left\{\eta_{j}^{(r)}\right\}_{j=1}^{n}$ are independent, identically distributed, and take the value 1-with probability $\frac{1+r}{2}$ and the value -1 -with probability $\frac{1-r}{2}$.

Before-proving-the-main-result-of-this-section,-let's-introduce-some-auxiliar-maps.- Given-an-operator-

$$
h=-\sum_{\mathrm{A} \subseteq[n]}\left(\hat{h}(\mathrm{~A})-Q_{\mathrm{A}},\right.
$$

let-r>0,-k $\quad[n]$-and $-\eta$ a-biased-Rademacher-vector-as-considered-in-Theorem 3.2.1.-Then,-consider-the-maps-

- $T_{r} h=-\sum_{f \subseteq[n]}|\mathrm{A}| \widehat{h}(\mathrm{~A}) Q_{\mathrm{A}}$,
- $A_{\eta} h=-\sum_{\mathrm{A} \subseteq[n}\left(\prod_{j}\left(\in \mathrm{~A} \eta_{j}\right) \widehat{h}(\mathrm{~A})-Q_{\mathrm{A}}\right.$,
- $S_{k} h=\sum_{A \subseteq[n]}(-1)^{\delta_{A \ni k}} \widehat{h}(\mathrm{~A})-Q_{\mathrm{A}}$.

Recall- that- A_{η} can-be- understood- as- a-spin-version- of- a-translation operator,- while- S_{k} represents-flipping -the-sign-of-coordinate- ε_{j} since $-\partial_{k}=-\mathrm{Id}-S_{k}$. - These-three-operators-can-be-related-via-the-following-identities.-

Lemma 3.2.2. Let $1-\leq p<\infty$ and let E be an operator space. Then, any $f \in L_{p}\left(\mathcal{R}_{n} ; E\right)$ satisfies

$$
\begin{gather*}
f-\left(\mathrm{E}_{[n]} \otimes \mathrm{Id}\right)(f)=-\frac{1^{-}}{r}\left(\Delta_{[n]} \otimes \mathrm{Id}\right)\left(T_{r} \otimes \mathrm{Id}\right) f, \tag{3.8}\\
\frac{1^{-}}{r}\left(\partial_{k} \otimes \mathrm{Id}\right)\left(T_{r} \otimes \mathrm{Id}\right)(f)=2-\mathbb{E}_{\eta}\left[\frac{\eta_{k}^{(r)}}{+-r \eta_{k}^{(r)}}\left(A_{\eta} \otimes \mathrm{Id}\right) f\right] \tag{3.9}
\end{gather*}
$$

for any $k \in[n]-$ and $r>0$.
Proof. Let- $h \in L_{p}\left(\mathcal{R}_{n}\right)$.- It- is- easy- to check- that- $T_{0} h=\mathrm{E}_{[n]} h$ and $-T_{1} h=-h$ so,- given$f \in L_{p}\left(\mathcal{R}_{n} ; E\right)$,- there-holds-

$$
f-\left(\mathrm{E}_{[n]} \otimes \mathrm{Id}\right)(f)=\left(T_{1} \otimes \mathrm{Id}\right) f-\left(T_{0} \otimes \mathrm{Id}\right) f=\iint_{(}^{x} \frac{d}{d r}\left(T_{r} \otimes \mathrm{Id}\right) f d r
$$

Then,-we-recover- the-first-identity-in-the-statement-since-

$$
\begin{aligned}
\frac{d}{d r}\left(T_{r} \otimes \mathrm{Id}\right) f & =-\sum_{\mathrm{A} \subseteq[n]}|\mathrm{A}| r^{|\mathrm{A}|-1} Q_{\mathrm{A}} \otimes \widehat{f}(\mathrm{~A})=-\frac{1-}{r} \sum_{\mathrm{A} \subseteq[n]}|\mathrm{A}| r^{|\mathrm{A}|} Q_{\mathrm{A}} \otimes \widehat{f}(\mathrm{~A}) \\
& =-\frac{1^{-}}{r}\left(\Delta_{[n]} \otimes \mathrm{Id}\right)\left(T_{r} \otimes \mathrm{Id}\right) f
\end{aligned}
$$

On-the-other-hand,-recall-that-

$$
\begin{equation*}
\mathbb{E}_{\eta}\left(A_{\eta} \otimes \mathrm{Id}\right) f=-\sum_{\mathrm{A} \subseteq[n]}\left(r^{|\mathrm{A}|} Q_{\mathrm{A}} \otimes \widehat{f}(\mathrm{~A})=\left(T_{r} \otimes \mathrm{Id}\right) f\right. \tag{3.10}
\end{equation*}
$$

since-the-variables- $\left\{\eta_{j}\right\}_{j=1}^{n}$ are-independent-and- $\mathbb{E}_{\eta} \eta_{j}=-r$.- Then,-fixed- $k \in[n]$, regarding-

3.2.- DIMENSION-FREE-PISIER'S-INEQUALITY-FOR-SPIN-CHAOS-

the-distribution-of- η,-and-setting- $\eta^{[k]}=-\eta-2 \eta_{k} e_{k}$,

$$
\begin{aligned}
\mathbb{E}_{\eta}\left(A_{\eta} \otimes \mathrm{Id}\right)\left(S_{k} \otimes \mathrm{Id}\right) f & =\sum_{\eta \in \Omega_{n}}\left(A_{\eta} \otimes \mathrm{Id}\right)\left(S_{k} \otimes \mathrm{Id}\right) f \prod_{j=1}^{n} \frac{1+\eta_{j} r}{2^{-}} \\
& =\sum_{\eta \in \Omega_{n}} \sum_{\mathrm{A} \subseteq[n]}(-1)^{\delta_{A \ni k}}\left(\prod_{j \in \mathrm{~A}} \eta_{j}\right)\left(Q_{\mathrm{A}} \otimes \widehat{f}(\mathrm{~A})-\prod_{j=1}^{n} \frac{1+\eta_{j} r}{2^{-}}\right. \\
& =\sum_{\eta \in \Omega_{n}}\left(A_{\eta^{[k]}} \otimes \mathrm{Id}\right) f \prod_{j=1}^{n} \frac{1+\eta_{j} r}{2^{-}} \\
& =\sum_{\eta \in \Omega_{n}}\left(A_{\eta} \otimes \mathrm{Id}\right) f \frac{1-\eta_{k} r}{1+\eta_{k} r} \prod_{j=1}^{n} \frac{1+\eta_{j} r}{2^{-}} .
\end{aligned}
$$

Therefore,-as-a-consequence-of- (3.10),

$$
\begin{aligned}
\frac{1}{r}\left(\partial_{k} \otimes \mathrm{Id}\right)\left(T_{r} \otimes \mathrm{Id}\right) f & =\frac{1}{r}\left(\partial_{k} \otimes \mathrm{Id}\right) \mathbb{E}_{\eta}\left(A_{\eta} \otimes \mathrm{Id}\right) f=-\frac{1}{2} \frac{1}{2}\left(\left(\mathrm{Id}-S_{k}\right)-\otimes \mathrm{Id}\right) \mathbb{E}_{\eta}\left(A_{\eta} \otimes \mathrm{Id}\right) f \\
& =\frac{1}{r} \sum_{\eta \in \Omega_{n}}\left(A_{\eta} \otimes \mathrm{Id}\right) f\left(1-\frac{1--\eta_{k} r}{1+\eta_{k} r}\right) \prod_{=1}^{n} \frac{1+\eta_{j} r}{2^{-}} \\
& =\frac{1}{r} \sum_{\eta \in \Omega_{n}}\left(A_{\eta} \otimes \mathrm{Id}\right) f \frac{2 \eta_{k} r}{1+\eta_{k} r} \prod_{j=1}^{n} \frac{1+\eta_{j} r}{2^{-}} \\
& =2^{-} \sum_{\eta \in \Omega_{n}}\left(A_{\eta} \otimes \mathrm{Id}\right) f \frac{\eta_{k}}{1+\eta_{k} r} \prod_{j=1}^{n} \frac{1+\eta_{j} r}{2^{-}} \\
& =2-\mathbb{E}_{\eta}\left[\frac{\eta_{k}}{1+\eta_{k} r}\left(A_{\eta} \otimes \mathrm{Id}\right) f\right]
\end{aligned}
$$

what completes the-proof-of the-statement.-
Proof of Theorem 3.2.1. As a a^{-}consequence- of- the- duality-identity- (3.7)-and- (3.8),-it-follows-that-

$$
\begin{aligned}
& \left\|f-\left(\mathrm{E}_{[n]} \otimes \mathrm{Id}\right) f\right\|_{L_{p}\left(\mathcal{R}_{n} ; E\right)}=-\sup _{\substack{g \in L_{p^{\prime}}\left(\mathcal{R}_{n} ; E^{*}\right) \\
\|g\| \|_{L_{p^{\prime}}}\left(\mathcal{R}_{n} ; E^{*}\right) \leq 1}}\left|\left\langle f-\left(\mathrm{E}_{[n]} \otimes \mathrm{Id}\right) f, g\right\rangle\right| \\
& =-\sup _{g}^{-} \iint_{\ell}^{\lambda}\left\langle\frac{1-}{r}\left(T_{r} \otimes \mathrm{Id}\right)\left(\Delta_{[n]} \otimes \mathrm{Id}\right) f, g\right\rangle d r \\
& =\sup _{g}^{-} \int\left(\sum_{j=1}^{n}\left(\frac{1}{r}\left(\partial_{j} \otimes \mathrm{Id}\right) f,\left(\partial_{j} \otimes \mathrm{Id}\right)\left(T_{r} \otimes \mathrm{Id}\right) g\right\rangle d r\right.
\end{aligned}
$$

since- T_{r} is-self-adjoint.- Now,-the-identity- 3.9 -from-Lemma-3.2.2 implies-

$$
\begin{aligned}
\| f- & \left(\mathrm{E}_{[n]}-\mathrm{Id}\right) f \|_{L_{p}\left(\mathcal{R}_{n} ; E\right)} \leq \sup _{g}^{-} \iint_{j=1}^{n} \sum_{j=1}^{n}\left\langle\left(\partial_{j} \otimes \mathrm{Id}\right) f, \frac{1^{-}}{r}\left(\partial_{j} \otimes \mathrm{Id}\right)\left(T_{r} \otimes \mathrm{Id}\right) g\right\rangle d r \\
& =-2 \text { - } \sup _{g}-\int\left(\sum_{j=1}^{n}\left\langle\left(\partial_{j} \otimes \mathrm{Id}\right) f, \mathbb{E}_{\eta}\left[\frac{\eta_{j}}{1+\eta_{j} r}\left(A_{\eta} \otimes \mathrm{Id}\right) g\right]\right\rangle d r\right. \\
& =-2 \text { - } \sup _{g}-\int\left(\mathbb{E}_{\eta}\left\langle\sum_{j=1}^{n} \frac{\eta_{j}}{1+\eta_{j} r}\left(\partial_{j} \otimes \mathrm{Id}\right) f,\left(A_{\eta} \otimes \mathrm{Id}\right) g\right\rangle d r\right.
\end{aligned}
$$

so-the-duality-identity-

$$
L_{p}\left(\mathcal{R}_{n} \otimes L_{\infty}\left(\Omega_{n}, d \eta\right) ; E\right)^{*}=-L_{p^{\prime}}\left(\mathcal{R}_{n} \otimes L_{\infty}\left(\Omega_{n}, d \eta\right) ; E^{*}\right)^{-}
$$

yields-
$\left\|f-\left(\mathrm{E}_{[n]}-\mathrm{Id}\right) f\right\|_{L_{p}\left(\mathcal{R}_{n} ; E\right)}$

$$
\begin{equation*}
\lesssim \sup _{g}^{-} \iint_{\{ }^{k}\left[\mathbb{E}_{\eta} \| \sum_{j=1}^{n}\left(\frac{\eta_{j}}{1+\eta_{j} r}\left(\partial_{j} \otimes \mathrm{Id}\right) f \|_{L_{p}\left(\mathcal{R}_{n} ; E\right)}^{p}\right]^{1 / p}\left[\mathscr{f}_{\eta}\left\|\left(A_{\eta} \otimes \mathrm{Id}\right) g\right\|_{L_{p^{\prime}}\left(\mathcal{R}_{n} ; E^{*}\right)}^{p^{\prime}}\right]^{1 / p^{\prime}} d r .\right. \tag{3.11}
\end{equation*}
$$

We-claim-that-

$$
\left\|\left(A_{\eta} \otimes \mathrm{Id}\right) g\right\|_{L_{p^{\prime}\left(\mathcal{R}_{n} ; E^{*}\right)}} \leq\|g\|_{L_{p^{\prime}\left(\mathcal{R}_{n} ; E^{*}\right)}}
$$

holds-for-any- $\eta \in \Omega_{n}$,-what- yields-the-statement-of-the-theorem.-
The-norm-on- $L_{p^{\prime}}\left(\mathcal{R}_{n} ; E^{*}\right)$-admits-the-expression-

$$
\left\|\left(A_{\eta} \otimes \mathrm{Id}\right) g\right\|_{L_{p^{\prime}}\left(\mathcal{R}_{n} ; E^{*}\right)}=\inf \left\{\left\|a^{\prime}\right\|_{L_{2 p^{\prime}}\left(\mathcal{R}_{n}\right)}\left\|v^{\prime}\right\|_{\mathcal{R}_{n} \otimes_{\min } E^{*}}\left\|b^{\prime}\right\|_{L_{2^{\prime}}\left(\mathcal{R}_{n}\right)}\right\}
$$

where- $a^{\prime}, b^{\prime} \in \mathcal{R}_{n}$ and- $v^{\prime} \in \mathcal{R}_{n} \otimes E^{*}$ satisfy- $g=-a^{\prime} \cdot v^{\prime} \cdot b^{\prime}$.- An-arbitrary-decomposition-for-g,-say,,$g=-a \cdot v \cdot b$ where-

$$
a=-\sum_{\mathrm{A} \subseteq[n]} \alpha_{A} Q_{\mathrm{A}}, v=-\sum_{C \subseteq[n]}\left(Q_{C} \otimes \widehat{v}(C), b=-\sum_{B \subseteq[n}\left(\beta_{B} Q_{\mathrm{B}},\right.\right.
$$

yields-a-valid-decomposition for $-\left(A_{\eta} \otimes \mathrm{Id}\right) g$ bytaking $-a^{\prime}=-A_{\eta} a,-b^{\prime}=-A_{\eta} b$ and $-v^{\prime}=\left(A_{\eta} \otimes \mathrm{Id}\right) v .-$ Indeed,-if- $-p^{\prime} \in \mathbb{N}$,-

$$
\begin{aligned}
\left\|A_{\eta} a\right\|_{L_{2 p^{\prime}}\left(\mathcal{R}_{n}\right)}^{2 p^{\prime}} & =\tau_{\mathcal{R}_{n}}\left[\sum _ { \substack { A _ { i } \subseteq [n] \\
1 \leq i \leq 2 p ^ { \prime } } } \left(\prod_{j \in \mathbb{I}\left(\left\{A_{i}\right\}\right\}}\left(\eta_{2_{1}^{p^{\prime}}}\right)\right.\right. \\
& \left.\eta_{j}\right)\left(\overline{\alpha_{1}} \alpha_{2} \ldots \overline{\alpha_{2 p^{\prime}-1}} \alpha_{2 p^{\prime}} Q_{A_{1}}^{*} Q_{A_{2}} \ldots Q_{A_{2 p^{\prime}-1}}^{*} Q_{A_{2 p^{\prime}}}\right] \\
& =\sum_{\substack{A_{i} \subseteq\left[n \\
1 \leq i \leq 2 p^{\prime} \\
\mathbb{I}\left(\left\{A_{i}\right\}_{i=1}^{2 p^{\prime}}\right)=\emptyset\right.}} \overline{\alpha_{1}} \alpha_{2} \ldots \overline{\alpha_{2 p^{\prime}-1}} \alpha_{2 p^{\prime}}=-\|a\|_{L_{2 p^{\prime}}\left(\mathcal{R}_{n}\right)}^{2 p^{\prime}}
\end{aligned}
$$

where- $\mathbb{I}\left(\left\{A_{i}\right\}_{i=1}^{2 p^{\prime}}\right)=-\left\{j \in[n] \quad:-\left|\left\{i \in\left[2 p^{\prime}\right]:-j \in A_{i}\right\}\right|\right.$ is-odd $\}$.- An-analogous-identity-holds for- $A_{\eta} b$.- Hence,-by-interpolation-and-duality,-we-infer-that-

$$
\left\|A_{\eta} a\right\|_{L_{p^{\prime}}\left(\mathcal{R}_{n}\right)}=-\|a\|_{L_{p^{\prime}}\left(\mathcal{R}_{n}\right)}, \quad\left\|A_{\eta} b\right\|_{L_{p^{\prime}}\left(\mathcal{R}_{n}\right)}=-\|b\|_{L_{p^{\prime}}\left(\mathcal{R}_{n}\right)}
$$

holds-for- $1^{-}<p^{\prime} \leq \infty$.- On-the-other-hand,-according-to-the-formula-for-the-minimal-tensor-product-of-operator-spaces-69],- and-recalling-that- $E^{*} \subseteq B(K)$-for-some-Hilbert-space- K,-it-follows-that-

$$
\begin{aligned}
\left\|\left(A_{\eta} \otimes \mathrm{Id}\right) v\right\|_{\mathcal{R}_{n} \otimes E^{*}} & =-\| \sum_{C \subseteq[n]}\left(\prod _ { j \in C } (\eta _ { j }) \left(Q_{C} \otimes \widehat{v}(C) \|_{\mathcal{R}_{n} \otimes_{\min } E^{*}}\right.\right. \\
& =-\sup _{m, K_{m}} \| \sum_{C \subseteq[n]}\left(\prod_{j \in C}\left(n_{j}\right) \phi_{C} \otimes P_{K_{m}} \widehat{v}(C)-\upharpoonright_{K_{m}} \|_{\mathcal{R}_{n} \otimes B\left(K_{m}\right)},\right.
\end{aligned}
$$

so- that- the-supremum-is-taken-on-any- m natural- and-any- m-dimensional-Hilbert-space$K_{m} \subseteq K$,-so-that- $x \upharpoonright_{K_{m}}$ denotes-the-restriction-to- K_{m} of-an-operator- $x \in B(K)$-and $-P_{K_{m}}$ is- the-orthogonal- projection-from- K into- K_{m}.- Supposing-an-orthonormal-basis-is-chosen-in- K,-we-can-identify- $B\left(K_{m}\right)$-with- M_{m},-so-the-norms-on-the-right-hand-side-are-just-normof $^{-}$operators- on-some- (finite-dimensional)-von-Neumann-algebra.- Then,- given- $q \in \mathbb{N}$,-forany ${ }^{-} K_{m}$,

$$
\begin{aligned}
& \| \sum_{C \subseteq[n]}\left(\prod _ { j \in C } (\eta _ { j }) \left(Q_{C} \otimes P_{K_{m}} \widehat{v}(C)-\upharpoonright_{K_{m}} \|_{L_{2 q}\left(\mathcal{R}_{n} \otimes M_{m}\right)}^{2 q}\right.\right. \\
& =\tau_{\mathcal{R}_{n} \otimes M_{m}}\left[\sum_{\substack{C_{i} \subseteq[n] \\
1 \leq i \leq 2 q}}\left(\prod_{\left.j \in \mathbb{I}\left(\left\{C_{i}\right\}\right\}_{2=1}^{\ell_{-q}}\right)} \eta_{j}\right)\left(Q_{C_{1}}^{*} \ldots Q_{C_{2 q}} \otimes\left(P_{K_{m}} \widehat{v}\left(C_{1}\right)-\upharpoonright_{K_{m}}\right)^{*} \ldots P_{K_{m}} \widehat{v}\left(C_{n}\right)-\upharpoonright_{K_{m}}\right]\right. \\
& =-\sum_{\substack{C_{i} \subseteq\left[n \\
1 \leq i \leq 2 ф \\
\mathbb{I}\left(\left\{C_{i}\right\}_{i=1}^{2 q}\right)=\emptyset\right.}}\left(\tau_{M_{m}}\left[\left(P_{K_{m}} \widehat{v}\left(C_{1}\right)-\upharpoonright_{K_{m}}\right)^{*} \ldots P_{K_{m}} \widehat{v}\left(C_{n}\right)-\upharpoonright_{K_{m}}\right]-\right. \\
& =-\left\|\sum_{C \subseteq[n]} Q_{C} \otimes P_{K_{m}} \widehat{v}(C)-\upharpoonright_{K_{m}}\right\|_{L_{2 q}\left(\mathcal{R}_{n} \otimes M_{m}\right)}^{2 q} .
\end{aligned}
$$

By-interpolation-between $-2 q$ and $-2(q+-1)$-for $-q \geq 1$,-if-follows-that-

$$
\begin{aligned}
\| \sum_{C \subseteq[n]}\left(\prod _ { j \in C } (\eta _ { j }) \left(\begin{array}{l}
Q_{C}
\end{array} \quad P_{K_{m}} \widehat{v}(C)-\upharpoonright_{K_{m}} \|_{L_{p^{\prime}}\left(\mathcal{R}_{n} \otimes M_{m}\right)}\right.\right. \\
=-\| \sum_{C \subseteq[n]}\left(Q_{C} \otimes P_{K_{m}} \widehat{v}(C)-\upharpoonright_{K_{m}} \|_{L_{p^{\prime}}\left(\mathcal{R}_{n} \otimes M_{m}\right)}\right.
\end{aligned}
$$

holds-for-any- $2-<p^{\prime}<\infty$.- Therefore,-for-any- m natural-and- $K_{m} \subseteq K$,-

$$
\begin{aligned}
\| \sum_{C \subseteq[n]}\left(\prod_{j \in C}\left(n_{j}\right) \phi_{C}\right. & \otimes P_{K_{m}} \widehat{v}(C)-\upharpoonright_{K_{m}} \|_{\mathcal{R}_{n} \otimes B\left(K_{m}\right)} \\
& =\lim _{p^{\prime} \rightarrow \infty} \| \sum_{C \subseteq[n]}\left(\prod_{j \in C}\left(\eta_{j}\right) \phi_{C} \otimes P_{K_{m}} \widehat{v}(C)-\upharpoonright_{K_{m}} \|_{L_{p^{\prime}}\left(\mathcal{R}_{n} \otimes M_{m}\right)}\right. \\
& =\lim _{p^{\prime} \rightarrow \infty} \| \sum_{C \subseteq[n}\left(Q_{C} \otimes P_{K_{m}} \widehat{v}(C)-\upharpoonright_{K_{m}} \|_{L_{p^{\prime}}\left(\mathcal{R}_{n} \otimes M_{m}\right)}\right. \\
& =-\| \sum_{C \subseteq[n}\left(Q_{C} \otimes P_{K_{m}} \widehat{v}(C)-\upharpoonright_{K_{m}} \|_{\mathcal{R}_{n} \otimes B\left(K_{m}\right)} .\right.
\end{aligned}
$$

Taking-supremum-over- m and- K_{m}, -this-identity-yields-

$$
\left\|\left(A_{\eta} \otimes \mathrm{Id}\right) v\right\|_{\mathcal{R}_{n} \otimes_{\min } E^{*}}=-\|v\|_{\mathcal{R}_{n} \otimes_{\min } E^{*}}
$$

In-conclusion,-

$$
\begin{aligned}
\left\|\left(A_{\eta} \otimes \mathrm{Id}\right) g\right\|_{L_{p^{\prime}}\left(\mathcal{R}_{n} ; E^{*}\right)} & \leq \operatorname{inf-}_{a \cdot v \cdot b=g}\left\{\left\|A_{\eta} a\right\|_{L_{2 p^{\prime}}\left(\mathcal{R}_{n}\right)}\left\|\left(A_{\eta} \otimes \operatorname{Id}\right) v\right\|_{\mathcal{R}_{n} \otimes_{\min } E^{*}}\left\|A_{\eta} b\right\|_{L_{2 p^{\prime}}\left(\mathcal{R}_{n}\right)}\right\} \\
& =-\inf _{a \cdot v \cdot b=g}\left\{\|a\|_{L_{2 p^{\prime}}\left(\mathcal{R}_{n}\right)}\|v\|_{\mathcal{R}_{n} \otimes_{\min } E^{*}}\|b\|_{L_{2 p^{\prime}}\left(\mathcal{R}_{n}\right)}\right\} \\
& =-\|g\|_{L_{p^{\prime}}\left(\mathcal{R}_{n} ; E^{*}\right)},
\end{aligned}
$$

which,-when-implemented-in- (3.11)-implies-the-statement.-

Chapter 4

Calderón-Zygmund operators with operator-valued kernel

This-chapter-is-related-to-the-theory- of-semicommutative-Calderón-Zygmund-operators.-This-is-a-research-line-that-takes-advantage-of-the-hybrid-nature-of-certain-vector-valued- L_{p} spaces.- Let- (\mathcal{M}, τ)-be-a-von-Neumann-algebra-of-operators-on-a-separable-Hilbert-space,-equipped-with-a-normal-semifinite-faithful-trace- τ.- Denote-by- \mathcal{A} the-weak-operator-closure-of-the-space-of-essentially-bounded-(strongly-measurable)-functions- $f: \mathbb{R}^{n} \longrightarrow \mathcal{M}$.-For-the-sake-of-exposition,-we-will-restrict-ourselves-to-the-case $-n=-1$,-even-though-our-arguments-extend-trivially-to-any-finite-dimension.- The-von-Neumann-algebra- \mathcal{A} can-be-identified-with-the-tensor-product- $L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}$ equipped-with-the-trace-

$$
\varphi(f)=-\iint_{\mathbb{R}} \tau(f(x))-d x
$$

The- noncommutative- L_{p} spaces associated- with \mathcal{A} are- indeed-vector-valued- L_{p} spaces:-indeed,- [68, - Chapter-3]-

$$
L_{p}(\mathcal{A})=-L_{p}\left(\mathbb{R} ; L_{p}(\mathcal{M})\right),
$$

for- $1-\leq p<\infty$.- We-are-interested-in-endpoint-estimates-for-operators-acting- on- $L_{p}(\mathcal{A})$, and- in- particular- in- the- boundedness- of- operators- from- the- operator-valued- version- of-the- Hardy- space- H_{1} into- $L_{1} .^{-}$- This- question- was- widely- studied- in- the- classical- setting-for-scalar-valued-functions- [56, -57$]$ - as- well- as-for-vector-valued-functions- $[18,-32]$,- where-the- existence- of the- atomic- decomposition- plays- an- essential role.- This- technique- does-not-seem- to- have- been- exploited- as- often- in- the- noncommutative- setting.- Mei- [54]- was-the-first-to-introduce-the-so-called-operator-valued Hardy space $H_{1}(\mathbb{R}, \mathcal{M})$-in-this-context-via- noncommutative- equivalents- of- the-Poisson-integral,- the-Lusin- area- integral- and - the-Littlewood-Paley-g function.- These-techniques-allowed-Mei-to-compute-the-dual-space-of$H_{1}(\mathbb{R}, \mathcal{M})$,- which- is- denoted- by- $\mathrm{BMO}(\mathbb{R}, \mathcal{M})$,- in- the- spirit- of- the-classical- argument- by-Fefferman-and-Stein- [17].- Moreover,-some-maximal-inequalities,-and-several-interpolation-results-via-a-martingale-approach-were-established.- Mei's-fundamental- contribution-has-
been-key-in-the-development-of-noncommutative-forms-of-Calderón-Zygmund-theory,-both-in-the-semicommutative-context-and-in-fully-noncommutative-ones-via-transference-tech-niques.- For-the-first-one,- the-semicommutative-Calderón-Zygmund-theory-was-initiated-in- [66]-with-the-obtention-of-weak- L_{1} endpoint-inequalities-for-singular-integrals, -with-an-argument-that-was-simplified-in-recent-years- 6 , 7 7].- The-second-line-has-many-instances,-among-which-are- [25, 41].

The initial motivation for this-chapter wasobtaining new interpolation-consequences of end-point-estimates-of-the-type- $L_{\infty}(\mathcal{A})$ - $\mathrm{BMO}(\mathbb{R}, \mathcal{M})$-which-rely,-by-duality,-on-the-structure-of-the-Hardy-space- $H_{1}(\mathbb{R}, \mathcal{M})$.- Our-goal-led-to-two-main-tasks-to-tackle:- a-completely-ex-plicit-description-of-BMO $(\mathbb{R}, \mathcal{M})$,-and-the-study-of-the-boundedness-of-Calderón-Zygmund-operators- on- the-Hardy-space-via-its-atomic- decomposition.- The- operator-valued-BMO space-introduced-by-Mei,-BMO(\mathbb{R}, \mathcal{M}),-is-defined-as-the-intersection-of-a-column-space-and-a-row-space, $\mathrm{BMO}_{c}(\mathbb{R}, \mathcal{M})$-and- $\mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$-respectively.- The-reason-for-considering-both-a-column-and-a-row-space-is-a-ubiquitous-phenomenon-in-noncommutative-analysis-(see-[48]- for- an- outstanding- example),- and- by-symmetry-we-shall- limit- our- discussion- to- the-column- case.- $\mathrm{BMO}_{c}(\mathbb{R}, \mathcal{M})$ - is- set- to- be-the-subspace- of-the-column-Hilbert-valued-space-[37]- $L_{\infty}\left(\mathcal{M} ;-L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right.$)-for-which-the-seminorm-
(MBMO)-

$$
\|g\|_{\mathrm{BMO}_{c}}=\sup _{\substack{I \subset \mathbb{R} \\|I| \text { finite }}}\left(\frac{1-}{|I|} \int\left(g-g_{I}^{2}\right)^{1 / 2} \mathcal{M}\right.
$$

is - finite,- where $-g_{I}=-\frac{1}{|I|} \int_{I} g .-$ The- $\mathrm{BMO}_{\mathrm{r}}$ seminorm- $\mathrm{is}^{-}\|g\|_{\mathrm{BMO}_{r}}=-\left\|g^{*}\right\|_{\mathrm{BMO}_{c}} .{ }^{-}$The-space $L_{\infty}\left(\mathcal{M} ;-L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)$-denotes- the- closure- of $-\mathcal{M} \otimes L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)$ - with- respect- to- the- weak* topology- of- the- von- Neumann- algebra- $\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)$.- There- is- no- guarantee- that $\mathrm{BMO}_{c}(\mathbb{R}, \mathcal{M})$-is-a-space-of- \mathcal{M}-valued-functions-(in-the-Bochner-sense), -and-so-the-integral-in- MBMO - may-not-be-well-defined.- Indeed,-

$$
L_{2}\left(\mathbb{Z A}, \frac{d t}{1+t^{2}} ; \mathcal{M}\right) \subseteq L_{\infty}\left(\mathcal{M} ;-L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right),(
$$

but-the-reverse-inclusion-fails-in-general,- a priort preventing-us-from-defining- BMO_{c} as-a-space-of-functions.- In-Section-4.1 and- the-first-part- of-Section-4.2- we-propose-a- general-construction-of- $\mathrm{BMO}_{c}(\mathbb{R}, \mathcal{M})$-which-recovers-Mei's-description-given-by- MBMO).- We-will-also-study-a-predual-of- $\mathrm{BMO}_{c}(\mathbb{R}, \mathcal{M})$ - $\left(\right.$ resp.- $\left.\mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})\right)$.- The-novelty-here-is-that-this-predual-space,- which- we-denote-as- $H_{1}^{r}(\mathcal{A})^{-}\left(\right.$resp.- $\left.H_{1}^{c}(\mathcal{A})\right)$,- will- be- a-row- (resp.- column)-Hardy-space-which-is- exclusively- constructed-in-terms- of- "new" - atomic- decompositions,-which-extend-the-work-in-Ricard's-Ph.D.-Thesis-[72].-

The-key-to-our-approach-is-the- $H_{1}-\mathrm{BMO}$ duality-product-when-elements-in-the-former-space-are-described-in-terms- of- atoms.- In- the-classical- case,- it- is-a-well-known- fact- that-the-norm-of- $g \in \mathrm{BMO}(\mathbb{R})$-can-be-characterized-through-the-expression-
(atBMO)

$$
\|g\|_{\mathrm{BMO}}=-\sup _{a}^{-} \int(g a
$$

78-
so- that- the- supremum- is- taken- over- L_{2}-atoms- $20,-56,-57$.- An- analogous- formula- for$\mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$-may-shed-light-on-the-structure-of-atoms-in- $H_{1}^{c}(\mathcal{A})$.- This-is-exactly-what-we-achieve.- Let- $g \in \mathcal{A} \cap \mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$.- The-expression- MBMO- is-meaningful-for- g,- and-so-duality-yields-

$$
\begin{aligned}
\|g\|_{\mathrm{BMO}_{r}} & =-\left\|g^{*}\right\|_{\mathrm{BMO}_{c}}=\sup _{I}-\left(\frac{1-}{|I|} \int\left(g^{*}-\left(g^{*}\right)_{I}^{2}\right)^{1 / 2} \mathcal{M}\right. \\
& =\sup _{I, h}-\left(\frac{1}{|I|} \int\left(\left\|\left(g^{*}-\left(g^{*}\right)_{I}\right) h\right\|_{L_{2}(\mathcal{M})}^{2}\right)^{1 / 2}=\sup _{I, h}\left(\int\left(\left\|\frac{1-}{\sqrt{|I|}} h\left(g-g_{I}\right)\right\|_{L_{2}(\mathcal{M})}^{2}\right)^{1 / 2} .\right.\right.
\end{aligned}
$$

with-the-supremum-taken-over- h in-the-unit-ball-of- $L_{2}(\mathcal{M})$.- Now, recalling-that- $g-g_{I}$ has-zero-integral-over- I and-considering-the-Hilbert-space-

$$
L_{2}^{\circ}\left(I ;-L_{2}(\mathcal{M})\right)-=-\left\{f \in L_{2}\left(I ;-L_{2}(\mathcal{M})\right)^{-}:-\int(f=0\}\right.
$$

it-follows- that

$$
\begin{aligned}
& \|g\|_{\mathrm{BMO}_{r}}=\sup _{I, h}\left(\int\left(\left\|\frac{1}{\sqrt{|T|}} h\left(g-g_{I}\right)\right\|_{L_{2}(\mathcal{M})}^{2}\right)^{1 / 2}=\sup _{I, h}^{-} \frac{1-}{\sqrt{\mid\lceil\mid}} h\left(g-g_{I}\right) \chi_{I} L_{2}^{\circ}\left(I ; L_{2}(\mathcal{M})\right)\right. \\
& \begin{array}{l}
=\sup _{I, h}^{-} \sup _{\|f\|_{L_{2}^{\circ}} \leq 1}\left(\sigma \circ \int\right)\left(h\left(g-g_{I}\right) \frac{f \chi_{I}}{\sqrt{|f|}}\right)-=\sup _{I, h, f}^{-}\left(\tau \circ \int \left(\left(\left(g-g_{I}\right) \frac{f \chi_{I}}{\sqrt{|f|}} h\right)-\right.\right. \\
=\sup ^{-}\left|(\tau \circ f)\left(g \frac{f \chi_{I}}{\sqrt{| |}} h\right)\right| .
\end{array} \\
& =-\sup _{I, h, f}-\left|(\tau \circ f)\left(g \frac{f \chi_{I}}{\sqrt{|f|}} h\right)\right| .
\end{aligned}
$$

Comparing the-latter-expression -with-atBMO suggests that-an-atom-in- $H_{1}^{c}(\mathbb{R}, \mathcal{M})$-should-be- an-operator- of- the-form- $a=-b h$ in- $L_{1}(\mathcal{A})$,- where- $h \in L_{2}(\mathcal{M})$ - with- $\|h\|_{L_{2}(\mathcal{M})} \leq 1$ - and$b \in L_{2}(\mathcal{A})$ - is- supported- on- some- interval- I and-has- additional- cancellation- over- I that-we-will-make-precise-later.- In-what-follows, $-a$ will-be-called-a-c-atom.- Then,-define-the-column-Hardy-space- $H_{1}^{c}(\mathcal{A})$ - as- the-Banach-subspace- of- $L_{1}(\mathcal{A})$ - of-those- operators- f suchthat ${ }^{-}$

$$
f=\sum_{i=0}^{\infty} \widehat{x}_{i} a_{i} \text { in- } L_{1}(\mathcal{A}), \text { for-some- }\left(a_{i}\right)_{i} c-\text { atoms, }\left(\lambda_{i}\right)_{i} \in \ell_{1},
$$

which-becomes-a-Banach-space-with-respect-to-the-norm-

$$
\|f\|_{H_{1}^{c}}=-\inf -\left\{\sum_{i=0}^{\infty}\left|\lambda_{i}\right|:-f=-\sum_{i=0}^{\infty} \chi_{i} a_{i} .\right.
$$

The-row-space- $H_{1}^{r}(\mathcal{A})$-is-defined-analogously-and $-H_{1}(\mathcal{A})=-H_{1}^{c}(\mathcal{A})+-H_{1}^{r}(\mathcal{A})$.- By-symmetry, it-suffices-to-show- $H_{1}^{c}(\mathcal{A})^{*}=-\mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$.- The-proof-of-this-duality-result-strongly-relies-on-the-extension-of-a-well-known-argument-by-Meyer- 56$]$:- the-space-

$$
L_{2}^{\circ}\left(\mathbb{R},\left(1-+t^{2}\right) d t\right)=-\left\{f \left(\in L_{2}\left(\mathbb{R},\left(1-+t^{2}\right) d t\right):-\int_{\mathbb{R}} f=0^{-}\right.\right.
$$

is-a-dense-subspace-of-the-classical-atomic-Hardy-space- $H_{1}(\mathbb{R})$.- A-further-characterizationof the-column-Hilbert-valued-spaces- $L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)$-will-be-the-key-to-establish-an-analogous-result-in-our-context.- On- the-other-hand,-it-is-still-an-open-question-whether-the-column-Hardy-space- $H_{1}^{c}(\mathcal{A})$-coincides-with-the-one-introduced-by-Mei-in- 54].-

It-is-worth-noting-that-Mei's-work-already-contained-a-description-of- $H_{1}^{c}(\mathbb{R}, \mathcal{M})$-in-terms-of- certain- atomic- decompositions.- However,- the- one-included- in- the- present- chapter- is-more-useful-to- establish-estimates-for-Calderón-Zygmund-operators.- Indeed,-it-allows-us-to-consider-singular-integrals-with-noncommuting-kernels,-something-that-is-usually-not-a-possibility-at-the-weak- L_{1} level- [7].- Let- \mathcal{M} be-a-von-Neumann-algebra-over-a-separable-Hilbert-space,-and-let- T be-a-bounded-operator-on- $L_{2}(\mathcal{A})$-for-which-there-exists-a-kernel-$K:-\mathbb{R} \times \mathbb{R} \backslash\{x=-y\} \longrightarrow \mathcal{M}$ such-that-

$$
\int\left(T(f)(x) g(x)-d x=-\iint(K(x, y) f(y) g(x)-d x d y\right.
$$

holds- for- any- compactly- supported- $f, g \in L_{\infty}(\mathcal{A})-\cap L_{2}(\mathcal{A})$-satisfying- that- the- distance-between-the-supports-supp $\mathbb{R}_{\mathbb{R}}\|f\|_{L_{2}(\mathcal{M})}$ and-supp $\mathbb{R}_{\mathbb{R}}\|g\|_{L_{2}(\mathcal{M})}$ is-strictly-greater-than-zero.- In-that-case,-we-will-say-that- T is-a-Calderón-Zygmund operator.- Also,- assume-that- K andT fulfil-

- $T(f h)=-T(f) h$ for-any- $f \in L_{2}(\mathcal{A})$-with-compact-support-and- $h \in \mathcal{M}$,-and-
- the-Hörmander condition

$$
\iint_{|x-y| \geq 2\left|y^{\prime}-y\right|}\left\|K(x, y)^{-}-K\left(x, y^{\prime}\right)\right\|_{\mathcal{M}} d x<\infty .
$$

Under-these-assumptions, $-T$ extends-to-a-bounded-map- $T:-H_{1}^{c}(\mathcal{A})-\longrightarrow L_{1}(\mathcal{A})$.- The-proofof this-statement-is-inspired-by- 57 - and-is-divided-in-two-steps.- The-first-one-consists-of-obtaining-a-universal-constant- $C>0$-such-that-

$$
\|T(a)\|_{L_{1}(\mathcal{A})} \leq C \text { for-any }^{-c}-\text { atom } a
$$

In-order-to-establish-this-statement,-we-take-advantage-of-the-modularity-identity-

$$
T(b h)=-T(b) h \text { for }^{-} \text {any }-c-\text { atom }-a=-b h,
$$

which-follows-from-our-definition-of-Calderón-Zygmund-operators,-and-allows-us-to-exploit-the-boundedness-of- T on- $L_{2}(\mathcal{A})$.- On-the-other-hand,-showing -that- T extends-to-the-whole-$H_{1}^{c}(\mathcal{A})$-requires-the-approximation- of- K by-certain-bounded-kernels.- Once-we-have-donethat, -we-obtain-that whenever- K is-scalar, $-T$ extends-to-a-bounded-operator-from- $H_{1}(\mathcal{A})$ -into- $L_{1}(\mathcal{A})$.-

The-rest-of-the-chapter-is-organized-as-follows.- In-Section-1,-we-shall-introduce-the-column-and-row-Hilbert-valued-noncommutative- L_{p} spaces.- This-enables-us-to-define- $\mathrm{BMO}(\mathbb{R}, \mathcal{M})$, as-well-as-to-identify-a-predual- $H_{1}^{c}(\mathcal{A})$-in-Section-2.- Finally,-in-Section- 3 -we-will-see-how-the-atomic-decomposition-provides-a-boundedness-result-for-Calderón-Zygmund-operators-with-noncommuting-kernels.-

4.1.- COLUMN/ROW-HILBERT-VALUED- L_{P} SPACES-

4.1 Column/row Hilbert-valued L_{p} spaces

Let- \mathcal{H} be-a-separable-Hilbert-space.- $B(\mathcal{H})$-can-be-identified-as-the-space-of-bounded-infinite-matrices-acting- on- \mathcal{H},- and - when- equipped- with- the- usual trace- for- matrices- Tr,- it- gives-rise-to-the-Schatten-classes- $S_{p}(\mathcal{H})=-L_{p}(B(\mathcal{H}), \operatorname{Tr})$-for-any- $0-<p \leq \infty$.- Along-this-chapter, the- inner- product-in- \mathcal{H} is- assumed- to- be-linear- in- the first-variable- and- antilinear- in- the-second-one.- Moreover,-elements-in-the-dual-Hilbert-space- $\mathcal{H}^{*} \simeq \overline{\mathcal{H}}$ will-be-represented-with-an-overlined-letter.-For-instance,-given- $h \in \mathcal{H},-\bar{h}$ will-denote-the-continuous-functional-

$$
\bar{h}:-k \mapsto\langle k, h\rangle \text { for-any- } k \in \mathcal{H} .
$$

Given-two-elements- ξ and $-\eta$ of $-\mathcal{H}$,-we-consider-the-rank-one operator $\xi \otimes \eta$ acting-on- \mathcal{H} as-follows-

$$
(\xi \otimes \eta)(h)=-\langle h, \eta\rangle \xi \text { for-any- } h \in \mathcal{H} .
$$

Lemma 4.1.1. Let $0^{-}<p \leq \infty$. Then, for any $\xi, \xi^{\prime}, \eta, \eta^{\prime} \in \mathcal{H}$, the following properties hold:
(1) $(\xi \otimes \eta)^{*}=-\eta \otimes \xi$.
(2) $(\xi \otimes \eta)\left(\xi^{\prime} \otimes \eta^{\prime}\right)=-\left\langle\xi^{\prime}, \eta\right\rangle \xi \otimes \eta^{\prime}$,
(3) For any $0<p \leq \infty,\|\xi \otimes \eta\|_{S_{p}(\mathcal{H})}=-\|\xi\|_{\mathcal{H}}\|\eta\|_{\mathcal{H}}$,
(4) $\operatorname{Tr}(\eta \otimes \xi)=-\langle\eta, \xi\rangle$,
(5) $\operatorname{Tr}\left((\xi \otimes \eta)\left(\xi^{\prime} \otimes \eta\right)\right)=-\left\langle\xi^{\prime}, \eta\right\rangle\left\langle\xi, \eta^{\prime}\right\rangle$.

Proof. Given-two-elements-h, h^{\prime} in- \mathcal{H},-there-holds-

$$
\left\langle(\xi \otimes \eta) h, h^{\prime}\right\rangle=-\left\langle\langle h, \eta\rangle \xi, h^{\prime}\right\rangle=-\left\langle h,\left\langle h^{\prime}, \xi\right\rangle \eta\right\rangle=-\left\langle h,(\eta \otimes \xi) h^{\prime}\right\rangle,
$$

what-yields-(1).- Then,-it-easily-follows-that-

$$
\begin{aligned}
(\xi \otimes \eta)\left(\xi^{\prime} \otimes \eta^{\prime}\right)(h) & =(\xi \otimes \eta)\left\langle h, \eta^{\prime}\right\rangle \xi^{\prime}=-\left\langle\xi^{\prime}, \eta\right\rangle\left\langle h, \eta^{\prime}\right\rangle \xi \\
& =-\left\langle\xi^{\prime}, \eta\right\rangle\left(\xi \otimes \eta^{\prime}\right)(h)
\end{aligned}
$$

In- order- to- prove- (3), - consider-an-orthonormal- basis- for $-\mathcal{H}$ such- that $-\eta /\|\eta\|_{\mathcal{H}}$ belongs- to-it.- Then,-it- is- clear-that $-(\xi \otimes \eta)^{*}(\xi \otimes \eta)$-is- a-self-adjoint-compact-operator-and-its-range-coincides- with- the-subspace-generated-by- $\eta /\|\eta\|_{\mathcal{H}}$.- Therefore,-

$$
\left.\|\xi \otimes \eta\|_{S_{p}(\mathcal{H})}^{2}=-\left\||\xi \otimes \eta|^{2}\right\|_{S_{p / 2}(\mathcal{H})}=-|\langle | \xi \otimes \eta|^{2} \frac{\eta}{\|\eta\|}, \frac{\eta}{\|\eta\|}\right\rangle \mid=-\|\xi\|_{\mathcal{H}}^{2}\|\eta\|_{\mathcal{H}}^{2},
$$

since-

$$
|\xi \otimes \eta|^{2}\left(\frac{\eta}{\|\eta\|_{\mathcal{H}}}\right)=-\|\xi\|_{\mathcal{H}}^{2}\|\eta\|_{\mathcal{H}}^{2} \frac{\eta}{\|\eta\|_{\mathcal{H}}} .
$$

CHAPTER-4.- CALDERÓN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-

KERNEL-
Under- these- assumptions,- it-follows $-(\eta \otimes \xi)\left(\frac{\eta}{\|\eta\|_{\mathcal{H}}}\right)=-\left\langle\frac{\eta}{\|\eta\|_{\mathcal{H}}}, \xi\right\rangle \eta=-\langle\eta, \xi\rangle \frac{\eta}{\|\eta\|_{\mathcal{H}}}$, - so- the- only eigenvalue-with-respect-to-the-fixed-basis-is- $\langle\eta, \xi\rangle$.- This-proves-(4),-and-(5)-is-a-straight-forward-consequence.-

In-the-following,-let- $\mathbb{1}$ denote-a-fixed-element-of \mathcal{H} with $-\|\mathbb{1}\|_{\mathcal{H}}=-1$,- and-let- $p_{\mathbb{1}}=-\mathbb{1} \otimes \mathbb{1}$ denote-the-rank-one-projection-onto-span\{1\}.- Assume-that- \mathcal{M} is-an-arbitrary-semifinite-von-Neumann-algebra-equipped-with-a-normal-semifinite-faithful-trace- τ.- Then,-we-define-the-column Hilbert-valued L_{p} space

$$
L_{p}\left(\mathcal{M} ; \mathcal{H}^{c}\right)=-L_{p}(\mathcal{M} \bar{\otimes} B(\mathcal{H}))\left(\mathbf{1}_{\mathcal{M}} \otimes p_{\mathbb{1}}\right)
$$

for- any- $0-<p \leq \infty$.- Identify- $L_{p}(\mathcal{M})$ - as- ${ }^{-}$- subspace- of- $L_{p}(\mathcal{M} \bar{\otimes} B(\mathcal{H}))$ - via- the- map- $m \mapsto$ $m \otimes p_{1}$. $^{-}$This- is-equivalent-to-the-identity-

$$
L_{p}(\mathcal{M})=\left(\mathbf{1}_{\mathcal{M}} \otimes p_{\mathbb{1}}\right) L_{p}(\mathcal{M} \bar{\otimes} B(\mathcal{H}))\left(\mathbf{1}_{\mathcal{M}} \otimes p_{\mathbb{1}}\right)
$$

Then, -given-an-element $-f$ in- $L_{p}\left(\mathcal{M} ; \mathcal{H}^{c}\right)$,

$$
f^{*} f \in\left(\mathbf{1}_{\mathcal{M}} \otimes p_{\mathbb{1}}\right) L_{p / 2}(\mathcal{M} \bar{\otimes} B(\mathcal{H}))\left(\mathbf{1}_{\mathcal{M}} \otimes p_{\mathbb{1}}\right)=L_{p / 2}(\mathcal{M})
$$

This-justifies-defining,-up-to-some-identifications,-

$$
\|f\|_{L_{p}\left(\mathcal{M} ; \mathcal{H}^{c}\right)}=-\left\|\left(f^{*} f\right)^{1 / 2}\right\|_{L_{p}(\mathcal{M})}
$$

on- $L_{p}\left(\mathcal{M} ; \mathcal{H}^{c}\right)$.- Analogously,-we-will-consider-the-row Hilbert-valued L_{p} space associatedto $-\mathcal{H}^{*}=\overline{\mathcal{H}}$,-

$$
L_{p}\left(\mathcal{M} ; \overline{\mathcal{H}}^{r}\right)=\left(\mathbf{1}_{\mathcal{M}} \otimes p_{\mathbb{1}}\right) L_{p}(\mathcal{M} \bar{\otimes} B(\mathcal{H})) .
$$

equipped-with ${ }^{-t h e}$-norm-

$$
\|f\|_{L_{p}\left(\mathcal{M} ; \overline{\mathcal{H}}^{r}\right)}=-\left\|\left(f f^{*}\right)^{1 / 2}\right\|_{L_{p}(\mathcal{M})}
$$

so- that- $\|f\|_{L_{p}\left(\mathcal{M} ; \overline{\mathcal{H}}^{r}\right)}=-\left\|f^{*}\right\|_{L_{p}\left(\mathcal{M} ; \mathcal{H}^{c}\right)}$.- In-fact,- column- and-row-Hilbert-valued- L_{p} spaces satisfy-the-expected-duality-relations-expressed-via-the-bracket-

$$
\begin{align*}
\left(m_{1} \otimes\left(h_{1} \otimes \mathbb{1}\right), m_{2} \otimes\left(\mathbb{1} \otimes h_{2}\right)\right)_{c, r} & =-\operatorname{Tr}\left(\left(\mathbb{1} \otimes h_{2}\right)\left(h_{1} \otimes \mathbb{1}\right)\right)-\tau_{\mathcal{M}}\left(m_{2} m_{1}\right)- \\
& =-\operatorname{Tr}\left(\left\langle h_{1}, h_{2}\right\rangle_{\mathcal{H}} p_{\mathbb{1}}\right)^{-} \tau_{\mathcal{M}}\left(m_{2} m_{1}\right)^{-} \\
& =-\left\langle h_{1}, h_{2}\right\rangle_{\mathcal{H}} \tau_{\mathcal{M}}\left(m_{2} m_{1}\right) . \tag{4.1}
\end{align*}
$$

In-particular,-it-holds-

$$
L_{p}\left(\mathcal{M} ; \mathcal{H}^{c}\right)^{*}=-L_{p^{\prime}}\left(\mathcal{M} ; \overline{\mathcal{H}}^{r}\right)-\operatorname{and}-L_{p}\left(\mathcal{M} ; \overline{\mathcal{H}}^{r}\right)^{*}=-L_{p^{\prime}}\left(\mathcal{M} ; \mathcal{H}^{c}\right) .
$$

for-any- $1-\leq p<\infty$ whenever $-1 / p+1 / p^{\prime}=-1$.-

4.1.- COLUMN/ROW-HILBERT-VALUED- L_{P} SPACES-

Lemma 4.1.2. Given $0-<p \leq \infty$ and an operator

$$
f=\sum_{i=1}^{n}\left(n_{i} \otimes h_{i} \in L_{p}(\mathcal{M})-\otimes \mathcal{H}\right.
$$

f can be interpreted as an element of $L_{p}\left(\mathcal{M} ; \mathcal{H}^{c}\right)$-and $L_{p}\left(\mathcal{M} ; \overline{\mathcal{H}}^{r}\right)$-with the respective norms

$$
\|f\|_{L_{p}\left(\mathcal{M} ; \mathcal{H}^{c}\right)}=\sum_{i=1}^{n}\left(n_{i} \otimes\left(h_{i} \otimes \mathbb{1}\right)_{L_{p}\left(\mathcal{M} ; \mathcal{H}^{c}\right)}=-\left(\sum_{j=1}^{n}\left\langle h_{j}, h_{i}\right\rangle_{\mathcal{H}} m_{i}^{*} m_{j}\right)^{1 / 2} L_{p}(\mathcal{M})\right.
$$

and

$$
\|f\|_{L_{p}\left(\mathcal{M} ; \overline{\mathcal{H}}^{r}\right)}=-\sum_{i=1}^{n}\left(n_{i} \otimes\left(\mathbb{1} \otimes h_{i}\right)^{-}{ }_{L_{p}\left(\mathcal{M} ; \overline{\mathcal{H}}^{r}\right)}=-\left(\sum_{j=1}^{n}\left\langle h_{j}, h_{i}\right\rangle_{\mathcal{H}} m_{i} m_{j}^{*}\right)^{1 / 2} L_{p}(\mathcal{M}) .\right.
$$

Therefore, whenever p is finite, $L_{p}\left(\mathcal{M} ; \mathcal{H}^{c}\right)$-and $L_{p}\left(\mathcal{M} ; \overline{\mathcal{H}}^{r}\right)$-can be regarded as the completion of $L_{p}(\mathcal{M})-\otimes \mathcal{H}$ with respect to these norms above.

Proof. Given-an-element $-f$ in- $L_{p}(\mathcal{M})-\otimes \mathcal{H}$ as-above,-then-

$$
f^{*} f=\left(\sum _ { = = 1 } ^ { n } (n _ { i } ^ { * } \otimes (\mathbb { 1 } \otimes h _ { i })) (\sum _ { i = 1 } ^ { n } m _ { j } \otimes (h _ { j } \otimes \mathbb { 1 })) \left(=\sum_{i, j=1}^{n}\left\langle h_{j}, h_{i}\right\rangle m_{i}^{*} m_{j} \otimes(\mathbb{1} \otimes \mathbb{1}) .\right.\right.
$$

Then,- the-statement-follows- from-Lemma-4.1.1 (3).- The-norm-for-the-row-space-can-be-computed-analogously,-and-the-last-claims-follows-from-[37,-Lemma-2.2].-

Corollary 4.1.3. Let \mathcal{H} and \mathcal{K} be two Hilbert spaces, and let $T:-\mathcal{H} \longrightarrow \mathcal{K}$ be a bounded linear operator. Then $\operatorname{Id}_{\mathcal{M}} \otimes T$ admits a unique weak*-continuous bounded extension \widetilde{T} from $L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)$-into $L_{\infty}\left(\mathcal{M} ; \mathcal{K}^{c}\right)$-satisfying

$$
\|\widetilde{T}\|=-\|T\| .
$$

Analogously, $\mathrm{Id}_{\mathcal{M}} \otimes T$ extends to a weak*-continuous bounded map from $L_{\infty}\left(\mathcal{M}, \mathcal{H}^{r}\right)$-into $L_{\infty}\left(\mathcal{M}, \mathcal{K}^{r}\right)$.

Proof. The-statement-above-follows-from- [37,- Lemma-2.4]:- given- $1-\leq p<\infty$,- the-map$\mathrm{Id}_{L_{p}(\mathcal{M})} \otimes T$ defined-on- $L_{p}(\mathcal{M}) \otimes \mathcal{H}$ extends-uniquely to-a-bounded-operator from- $L_{p}\left(\mathcal{M} ; \mathcal{H}^{c}\right)^{-}$ into- $L_{p}\left(\mathcal{M} ; \mathcal{K}^{c}\right)$ with-norm- $\left\|\operatorname{Id}_{L_{p}(\mathcal{M})} \otimes T\right\|=-\|T\|$.- In particular, -if $-T^{*}: \mathcal{K} \rightarrow \mathcal{H}$ is the-adjoint -map-for- T, -then- $\mathrm{Id}_{L_{1}(\mathcal{M})} \otimes T^{*}$ extends-to-a-bounded-map-from- $L_{1}\left(\mathcal{M} ; \overline{\mathcal{K}}^{r}\right)$-into- $L_{1}\left(\mathcal{M} ; \overline{\mathcal{H}}^{r}\right)$ -satisfying-

$$
\left\|\operatorname{Id}_{L_{1}(\mathcal{M})} \otimes T^{*}:-L_{1}\left(\mathcal{M} ; \overline{\mathcal{K}}^{r}\right)-\rightarrow L_{1}\left(\mathcal{M} ; \overline{\mathcal{H}}^{r}\right)\right\|=-\left\|T^{*}\right\|=-\|T\| .
$$

Then,- by-duality,-we-can-define- \widetilde{T} as-the-adjoint-operator-of-the-extension-to- $L_{1}\left(\mathcal{M} ; \overline{\mathcal{K}}^{r}\right)$ -of- $\mathrm{Id}_{L_{1}(\mathcal{M})} \otimes T^{*}$, -so-that- \widetilde{T} coincid $\mathrm{s}^{-}-$with $-\mathrm{Id}_{\mathcal{M}} \otimes T$ on $-\mathcal{M} \otimes \mathcal{H}$.-
Some-properties-of-these-extension-maps-will-be-crucial-in-the-following-sections.-

Lemma 4.1.4. Let \mathcal{H} be a Hilbert space, let S, T, and $\left(T_{j}\right)_{j=1}^{\infty}$ be some bounded operators on \mathcal{H} and let $\widetilde{S}, \widetilde{T},\left(\widetilde{T}_{j}\right)_{j=1}^{\infty}$ be the corresponding extensions from $L_{\infty}\left(\mathcal{M}, \mathcal{H}^{t}\right)$-to $L_{\infty}\left(\mathcal{M}, \mathcal{H}^{t}\right)$ for $t=-c$, r. Then the following holds.
(1) $\widetilde{S T}=\widetilde{S} \widetilde{T}$,
(2) If S and T commute, then \widetilde{S} and \widetilde{T} also commute,
(3) whenever $\sum_{j=1}^{\infty} T_{j}$ converges in the norm of $B(\mathcal{H})$, there holds $\widetilde{\sum_{j=1}^{\infty} T_{j}}=-\sum_{j=1}^{\infty} \widetilde{T}_{j}$.

Proof. By-symmetry,-is-it-sufficient-to-consider-the-column-case.- For-the-first-point,-it-is-clear- that-the-operators- $T^{*} S^{*}$ and $-(S T)^{*}$ coincide- on $L_{1}(\mathcal{M})-\otimes \mathcal{H}$.- Then,- by- uniqueness, the-extensions $-\operatorname{Id}_{L_{1}(\mathcal{M})} \otimes T^{*} S^{*}$ and $-\operatorname{Id}_{L_{1}(\mathcal{M})} \otimes(S T)^{*}$ coincide-on- $L_{1}\left(\mathcal{M} ; \overline{\mathcal{H}}^{r}\right)$, - yielding-the-identity-

$$
\langle(\widetilde{S T} \Gamma \widetilde{S} \widetilde{T}) g, f\rangle=-\left\langle g,\left(\operatorname{Id}_{L_{1}(\mathcal{M})} \otimes T^{*} S^{*}-\operatorname{Id}_{L_{1}(\mathcal{M})} \otimes(S T)^{*}\right) f\right\rangle=0
$$

for - any $-f$ and g belonging- to $L_{1}\left(\mathcal{M} ; \overline{\mathcal{H}}^{r}\right)$ - and $-L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)$ - respectively.- Then, $-(2)$ - is- an-immediate- consequence, - while- (3)-follows- from- the- linearity - and continuity of the- map$T \mapsto \widetilde{T}$.

The-column-space- $L_{\infty}\left(\mathcal{M}, \mathcal{H}^{c}\right)$-admits-a-interpretation-as-continuous-functionals-over-the-projective-tensor-product- $\left(L_{2}(\mathcal{M})^{*} \otimes_{2} \mathcal{H}^{*}\right) \widehat{\otimes}_{\pi} L_{2}(\mathcal{M})$-which-will-be-useful-in-the-study-of-the-duality- H_{1} - BMO.-

Proposition 4.1.5. Let \mathcal{H} be a Hilbert space. Then the map

$$
\begin{array}{rlll}
U:- & \mathcal{M} \otimes \mathcal{H} & \longrightarrow & B\left(L_{2}(\mathcal{M}), L_{2}(\mathcal{M})-\otimes_{2} \mathcal{H}\right) \\
\sum_{i=1}^{n} m_{i} \otimes\left(h_{i} \otimes \mathbb{1}\right)- & \longmapsto & \left(k \mapsto \sum_{i}^{n}=1 m_{i} k \otimes h_{i}\right),
\end{array}
$$

extends to a weak ${ }^{*}$-continuous isometry defined on $L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)$. Moreover, there holds

$$
U\left(L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)\right)=\overline{U(\mathcal{M} \otimes \mathcal{H})^{-}}{ }^{w^{*}}
$$

which is closed in norm, and the pre-adjoint map U_{*} is a surjective contraction.
Proof. First,-we-check-that- U is-an-isometry-on- $\mathcal{M} \otimes \mathcal{H}$.- Indeed,-

$$
\begin{aligned}
\sum_{i=1}^{n} m_{i} \otimes\left(h_{i} \otimes \mathbb{1}\right) & L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right) \\
& =-\sum_{i=1}^{n}\left(n _ { i } \otimes (h _ { i } \otimes \mathbb { 1 }) ^ { 2 } \underset { \mathcal { M } \otimes \overline { \otimes } B (\mathcal { H }) } { 1 / 2 } \left(m_{i}^{*} m_{j}\left\langle h_{j}, h_{i}\right\rangle_{\mathcal{H}}{ }_{\mathcal{M}}^{1 / 2}\right.\right. \\
& =\sup _{k \in L_{2}(\mathcal{M})}^{n}\left\langle\sum_{i, j=1}^{n}\left(m_{i}^{*} m_{j} k\left\langle h_{j}, h_{i}\right\rangle_{\mathcal{H}}, k\right\rangle_{L_{2}(\mathcal{M})}{ }^{1 / 2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\sup _{k \in L_{2}(\mathcal{M})} \sum_{i, j=1}^{n}\left(m_{i}^{*} m_{j} k, k\right\rangle_{L_{2}(\mathcal{M})}\left\langle h_{j}, h_{i}\right\rangle_{\mathcal{H}}^{1 / 2} \\
& =-\sup _{k \in L_{2}(\mathcal{M})}^{-} \sum_{i, j=1}^{n}\left(m_{j} k, m_{i} k\right\rangle_{L_{2}(\mathcal{M})}\left\langle h_{j}, h_{i}\right\rangle_{\mathcal{H}}{ }^{1 / 2} \\
& =-\sup _{k \in L_{2}(\mathcal{M})}^{-} \sum_{i, j=1}^{n}\left(m_{j} k \otimes h_{j}, m_{i} k \otimes h_{i}\right\rangle_{L_{2}(\mathcal{M}) \otimes_{2} \mathcal{H}^{1 / 2}} \\
& =\sup _{k \in L_{2}(\mathcal{M})} \sum_{i=1}^{n}\left(n_{i} k \otimes h_{i} L_{L_{2}(\mathcal{M}) \otimes_{2} \mathcal{H} .}\right.
\end{aligned}
$$

Since-the-dual- of-the-projective-tensor-product- $\left(L_{2}(\mathcal{M})^{*} \otimes_{2} \mathcal{H}^{*}\right) \widehat{\otimes}_{\pi} L_{2}(\mathcal{M})$-coincides-with$B\left(L_{2}(\mathcal{M}), L_{2}(\mathcal{M}) \otimes_{2} \mathcal{H}\right)$ - 76$]$, then $-U$ induces a-map- U_{*} on the-dense-class- $\left(L_{2}(\mathcal{M})^{*} \otimes \mathcal{H}^{*}\right) \otimes$ $L_{2}(\mathcal{M})$.- More-clearly,-given $-f \otimes m^{\prime}=\left(\sum_{j=1}^{N} \overline{m_{j}^{\prime}} \otimes \overline{h_{j}^{\prime}}\right)-\otimes m^{\prime} \in\left(L_{2}(\mathcal{M})^{*} \otimes_{2} \mathcal{H}^{*}\right)-\otimes L_{2}(\mathcal{M})$,

$$
\begin{aligned}
\left\langle U\left(\sum_{i=1}^{n}\left(m_{i} \otimes\left(h_{i} \otimes \mathbb{1}\right)\right), f \otimes m^{\prime}\right\rangle\right. & =\sum_{i=1}^{n} \sum_{j=1}^{N}\left\langle m_{i} m^{\prime} \otimes h_{i}, \overline{m_{j}^{\prime}} \otimes \overline{h_{j}^{\prime}}\right\rangle_{L_{2}(\mathcal{M}) \otimes_{2} \mathcal{H}, L_{2}(\mathcal{M})^{*} \otimes_{2} \mathcal{H}^{*}} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{N}\left(\mathcal{M}\left(m_{i} m^{\prime}\left(m_{j}^{\prime}\right)^{*}\right)-\overline{h_{j}^{\prime}}\left(h_{i}\right)\right. \\
& =\sum_{i=1}^{n} \sum_{j=1}^{N}\left(\mathcal{M}\left(m_{i} m^{\prime}\left(m_{j}^{\prime}\right)^{*}\right)-\left\langle h_{i}, h_{j}^{\prime}\right\rangle\right. \\
& =\sum_{i=1}^{n} \sum_{j=1}^{N}\left(\mathcal{M}\left(m_{i} m^{\prime}\left(m_{j}^{\prime}\right)^{*}\right)-\operatorname{Tr}\left(\left(\mathbb{1} \otimes h_{j}^{\prime}\right)\left(h_{i} \otimes \mathbb{1}\right)\right)^{-}\right. \\
& =-\left\langle\sum_{i=1}^{n} m_{i} \otimes\left(h_{i} \otimes \mathbb{1}\right), \sum_{j=1}^{N}\left(n^{\prime}\left(m_{j}^{\prime}\right)^{*} \otimes\left(\mathbb{1} \otimes h_{j}^{\prime}\right)\right\rangle\right. \\
& =-\left\langle\sum_{i=1}^{n}\left(n_{i} \otimes\left(h_{i} \otimes \mathbb{1}\right), U_{*}\left(f \otimes m^{\prime}\right)\right\rangle .\right.
\end{aligned}
$$

Now, it-is-clear that $-U_{*}\left(f \otimes m^{\prime}\right)$-belongs-to- $L_{1}(\mathcal{M}) \otimes \mathcal{H}$ and that-the-map- U_{*} is-a-contractionon $^{-}\left(L_{2}(\mathcal{M})^{*} \otimes \mathcal{H}^{*}\right) \otimes L_{2}(\mathcal{M})$. - Indeed, ,

$$
\begin{aligned}
\left\|U_{*}\left(f \otimes m^{\prime}\right)\right\|_{L_{1}\left(\mathcal{M} ; \overline{\mathcal{H}}^{r}\right)} & =\sum_{j=1}^{N}\left(n^{\prime}\left(m_{j}^{\prime}\right)^{*} \otimes\left(\mathbb{1} \otimes h_{j}^{\prime}\right)^{-} L_{1}\left(\mathcal{M} ; \overline{\mathcal{H}}^{r}\right)\right. \\
& \leq\left\|m^{\prime} \otimes(\mathbb{1} \otimes \mathbb{1})\right\|_{L_{2}(\mathcal{M} \bar{\otimes} B(\mathcal{H}))} \quad \sum_{j=1}^{N}\left(\left(m_{j}^{\prime}\right)^{*} \otimes\left(\mathbb{1} \otimes h_{j}^{\prime}\right)^{-}{ }_{L_{2}\left(\mathcal{M} ; \overline{\mathcal{H}}^{r}\right)}\right. \\
& =-\left\|m^{\prime}\right\|_{L_{2}(\mathcal{M})} \| \sum_{j=1}^{N}\left(n_{j}^{\prime} \otimes h_{j}^{\prime} \|_{L_{2}(\mathcal{M}) \otimes_{2} \mathcal{H}}\right.
\end{aligned}
$$

CHAPTER-4.- CALDERỚN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-
KERNEL-

$$
=-\left\|m^{\prime}\right\|_{L_{2}(\mathcal{M})}\left\|\sum_{j=1}^{N} \overline{\left(n_{j}^{\prime}\right.} \otimes \overline{h_{j}^{\prime}}\right\|_{L_{2}(\mathcal{M})^{*} \otimes_{2} \mathcal{H}^{*}}
$$

Finally,- U_{*} admits-an-extension-to-the-whole- $\left(L_{2}(\mathcal{M})^{*} \otimes_{2} \mathcal{H}^{*}\right) \widehat{\otimes}_{\pi} L_{2}(\mathcal{M})$,-so-its-adjoint-map-is-a-weak ${ }^{*}$-continuous-contraction-that-will-be-denoted-by- U.- Also,-since-simple-tensors-in-$L_{1}(\mathcal{M})-\otimes \mathcal{H}$ are-contained-in-the-image-of- U_{*},- then- U_{*} has-dense-range,-so-injectivity-of- U follows.-

In-addition,-it-turns-out-that- U is-an-isometry.- Given- $g \in L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)$-and- $m \in L_{2}(\mathcal{M})$, there-holds-

$$
U(g) m=\left(\pi \otimes \operatorname{Id}_{B(\mathcal{H})}\right)(g)(m \otimes \mathbb{1})=\left(\pi \otimes \operatorname{Id}_{B(\mathcal{H})}\right)(g)(j(m))
$$

where π : $-\mathcal{M} \longrightarrow B\left(L_{2}(\mathcal{M})\right.$)-is-the-canonical-normal-faithful-representation-by-left-multi-plication,-and $-j$ is -the-isometry - from $-L_{2}(\mathcal{M})$-to- $L_{2}(\mathcal{M})-\otimes_{2} \mathcal{H}$ sending- f to- $f \otimes \mathbb{1}$.- Then,- the-adjoint-map- j^{*} is-a-contraction-sending- $m \otimes h$ to- $\langle h, \mathbb{1}\rangle m$,-and-a-straightforward-verification-shows- that- $j j^{*}=-\operatorname{Id}_{L_{2}(\mathcal{M})} \otimes(\mathbb{1} \otimes \mathbb{1})$,-so-

$$
\begin{aligned}
U(g) j^{*} & =\left(\pi \otimes \operatorname{Id}_{B(\mathcal{H})}\right)(g)-\circ\left(\operatorname{Id}_{L_{2}(\mathcal{M})} \otimes(\mathbb{1} \otimes \mathbb{1})\right)^{-} \\
& =\left(\pi \otimes \operatorname{Id}_{B(\mathcal{H})}\right)(g) .
\end{aligned}
$$

Moreover,-since- $\pi \otimes \operatorname{Id}_{B(\mathcal{H})}:-\mathcal{M} \bar{\otimes} B(\mathcal{H})-\longrightarrow \pi(\mathcal{M}) \bar{\otimes} B(\mathcal{H})$-is-a-faithful-representation- of-von-Neumann-algebras,-it-is-isometric.- Then,-there-follows-

$$
\|g\|_{L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)}=-\left\|\left(\pi \otimes \operatorname{Id}_{B(\mathcal{H})}\right)(g)\right\|_{B\left(L_{2}(\mathcal{M})\right) \bar{\otimes} B(\mathcal{H})}=-\left\|U(g) j^{*}\right\| \leq\|U(g)\|\left\|j^{*}\right\| \leq\|U(g)\| .
$$

It-only-remains-to-check-that- $U\left(L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)\right)$-is-closed-with-respect-to-the-weak* topologyof $-B\left(L_{2}(\mathcal{M}), L_{2}(\mathcal{M})-\otimes_{2} \mathcal{H}\right)$.- Recall-that-since- $\mathcal{M} \otimes \mathcal{H}$ is-weak ${ }^{*}$-dense-in- $L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)$-and$U$ is-weak*-to-weak* continuous-operator,-there-holds-

Therefore,- we- only- need- to- show- that $U\left(L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)\right)^{-}$- is- weak*-closed- in- order- to- get ${ }^{-}$ the- stated- result.- Notice- that- since- $L_{2}(\mathcal{M})$ - and- $L_{2}(\mathcal{M})-\otimes_{2} \mathcal{H}$ are- separable- Banach-spaces,- then- $\left(L_{2}(\mathcal{M})^{*} \otimes \mathcal{H}^{*}\right) \widehat{\otimes}_{\pi} L_{2}(\mathcal{M})$ - is- separable- too.- Then,- a- subspace- of- its- dual$B\left(L_{2}(\mathcal{M}), L_{2}(\mathcal{M})-\otimes_{2} \mathcal{H}\right)$ - is- weak*-closed- if- and- only-if- it- is- weakly* sequentially- closed-[53,- Corollary-2.7.13].- Therefore,- the-following- argument- can- be- displayed- in- terms- of-sequences.-

Consider- $\left(g_{n}\right)_{n \geq 1} \subseteq U\left(L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)\right)$-such-that- $\left(U\left(g_{n}\right)\right)_{n \geq 1}$ is-weakly* convergent,-so- that-it-is-a-bounded-sequence-[53,-Corollary-2.6.10].- Since- U is-an-isometry,-then-the-sequence$\left(g_{n}\right)_{n \geq 1}$ has-the-same-bound.- Therefore,-as-a-consequence-of-the-Banach-Alaoglu-theorem,-there- exists-a-weakly ${ }^{*}$-convergent-subsequence- $\left(g_{n_{j}}\right)_{j \geq 1}$ with-limit- g in- $L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)$.- By^{-} the-weak*-continuity-of- $U,\left(U\left(g_{n_{j}}\right)\right)_{j \geq 1}$ converges-to- $U(g)$,-so-it-follows-that- $G=-U(g)$.-

4.1.- COLUMN/ROW-HILBERT-VALUED- L_{P} SPACES-

The-subspace- $U\left(L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)\right)$-being-weak ${ }^{*}$-closed- is- equivalent-to-being- norm-closed-75,-p.101],-and-also-to- U_{*} having-closed-range.- Therefore,-since-the-image-of- U_{*} is-also-dense,U_{*} has-to-be-surjective.- On-the-other-hand,-since- U is-a-bounded-injective-operator-with-closed-range,-there-exists-a-bounded-inverse-for- U defined-on- $U\left(L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)\right)$.-

So-far,-the-map- U from-Proposition 4.1.5 has-turned-out-to-be-a-weak*-continuous-isometry-with-bounded- inverse- on- its-image.- However,- this- has- no- further- consequences- for- the-invertibility-of-

$$
U_{*}:\left(L_{2}(\mathcal{M})^{*} \otimes_{2} \mathcal{H}^{*}\right) \widehat{\otimes}_{\pi} L_{2}(\mathcal{M})-\longrightarrow L_{1}\left(\mathcal{M} ; \mathcal{H}^{c}\right)-
$$

since- U is- not-surjective.- Replacing- the-domain- of- U_{*} by- a- predual- of $U\left(L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)\right)^{-}$ allows-us-to-obtain-a-bounded-inverse-for- U_{*}.-

Corollary 4.1.6. Let \mathcal{H} be a Hilbert space. Then

$$
\left(\left(L_{2}(\mathcal{M})^{*} \otimes_{2} \mathcal{H}^{*}\right) \widehat{\otimes}_{\pi} L_{2}(\mathcal{M})^{-/} U\left(L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)\right)_{\perp}\right)^{*} \simeq U\left(L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)\right)
$$

and the map $U:-L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)-\longrightarrow U\left(L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)\right)$-induces a bounded contraction

$$
U_{*}:\left(L_{2}(\mathcal{M})^{*} \otimes_{2} \mathcal{H}^{*}\right) \widehat{\otimes}_{\pi} L_{2}(\mathcal{M})^{-} / U\left(L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)\right)_{\perp} \longrightarrow L_{1}\left(\mathcal{M} ; \mathcal{H}^{c}\right)
$$

Therefore,

$$
U:-L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)-\longrightarrow U\left(L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)\right)-
$$

is a weak*-continuous isometry with bounded inverse, and U_{*} has a bounded inverse too.
Proof. The-formula- for-a-predual-of $U\left(L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)\right.$)-follows-because-this-space-is-closedwith respect to the weak ${ }^{*}$ topology-of $-B\left(L_{2}(\mathcal{M}), L_{2}(\mathcal{M}) \otimes_{2} \mathcal{H}\right)$.- Then,-given- $F \in L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)$ and $-\sum_{i=1}^{\infty} \overline{f_{i}} \otimes m_{i}+U\left(L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)\right)_{\perp} \in U\left(L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)\right)_{*}$, there-holds

$$
\left\langle U(F), \sum_{i=1}^{\infty} \overline{f_{i}} \otimes m_{i}\right\rangle=-\left\langle F, U_{*}\left(\sum_{i=1}^{\infty} \overline{f_{i}} \otimes m_{i}\right)\right\rangle,
$$

so- U_{*} is-well-defined-on-a-predual-of- $U\left(L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)\right)$. - By-the-computations-in-the-proof-of-Proposition-4.1.5, U_{*} is-a-bounded-contraction,-so- U is- a-weak*-continuous- isomorphism-of-Banach-spaces.-

Remark 4.1.7. Similar computations show that the linear map sending

$$
\sum_{i=1}^{n} m_{i} \otimes\left(\mathbb{1} \otimes h_{i}\right)-\longmapsto\left(k \mapsto \sum_{i=1}^{n} \overline{\overline{n_{i}^{*}} k^{*}} \otimes \overline{h_{i}}\right)
$$

extends to a injective weak*-continuous isometry from $L_{\infty}\left(\mathcal{M} ; \overline{\mathcal{H}}^{r}\right)$-to
$B\left(L_{2}(\mathcal{M}), L_{2}(\mathcal{M})^{*} \otimes_{2} \mathcal{H}^{*}\right)$. Therefore, the pre-adjoint map U_{*} acts sending $f \otimes m^{\prime}$ from $\left(L_{2}(\mathcal{M})-\otimes_{2} \mathcal{H}\right)-\otimes L_{2}(\mathcal{M})-$ to $f\left(m^{\prime} \otimes(\mathbb{1} \otimes \mathbb{1})\right)-\in L_{1}\left(\mathcal{M} ; \mathcal{H}^{c}\right)$. Similarly, the map

$$
U_{*}:\left(L_{2}(\mathcal{M})-\otimes_{2} \mathcal{H}\right) \widehat{\otimes}_{\pi} L_{2}(\mathcal{M})^{-/} U\left(L_{\infty}\left(\mathcal{M} ; \mathcal{H}^{c}\right)\right)_{\perp} \longrightarrow L_{1}\left(\mathcal{M} ; \mathcal{H}^{c}\right)^{-}
$$

as constructed above has a bounded inverse, and its adjoint U has it too.

4.1.1 Noncommutative spaces $L_{p}\left(\mathcal{M} ; L_{2}^{c}(\Omega)\right)$

Let- (Ω, μ)-be-a semifinite measure-space.- A remarkable-setting for noncommutative-Hilbert-valued-column/row- L_{p} spaces- is-the-case- $\mathcal{H}=-L_{2}(\Omega)=:=-L_{2}(\Omega, \mu)$.- Notice-that-under-theseconditions, -the-duality-bracket- 4.1 -is- given-by-the-expression-

$$
\begin{aligned}
\left(m_{1} \otimes\left(f_{1} \otimes \mathbb{1}\right), m_{2} \otimes\left(\mathbb{1} \otimes f_{2}\right)\right)_{c, r} & =\tau_{\mathcal{M}}\left(m_{2} m_{1}\right)-\tau_{B\left(L_{2}(\Omega, \mu)\right)}\left(\left(\mathbb{1} \otimes f_{2}\right)\left(f_{1} \otimes \mathbb{1}\right)\right) \\
& =-\tau_{\mathcal{M}}\left(m_{2} m_{1}\right)-\iint_{\Omega} f_{1} \overline{f_{2}} d \mu,
\end{aligned}
$$

yielding-the-identification-

$$
L_{p^{\prime}}\left(\mathcal{M} ; \overline{L_{2}^{r}(\Omega, \mu)}\right)=-L_{p}\left(\mathcal{M} ; L_{2}^{c}(\Omega, \mu)\right)^{*} \text { for }-1 \leq p<\infty
$$

Notation 4.1.8. In the following, we will refer to the space $L_{p}\left(\mathcal{M} ; \overline{L_{2}^{r}(\Omega, \mu)}\right)$-by writing instead $L_{p}\left(\mathcal{M} ;-L_{2}^{r}(\Omega, \mu)\right)$-in order to avoid an overloaded notation.

Despite- $L_{2}(\Omega, \mu)$-being-a-commutative-Hilbert-space,-the-associated-column-and-row-spaces-are- not-spaces- of- functions.- In- other- words, $L_{p}\left(\mathcal{M} ;-L_{2}^{c}(\Omega)\right)$ - is- not- generally- contained-in$L_{2}\left(\Omega ;-L_{p}(\mathcal{M})\right)$,-the-space-of-strongly-measurable-functions- $f: \Omega^{-} \rightarrow L_{p}(\mathcal{M})$-satisfying-

$$
\|f\|_{L_{2}\left(\Omega ; L_{p}(\mathcal{M})\right)}=-\left(\iint_{S_{0}}\|f(x)\|_{L_{p}(\mathcal{M})}^{2} d \mu(x)\right)^{1 / 2}<\infty .
$$

However, - when- $1-\leq p \leq 2,-$ both- $L_{p}\left(\mathcal{M} ;-L_{2}^{c}(\Omega)\right)$ - and $-L_{p}\left(\mathcal{M} ;-L_{2}^{r}(\Omega)\right)$ - are-indeed- spaces- of-functions-contained-in- $L_{2}\left(\Omega ;-L_{p}(\mathcal{M})\right)$.-

In-the-following-sections, the- case- $p=-\infty$ will-be-specially-relevant.- For-that-reason,- the-study-of the-extension-of-some-useful-operators-on- $L_{2}(\Omega)$ to- $L_{\infty}\left(\mathcal{M} ;-L_{2}^{c}(\Omega)\right)$-will-be-carefully-checked.-

Lemma 4.1.9. Let A, B be two measurable sets, and let w and w^{\prime} be strictly positive functions belonging to $L_{\infty}(\Omega, \mu)$. Consider the following operators on $L_{2}(\Omega, \mu)$:

$$
\begin{aligned}
& T_{w}:-f \mapsto w^{1 / 2} f, \\
& P_{A}:-f \mapsto \chi_{A} f .
\end{aligned}
$$

These maps extend to bounded operators on $L_{\infty}\left(\mathcal{M} ;-L_{t}^{2}(\Omega, \mu)\right)$, for $t=-c, r$ such that $\| \widetilde{T}_{w} \psi=-$ $\|w\|_{L_{\infty}(\Omega, \mu)},\left\|\widetilde{P}_{A}\right\|=-\left\|\chi_{A}\right\|_{L_{\infty}(\Omega, \mu)}$. Moreover, they satisfy the following relations:

1. $\widetilde{T}_{w} \widetilde{T}_{w^{\prime}}=\widetilde{T}_{w^{\prime}}, \widetilde{T}_{w}$,
2. $\widetilde{P}_{A} \widetilde{T}_{w}=\widetilde{T}_{w} \widetilde{P}_{A}$,
3. whenever w^{-1} is bounded, $\widetilde{T}_{w} \widetilde{T}_{w}\left(1=-\operatorname{Id}_{L_{\infty}\left(\mathcal{M} ; L_{t}^{2}(\Omega, \mu)\right)}=\widetilde{T}_{w-1} \widetilde{T}_{w}(\right.$
4. $\widetilde{P}_{A}=-\widetilde{P}_{A} \widetilde{P}_{B /}=-\widetilde{P}_{B} \widetilde{P}_{A}$ whenever $A \subseteq B$,
5. $\widetilde{P}_{B \times A}=\widetilde{P}_{B}\left(-\widetilde{P}_{A}\right.$ whenever $A \subseteq B$.

Proof. By-Corollary-4.1.3, the- extension-operators- $\widetilde{T}_{w}-\widetilde{P}_{A}$ are-bounded-as-long-as-the-original- ones- are- bounded- on- $L^{2}(\Omega, \mu)$.- The- maps $-T_{w}$ and P_{A} are- bounded- with- norm$\left\|w^{1 / 2}\right\|_{L_{\infty}}$ and-1-respectively,-since-they- are- pointwise-multiplication- operators.- Claims-(1)-(4)-follow-from-Lemma-4.1.4-while-linearity-of-the-map-T $\mapsto \widetilde{T}$ implies-(5).-

4.2 Duality between Hardy spaces and BMO spaces

Consider-the-measure-space- $\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right) .-$ Then, $-L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)$-is-a-Hilbert-space-with-the-inner-product-

$$
\langle f, g\rangle=-\iint_{\mathbb{E}} f(t)-\overline{g(t)}-\frac{d t}{1+t^{2}} .
$$

Then,- we- will- consider- the- associated- column- space- $L_{p}\left(\mathcal{M} ;-L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right.$ - for ${ }^{-} 0^{-}<p \leq \infty$.-We-will-choose- $\mathbb{1}$ to-be-the-constant-function- $1 / \sqrt{\pi}$,-which-satisfies-the-condition-

$$
\|\mathbb{1}\|_{L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)}=1 .
$$

For-the-sake-of-exposition,-we-define-some-operators-on- $L_{\infty}\left(\mathcal{M} ;-L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)$-which-can-be-described-in-terms-of-the-maps-appearing-in-Lemma-4.1.9- Set- $\omega(t)=-1+t^{2}$,-and-let- A be-a-measurable-set-such-that- $|A| \neq-0$.- Then,-define-the-map-

$$
R_{A}=-\widetilde{T}_{\omega} \widetilde{T}_{|\nmid|^{-1}} \widetilde{P}_{A}
$$

so-that- R_{A} is-the-extension-of-the-operator-act nng-on- $L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)$-as-follows:-

$$
f \mapsto \frac{\left(1-+t^{2}\right)^{1 / 2}}{\sqrt{|A|}} \chi_{A} f .
$$

On-the-other-hand,-denote-by- a_{A} the-extensidn-to- $L_{\infty}\left(\mathcal{M} ;-L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)$-of-the-map-

$$
a_{A}:-f \mapsto f_{A} 1=\left(\left(\frac{1-}{A \mid} \int_{A} f\right)(1\right.
$$

A-straightforward-verification-shows-that-the-operator-on- $L_{\infty}\left(\mathcal{M} ;-L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right.$)-given-by-

$$
\begin{equation*}
f \mapsto \sqrt{\pi}\left[\left.\left(\operatorname{Id}_{\mathcal{M}} \otimes \operatorname{Tr}_{B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right) \widetilde{T}_{\omega} \widetilde{T}_{\mid\langle 1}\right|^{-2} \widetilde{P}_{A} f\right] \otimes(1 \otimes \mathbb{1})=:=f_{A} \otimes(1-\otimes \mathbb{1}) \tag{4.2}
\end{equation*}
$$

is- an- extension- of- a_{A}.- Indeed, - given- an- opetatox- $f=-\sum_{i=1}^{\infty} m_{i} \otimes\left(f_{i} \otimes \mathbb{1}\right)$ - belonging- to$\mathcal{M} \otimes L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)$,

$$
a_{A} f=-\sum_{i=1}^{n}\left(n_{i} \sqrt{\pi} \operatorname{Tr}\left(\frac{\omega}{|A|} \chi_{A} f_{i} \otimes \mathbb{1}\right) \otimes(1-\otimes \mathbb{1})\right.
$$

CHAPTER-4.- CALDERÓN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-
KERNEL-

$$
\begin{aligned}
& =\sum_{i=1}^{n}\left(n_{i} \sqrt{\pi}\left\langle\frac{\omega}{|A|} \chi_{A} f_{i}, \mathbb{1}\right\rangle \otimes(1-\otimes \mathbb{1})\right. \\
& =-\sum_{i=1}^{n}\left(n_{i}\left(\frac{1-}{A \mid} \int_{A} f_{i}\right) \otimes(1-\otimes \mathbb{1})\right.
\end{aligned}
$$

Lemma 4.2.1. Let A, B be two measurable sets such that $|A|,|B| \neq 0$, and let R_{A} and a_{A} be the operators defined above on $L_{\infty}\left(\mathcal{M} ;-L_{2}^{t}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)$-for $t=c, r$. Then,

Moreover, $a_{A} a_{B}=-a_{B}$.

$$
\begin{aligned}
& \left\|R_{A}\right\| \leq \frac{\sup _{t \in A}\left(1-+t^{2}\right)^{1 / 2}}{\sqrt{\mid(A \mid}} \\
& \left\|a_{A}\right\| \leq \min -\left\{\pi^{1 \lambda 2} \frac{\sup _{t \in A}\left(1-+t^{2}\right)^{1 / 2}}{\sqrt{|A|}}, \pi \frac{\sup _{t \in A}\left(1-+t^{2}\right)}{|A|}\right\} \\
& =-a_{B}
\end{aligned}
$$

Proof. The- first-bound-follows- from-the-definition- of- R_{A}.- On- the- other-hand,- given- a-function- f in $-L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)$,-the-following-bound-holds:-

$$
\begin{aligned}
& \qquad\left\|f_{A} 1\right\|_{L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)}=-\pi^{1 / 2} \int\left(f \frac{1-}{|A|} \leq \pi^{1 / 2}\left(\int (| f (t) | ^ { 2 } \frac { d t } { 1 + t ^ { 2 } }) ^ { 1 / 2 } \left(\int\left(\frac{1-}{|A|^{2}}\left(1-+t^{2}\right)-d t\right)^{1 / 2}\right.\right.\right. \\
& \quad \leq \pi^{1 / 2}\|f\|_{L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)} \frac{\sup _{t \in I}\left(1-+t^{2}\right)^{1 / 2}}{\sqrt{| |(A \mid}} .
\end{aligned}
$$

$$
\begin{aligned}
\left\|f_{A} 1\right\|_{L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)} & =\pi^{1 / 2} \iint_{\mathfrak{l}} f(t) \chi_{A}(t) \frac{1+t^{2}}{|A|} \frac{d t}{1+t^{2}} \\
& \leq \pi^{1 / 2} \frac{\sup _{t \in A}\left(1-+t^{2}\right)-}{|A|} \int\left(|f| \frac{d t}{1+t^{2}}\right. \\
& \leq \pi^{1 / 2} \frac{\sup _{t \in A}\left(1+t^{2}\right)-}{|A|}\left(\int (| f | ^ { 2 } \frac { d t } { 1 + t ^ { 2 } }) ^ { 1 / 2 } \left(\int\left(\frac{d t}{1+t^{2}}\right)^{1 / 2}\right.\right. \\
& =-\pi \frac{\sup _{t \in A}\left(1+t^{2}\right)}{|A|}\|f\|_{L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)}
\end{aligned}
$$

Therefore,- the-norm- of- a_{A} is-bounded- as-stated- at- the-statement- as- a- consequence- ofCorollary 4.1.3- The-last-claim-follows-from-Lemma-4.1.4 (1)-and-the-identity-

$$
a_{A} a_{B} f=-a_{A}\left(\left(\frac{1-}{B \mid} \iint_{\beta} f(t)-d t\right)=\frac{1}{|A|} \int_{A}\left(\left(\frac{1-}{B \mid} \int_{B} f(t)^{-} d t\right) d x=\frac{1-}{|B|} \iint_{\beta} f=-a_{B} f\right.\right.
$$

for-any- f in $-L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)$.

4.2.- DUALITY-BETWEEN-HARDY-SPACES-AND-BMO SPACES-

Proposition 4.2.2. Let A, B be two measurable sets. Then, the identity

$$
\left\|R_{B} a_{A} f\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}=-\left\|f_{A}\right\|_{\mathcal{M}}
$$

holds for any operator f in $L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}^{n}, \frac{d t}{1+t^{2}}\right)\right)$.
Proof. The-claim-follows-from-the-formula-4.2,-that-is,-

$$
\begin{aligned}
\left\|R_{B} a_{A} f\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} & =-\left\|R_{B}\left(f_{A} \otimes(1-\mathbb{1})\right)\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& =-\left\|f_{A}^{*} f_{A}\left(\iint_{k} \frac{1+t^{2}}{|B|} \frac{d t}{1+t^{2}}\right) \otimes(\mathbb{1} \otimes \mathbb{1})\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}^{1 / 2} \\
& =-\left\|f_{A}^{*} f_{A}\right\|_{\mathcal{M}}^{1 / 2}=-\left\|f_{A}\right\|_{\mathcal{M}} .
\end{aligned}
$$

Some-other-Hilbert-spaces-over-the-real-line- will- be-considered- through- this-section.- In-particular,-when-the-Lebesgue-measure-is-considered,-the-function-

$$
t \mapsto \frac{1}{\sqrt{\pi}} \frac{1-}{\sqrt{1+t^{2}}}
$$

belongs-to-the-space- $L_{2}(\mathbb{R}, d t)$-and-has- L_{2} norm-equal-to- 1 . Moreover,- $\frac{1}{\sqrt{1+t^{2}}}$ will-be-chosen-as- the-distinguished element- of this-Hilbert-space-which-appears-in-the-definition- of the-column-and-row-spaces- $L_{\infty}\left(\mathcal{M} ;-L_{2}^{c}(\mathbb{R}, d t)\right)$-and- $L_{\infty}\left(\mathcal{M} ;-L_{2}^{r}(\mathbb{R}, d t)\right)$.

Lemma 4.2.3. Let A be a measurable set. Then, the pre-adjoints maps for R_{A} and a_{A} on $L_{1}\left(\mathcal{M} ;-L_{2}^{r}\left(\mathbb{R}, d t /\left(1-+-t^{2}\right)\right)\right)$ - act as follows on any operator $m \otimes(\mathbb{1} \otimes f)-\in L_{1}(\mathcal{M})-\otimes$ $L_{2}\left(\mathbb{R}, d t /\left(1-+t^{2}\right)\right)^{-}$

$$
\begin{aligned}
& \left(R_{A}\right)_{*}:-m \otimes(\mathbb{1} \otimes f) \mapsto m \otimes\left(\mathbb{1} \otimes \frac{\sqrt{1+t^{2}}}{\sqrt{|A|}} \chi_{I} f\right) \\
& \left(a_{A}\right)_{*}:-m \otimes(\mathbb{1} \otimes f) \longmapsto \longmapsto m \otimes\left(\left.\mathbb{1} \otimes \sqrt{\pi} \frac{1}{\mid+t^{2}} \right\rvert\, \chi_{A}\langle f, \mathbb{1}\rangle 1\right) .
\end{aligned}
$$

Moreover, the operator

$$
\begin{array}{cccc}
V:-L_{\infty}\left(\mathcal{M} ;-L_{2}^{r}\left(\mathbb{R},\left(1-t^{2}\right) d t\right)\right)- & \longmapsto & L_{\infty}\left(\mathcal{M} ;-L_{2}^{r}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)- \\
m \otimes\left(\frac{1}{1+t^{2}} \otimes f\right)^{-} & \longmapsto & m \otimes(\mathbb{1} \otimes f),
\end{array}
$$

admits a pre-adjoint

$$
\begin{array}{rlc}
V_{*}:-L_{1}\left(\mathcal{M} ;-L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)- & \longmapsto & L_{1}\left(\mathcal{M} ;-L_{2}^{c}\left(\mathbb{R},\left(1-+t^{2}\right) d t\right)\right)- \\
m \otimes(f \otimes \mathbb{1})^{-} & \longmapsto & m \otimes\left(\frac{f}{1+t^{2}} \otimes \frac{1}{1+t^{2}}\right) .
\end{array}
$$

CHAPTER-4.- CALDERÓN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-

KERNEL-
Proof. The-first-claim-follows-from-the-identity-

$$
(\tau \otimes \operatorname{Tr})\left(T\left(m^{\prime} \otimes\left(f^{\prime} \otimes \mathbb{1}\right)\right)-m \otimes(\mathbb{1} \otimes f)\right)=-(\tau \otimes \operatorname{Tr})\left(m^{\prime} \otimes\left(f^{\prime} \otimes \mathbb{1}\right)-T_{*}(m \otimes(\mathbb{1} \otimes f))\right)-
$$

for-any- $m^{\prime} \otimes\left(f^{\prime} \otimes \mathbb{1}\right)-\in \mathcal{M} \otimes L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)$-and $m \otimes(\mathbb{1} \otimes f)-\in L_{1}(\mathcal{M}) \otimes L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)$.- Computing-the-pre-adjoint-of- R_{A} is-a-straightforward-task,-so-we-will-only-compute-the-pre-adjoint-ofa_{A} :

$$
\begin{aligned}
\langle m & \left.\otimes(\mathbb{1} \otimes f), a_{I}\left(m^{\prime} \otimes\left(f^{\prime} \otimes \mathbb{1}\right)\right)\right\rangle \\
& =-\left\langle m \otimes(\mathbb{1} \otimes f), m^{\prime} \sqrt{\pi} \operatorname{Tr}\left(\frac{1+t^{2}}{|A|} \chi_{A} f^{\prime} \otimes \mathbb{1}\right)(\mathbb{1} \otimes \mathbb{1})\right\rangle \\
& =\tau_{\mathcal{M}}\left(m m^{\prime}\right)-\operatorname{Tr}((\mathbb{1} \otimes f)(1 \otimes \mathbb{1}))-\left\langle\frac{1+t^{2}}{|A|} \chi_{A} f^{\prime}, 1\right\rangle_{L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)} \\
& =\tau_{\mathcal{M}}\left(m m^{\prime}\right)-\langle 1, f\rangle_{L_{2}\left(\mathbb{R}, \frac{d t}{\left.1+t^{2}\right)}\right.}\left\langle\frac{1+t^{2}}{|A|} \chi_{A} f^{\prime}, 1\right\rangle_{L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)} \\
& =\tau_{\mathcal{M}}\left(m m^{\prime}\right)-\left\langle\frac{1+t^{2}}{|A|} \chi_{A} f^{\prime},\langle f, 1\rangle 1\right\rangle_{L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)} \\
& =\tau_{\mathcal{M}}\left(m m^{\prime}\right)-\left\langle f^{\prime},\langle f, 1\rangle \frac{1+t^{2}}{|A|} \chi_{A}\right\rangle_{L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)} \\
& =\tau_{\mathcal{M}}\left(m m^{\prime}\right)-\operatorname{Tr}\left(\mathbb{Y} \otimes \sqrt{\pi} \frac{1+t^{2}}{|A|} \chi_{A}\langle f, \mathbb{1}\rangle 1^{\cdots} f^{\prime} \otimes \mathbb{1}\right) .
\end{aligned}
$$

On- the-other-hand,- the-expression- for- the- pre-adjoint- of $-V$ follows- analogously- from-the-duality-expression-

Now,-we-are-ready-to-define-the-column-and-row-BMO spaces.-

Definition 4.2.4. Given a von Neumann algebra \mathcal{M} with n.s.f. trace τ, set the columnBMO space, denoted as $\mathrm{BMO}_{c}(\mathbb{R}, \mathcal{M})$, to be the subspace of operators f in $L_{\infty}\left(\mathcal{M} ;-L_{2}^{c}\left(\mathbb{R}^{n} ;-\frac{d t}{1+t^{2}}\right)\right)$ satisfying

$$
\begin{equation*}
\|f\|_{\mathrm{BMO}_{c}}:=-\sup _{I \subseteq \mathbb{R}}-R_{I}\left(\operatorname{Id}_{\mathcal{M} \bar{\otimes} B\left(L_{2}(\Omega, \mu)\right)}-a_{I}\right) f_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}^{n}, \frac{d t}{1+t^{2}}\right)\right)}<\infty, \tag{4.3}
\end{equation*}
$$

where the supremum is considered over finite intervals I of \mathbb{R}. Likewise, the row BMO space, $\mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$, is the subspace of elements in $L_{\infty}\left(\mathcal{M} ; L_{2}^{r}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)$-for which the norm $\|f\|_{\mathrm{BMO}_{r}}:=-\left\|f^{*}\right\|_{\mathrm{BMO}_{c}}$ is finite.

4.2.- DUALITY-BETWEEN-HARDY-SPACES-AND-BMO SPACES-

It- is- clear-that- $\|\cdot\|_{\mathrm{BMO}_{c}}$ is-a-norm-modulo- \mathcal{M}.- We-claim-that-this-expression-admits-an-easier-to-manage-form- for- operators- in- $\mathcal{M} \otimes L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)$,- which- recovers- the- expression-which-determines-the-definition-for-the- BMO_{c} norm-introduced-in-[54].-

Lemma 4.2.5. For any operator f in $\mathcal{M} \otimes L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)$ - it holds

$$
\|f\|_{\mathrm{BMO}_{c}}=\sup _{I \subseteq \mathbb{R}}^{-} \quad \frac{1-}{|I|} \int\left(\left|f-f_{I}\right|^{2}\right)^{\frac{1}{2}}
$$

Proof. Let- n be-a-natural number-such-that $f=-\sum_{i=1}^{n} m_{i} \otimes f_{i}$ for-some- $m_{i} \in \mathcal{M}$ and $f_{i} \in L_{2}\left(\mathbb{R}^{n}, \frac{d t}{1+t^{2}}\right)$,-for- $i=1, \ldots, n$.- Then,-the-right-hand-side-from-the-statement-above-can-be-expressed-as-

$$
\sup _{I \subseteq \mathbb{R}} \sum_{i, j=1}^{n}\left(m_{i}^{*} m_{j} \frac{1}{|I|} \int_{I} \overline{\left(f_{i}-\left(f_{i}\right)_{I}\right)}\left(f_{j}-\left(f_{j}\right)_{I}\right)^{-}{ }_{\mathcal{M}}^{1 / 2}\right.
$$

On-the-other-hand,-it-is-clear-that- the-expression-inside-the-norm-in-4.3)-coincides-with-
so-that-it-holds-

$$
\sum_{i=1}^{n}\left(n_{i} \otimes \frac{\omega^{1 / 2} \chi_{I}}{\sqrt{|\mathbb{|}|}}\left(f_{i}-\left(f_{i}\right)_{I}\right)-\otimes \mathbb{1}\right)(=:-F
$$

$$
\begin{aligned}
& \| \mid=\left.\right|^{2} \|_{\mathcal{M}} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}^{n}, \frac{d t}{1+t^{2}}\right)\right) \\
&=\sum_{i, j=1}^{n} m_{i}^{*} m_{j} \otimes\left(\frac{\omega^{1 / 2} \chi_{I}}{|I|^{1 / 2}}\left(f_{i}-\left(f_{i}\right)_{I}\right) \otimes \mathbb{1}\right)^{*}\left(\frac{\omega^{1 / 2} \chi_{I}}{|I|^{1 / 2}}\left(f_{j}-\left(f_{j}\right)_{I}\right)-\otimes \mathbb{1}\right) \mathcal{M} \bar{\otimes} B\left(L_{2}\right) \\
&=\sum_{i, j=1}^{n} m_{i}^{*} m_{j} \otimes\left(\mathbb{1} \otimes \frac{\omega^{1 / 2} \chi_{I}}{|I|^{1 / 2}}\left(f_{i}-\left(f_{i}\right)_{I}\right)\right)\left(\varphi^{1 / 2} \chi_{I}\right. \\
&\left.\left.\left.=\sum_{i, j=1}^{n} m_{i}^{* / 2} m_{j}-\left(f_{j}\right)_{I}\right)-\otimes \mathbb{1}\right) \mathcal{M} \overline{\mathbb{1}} \bar{I} \int_{I\left(L_{2}\right)} \overline{\left(f_{i}-\left(f_{i}\right)_{I}\right)}\left(f_{j}-\left(f_{j}\right)_{I}\right)\right)(\otimes(\mathbb{1} \otimes \mathbb{1}) \\
& \mathcal{M} \bar{\otimes} B\left(L_{2}\right) \\
&=\sum_{i, j=1}^{n}\left(m_{i}^{*} m_{j} \frac{1}{|I|} \int_{I} \frac{\left(f_{i}-\left(f_{i}\right)_{I}\right)}{}\left(f_{j}-\left(f_{j}\right)_{I}\right) \mathcal{M}\right.
\end{aligned}
$$

as-a-consequence-of-Lemma-4.1.1. (1)-(3).-

Proposition 4.2.6. Let $f \in \mathrm{BMO}_{c}(\mathbb{R}, \mathcal{M})$. Then,

$$
\|f\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \lesssim\|f\|_{\mathrm{BMO}_{c}}+-\left\|f_{I_{0}}\right\|_{\mathcal{M}}
$$

where I_{0} is the interval $[-1,1)$.

CHAPTER-4.- CALDERÓN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-

KERNEL-
Proof. This- argument- is- an- extension- of- Mei's- proof- of this- result- for- the- subspace$\mathcal{M} \otimes L_{2}\left(\mathbb{R} ;-\frac{d t}{1+t^{2}}\right)-[54]$. Let- I_{0} be-an-arbitrary-interval.- Then-any-operator- f in- $\mathrm{BMO}_{c}(\mathbb{R}, \mathcal{M})$ -satisfies-the-identity-

$$
\begin{align*}
& \leq \widetilde{P}_{I_{0}} f_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}+\sum_{j=0}^{\infty}\left(\widetilde{P}_{2 j+1 I_{0} \backslash 2^{j} I_{0}} f^{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right. \tag{4.4}\\
& \text { as-a-consequence-of-Lemmas 4.1.4 and 4.1.9.- This-latter-result-easily-implies-a-bound-for- }
\end{align*}
$$ the-first-term-at-(4.4).- Indeed,-

$$
\begin{aligned}
\left\|\widetilde{P}_{I_{0}} f\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} & \leq\left\|\widetilde{P}_{I_{0}} a_{I_{0}} f\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +\left\|\widetilde{P}_{I_{0}}\left(\operatorname{Id}-a_{I_{0}}\right) f\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq 2^{1 / 2}\left\|\widetilde{T}_{I T\left(\left.\right|^{-1}\right.} \widetilde{T}_{\omega} \widetilde{P}_{I_{0}} a_{I_{0}} f\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +2^{1 / 2}\left\|\widetilde{T}_{\omega} \widetilde{T}_{\left.I_{0}\right|^{-1}} \widetilde{P}_{I_{0}}\left(\operatorname{Id}-a_{I_{0}}\right) f\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& =2^{1 / 2}\left\|R_{I_{0}} a_{I_{0}} f\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +2^{1 / 2}\left\|R_{I_{0}}\left(I_{d}-a_{I_{0}}\right) f\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq 2^{1 / 2}\left(\left\|f_{I_{0}}\right\|_{\mathcal{M}}+\|f\|_{\mathbf{B M O}}^{c}\right)
\end{aligned}
$$

as-a-consequence-of-Proposition 4.2 .2 and-the-definition-of- the- BMO_{c} norm.- On-the-other-hand,- given- $j \geq 0$,-define-the-interval- $I_{j}=2^{j} I_{0}$.- Then,-there-follows-

$$
\begin{aligned}
& \left\|\widetilde{P}_{I_{j+1} \backslash I_{j}} f\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \leq \sup _{t \in I_{j+1} \backslash I_{j}}\left(1+t^{2}\right)^{-1 / 2}\left\|\widetilde{T}_{\omega} \widetilde{P}_{I^{\prime}+1 \backslash I_{j}} f\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& =-\frac{\left(2^{j+2}\right)^{1 / 2}}{2^{j}}\left\|\widetilde{T}_{I /\left(t+\left.1\right|^{-1}\right.} \widetilde{T}_{\omega} \widetilde{P}_{I_{j+1}}\left(f-a_{I_{j+1}} f\right)\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +-\frac{\left(2^{j+2}\right)^{1 / 2}}{2^{j}}\left\|\widetilde{T}_{\left|\tau_{(}+1\right|^{-1}} \widetilde{T}_{\omega} \widetilde{P}_{I_{j+1}}\left(a_{I_{j+1}} f-a_{I_{0}} f\right)\right\|_{\mathcal{M} \otimes B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +-\frac{\left(2^{j+2}\right)^{1 / 2}}{2^{j}}\left\|\left.\widetilde{T}_{\mid I / p+1}\right|^{-1} \widetilde{T}_{\omega} \widetilde{P}_{I_{j+1}} a_{I_{0}} f\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& =-\frac{1-}{2^{j / 2-1}}\left[\|\left(R_{I_{j}+1}\left(f-a_{I_{j+1}} f\right) \|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right.\right. \\
& +-\left\|R_{I_{j+1}}\left(a_{r_{j+1}} f-a_{I_{0}} f\right)\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \left.+-\left\|R_{I_{j+1}} a_{I_{0}} f\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right](\\
& \leq \frac{1-}{2^{j / 2-1}}\left[\|\left(f\left\|_{\mathrm{BMO}_{c}}+\right\| a_{I_{j+1}} f-a_{I_{0}} f\left\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}+-\right\| f_{I_{0}} \|_{\mathcal{M}}\right] \cdot(\right.
\end{aligned}
$$

Therefore,-it-only-remains-to-bound-the-second-term-in-the-latter-sum,-but-it-easily-follows-from-Lemma-4.2.1.- More-clearly,-

$$
\begin{aligned}
\| a_{I_{j+1}} f-a_{I_{0}} f & \|_{\mathcal{M} \bar{\otimes} B\left(L_{2}(\Omega, \mu)\right)} \leq \sum_{k=0}^{j}\left(a_{I_{k}} f-a_{I_{k+1}} f \|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right. \\
& =\sum_{k=0}^{j}\left(a_{I_{k}}\left(f-a_{I_{k+1}} f\right) \|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right. \\
& \leq \pi \sum_{k=0}^{j}\left(\widetilde{T}_{\omega} \widetilde{T}^{2} \widetilde{T}_{I_{k} \mid-2} \widetilde{P}_{I_{k}}\left(f-a_{I_{k+1}} f\right) \|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right. \\
& \lesssim \sum_{k=0}^{j} \frac{2^{k / 2}}{2^{k+1}}\left\|\widetilde{P}_{I_{k+1}} \widetilde{T}_{\omega}\left(f-a_{I_{k+1}}\right)\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \sum_{k=0}^{j} \frac{2^{k+1 / 2}}{2^{k+1}}\left\|\widetilde{P}_{I^{\prime}}+\widetilde{T}_{\omega} \widetilde{T}_{\left.I_{k+1}\right|^{-1}}\left(f-a_{I_{k+1}} f\right)\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& =-\frac{1}{2} \sum_{k=0}^{j}\left\|R_{I_{k+1}}\left(f-a_{I_{k+1}} f\right)\right\|_{\mathcal{M} \bar{\otimes} B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} .
\end{aligned}
$$

In-conclusion,-for-any-operator- f in- $L_{\infty}\left(\mathcal{M}, L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right.$),-we-recover-the-estimate-

$$
\begin{aligned}
\|f\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}(\Omega, \mu)\right)} & \lesssim\left(1+\sum_{j=0}^{\infty} \frac{1^{-}}{2^{j / 2-1}}\right)-\left\|f_{I_{0}}\right\|_{\mathcal{M}}+\left(1+\sum_{j=0}^{\infty} \frac{j+1^{-}}{2^{j / 2-1}}\right)-\|f\|_{\mathrm{BMO}_{c}} \\
& \lesssim\|f\|_{\mathrm{BMO}}^{c}
\end{aligned}+-\left\|f_{I_{0}}\right\|_{\mathcal{M}} .
$$

Remark 4.2.7. Given $f \in \mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$, and applying Theorem 4.2.6 to f^{*}, an analogous inequality holds

$$
\|f\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{r}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \lesssim\|f\|_{\mathrm{BMO}_{r}}+-\left\|\left(f^{*}\right)_{I_{0}}\right\|_{\mathcal{M}} .
$$

Along- the next- section,- the-study- of- the-boundedness- of- Calderón-Zygmund- operators-on- operator-valued-Hardy-spaces- will- require- a- concrete-formulation-in-terms- of- atomic-decompositions.-In-order-to-justify-introducing-these-spaces,-we-will-check-that-the-dual-of-this- new-description-of the-column-(resp.- row)-Hardy-space-coincides-with- $\mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$ $\left(\right.$ resp. $\left.-\mathrm{BMO}_{c}(\mathbb{R}, \mathcal{M})\right)$.-

Definition 4.2.8. Let \mathcal{M} be a von Neumann algebra with n.s.f. trace. A c-atom-is a function a belonging to $L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)$ - which admits a factorization of the form $a=-b h$ for some function $b:-\mathbb{R} \rightarrow L_{2}(\mathcal{M})$ - and some $h \in L_{2}(\mathcal{M})$-with norm $\|h\|_{L_{2}(\mathcal{M})} \leq 1$, satisfying

CHAPTER-4.- CALDERỚN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-

KERNEL-

1. $\operatorname{supp}_{\mathbb{R}}(b) \subseteq I$ for some interval I,
2. $\|b\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)} \leq \frac{1}{\sqrt{|I|}}$,
3. $\int_{f}(b=0$.

Then, the column-Hardyspace- $H_{1}^{c}(\mathcal{A})$-is defined to be the subspace of elements in $L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)$ of the form

$$
\begin{equation*}
\sum_{i=0}^{\infty} \chi_{i} a_{i} \text { where }-\left(\lambda_{i}\right)_{i} \in \ell_{1} \text { and }-\left(a_{i}\right)_{i} c \text {-atoms- } \tag{4.5}
\end{equation*}
$$

with respect to the norm

$$
\|f\|=-\inf \left\{\sum_{i=0}^{\infty}\left|\lambda_{i}\right|:-f=-\sum_{i=0}^{\infty} \hat{i}_{i} a_{i} \text { in- } L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right),\left(\lambda_{i}\right)_{i} \in \ell_{1},\left(a_{i}\right)_{i} c \text {-atoms }\right\} .
$$

Under-the-above-definition,-any- c-atom-satisfies-

$$
\|a\|_{L_{1}\left(\mathbb{R} ; L_{1}(\mathcal{M})\right)} \leq 1^{-}
$$

since,-by-the-Hölder-inequality,-

$$
\|a\|_{L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)} \leq\|b\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)}\left\|h \chi_{B}\right\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)} \leq|B|^{-1 / 2}|B|^{1 / 2}=1
$$

Therefore, $-H_{1}^{c}(\mathcal{A})$-is-contractively-contained-into- $L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)$.-

Proposition 4.2.9. The column Hardy space $\left(H_{1}^{c}(\mathcal{A}),\|\cdot\|_{H_{1}^{c}}\right)$-is a Banach space.
Proof. Consider- a-sequence- $\left(f_{n}\right)_{n \geq 1} \subseteq H_{1}^{c}(\mathcal{A})$ - such- that- $\sum_{r}\left\|f_{n}\right\|_{H_{1}^{c}}<\infty$.- Then,- it follows-that- $\sum_{n}\left\|f_{n}\right\|_{L_{1}}$ is-finite,-and-since- $L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)$-is-a- β anach-space,-there-existssome $-f \in L_{1}$ such- that $-f=-\sum_{r}\left(f_{n} .^{-}\right.$Moreover,- given $-\varepsilon>0$,- any- f_{n} admits- an- atomic-decomposition-satisfying-

$$
f_{n}=\sum_{i} \lambda_{i}^{n} b_{i}^{n} h_{i}^{n} \text { such-that } \sum_{i}\left|\lambda_{i}^{n}\right| \leq\left\|f_{n}\right\|_{H_{1}^{c}}+-\frac{\varepsilon}{2^{n}} .
$$

Therefore,- the-identity- $f=-\sum_{n} \sum_{i}\left(\lambda_{i}^{n} b_{i}^{n} h_{i}^{n}\right.$ holds-in- L_{1},-but-

$$
\sum_{n} \sum_{i}\left|\lambda_{i}^{n}\right| \leq \sum_{n}\left(f_{n}\left\|_{H_{1}^{c}}+\frac{\varepsilon}{2^{n}}=\sum_{n}\right\| f_{n} \|_{H_{1}^{c}}+\varepsilon,\right.
$$

so- $f \in H_{1}^{c}(\mathcal{A})$-too.- It-only-remains-to-proof-that- $\left\|f-\sum_{n=1}^{N} f_{n}\right\|_{H_{1}^{c}}$ tends-to-as- 0 -as- N goes-to-infinity,-but-

$$
\lim _{N \rightarrow \infty}^{-} f-\sum_{n=1}^{N}\left|f_{n} \|_{H_{1}^{c}} \leq \lim _{N \rightarrow \infty} \sum_{n=N+1}^{\infty} \sum_{i=0}^{\infty}\right| \lambda_{i}^{n} \mid=0
$$

since $-\sum_{n} \sum_{i}\left(\lambda_{i}^{n}\right)$ is-finite.
96-

Lemma 4.2.10. The inclusion map $i:-H_{1}^{c}(\mathcal{A})-\rightarrow L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)$ - is an injective contraction. Therefore, the adjoint map $i^{*}:-L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M} \rightarrow H_{1}^{c}(\mathcal{A})^{*}$ is a weak ${ }^{*}$-continuous contractive operator with weak ${ }^{*}$-dense range, and $i^{*}\left(L_{\infty}(\mathbb{R})-\otimes \mathcal{M}\right)$-is weak*-dense in $H_{1}^{c}(\mathcal{A})^{*}$.

Proof. The-injectivity-of- i implies-that- i^{*} has-dense-range.- Moreover,-it-holds-
so-the-result-follows.-
Given-a-Banach-space- $\mathbb{X},-$ let- $L_{2}^{\circ}\left(\mathbb{R},\left(1-+t^{2}\right)-d t ; \mathbb{X}\right)$-denote-the-subspace- of - functions- f in-$L_{2}\left(\mathbb{R},\left(1-+t^{2}\right)-d t ; \mathbb{X}\right)$-satisfying-

$$
\int(f(t)-d t=0 .
$$

Then,- the- classical- argument- by- Meyer- [56,- Chapter- 5 ,- Proposition-1]- extends- to- the-Banach-valued-setting-yielding-the-inclusion-as-a-subspace-of- $L_{2}^{\circ}\left(\mathbb{R},\left(1-+t^{2}\right)-d t, \mathbb{X}\right)$-into-the-vector-valued-Hardy-space- $H_{1}(\mathbb{R} ; \mathbb{X})$ - 32$]$.- More-clearly,-given- $f \in L_{2}^{\circ}\left(\mathbb{R},\left(1+t^{2}\right) d t ; L_{2}(\mathcal{M})\right)$, there-exists-a-sequence-of-atoms- $\left(b_{i}\right)_{i} \subseteq H_{1}\left(\mathbb{R} ;-L_{2}(\mathcal{M})\right)$-and- $\left(\lambda_{i}\right)_{i} \in \ell_{1}$ such-that-

$$
f=-\sum_{i=0}^{\infty} \lambda_{i} b_{i} \text { in- } L_{1}\left(\mathbb{R} ;-L_{2}(\mathcal{M})\right) \text {-and }-\sum_{i=0}^{\infty}\left|\lambda_{i}\right| \lesssim\|f\|_{L_{2}^{\circ}\left(\mathbb{R},\left(1+t^{2}\right) d t ; L_{2}(\mathcal{M})\right)}
$$

Since-any- c-atom- $a=-b h$ is-the-product-of-an- L_{2}-atom- b in- $H_{1}\left(\mathbb{R} ;-L_{2}(\mathcal{M})\right)$-and-an-element$h$ in- $L_{2}(\mathcal{M})$,-the-argument-by-Meyer-still-works-in-the-semicommutative-case.-

Proposition 4.2.11. Let Q be the bilinear map given by

$$
\begin{aligned}
Q:-L_{2}^{\circ}\left(\mathbb{R},\left(1-+t^{2}\right) d t ;-L_{2}(\mathcal{M})\right)-\times L_{2}(\mathcal{M})- & \longrightarrow H_{1}^{c}(\mathcal{A}) \\
(f, h)^{-} & \longmapsto \sum_{i=0}^{\infty} \lambda_{i} b_{i} h
\end{aligned}
$$

where $\sum_{i=0}^{\infty} \lambda_{i} b_{i}$ denotes the atomic decomposition for f in $H_{1}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)$-obtained via the $L_{2}(\mathcal{M})$-valued extension of the argument in [56, Chapter 5, Proposition 1]. Then Q extends to a bounded linear operator with dense range from $L_{2}^{\circ}\left(\mathbb{R},\left(1+t^{2}\right) d t ;-L_{2}(\mathcal{M})\right) \widehat{\otimes}_{\pi} L_{2}(\mathcal{M})$ to $H_{1}^{c}(\mathcal{A})$. Therefore, the adjoint map

$$
Q^{*}:\left(H_{1}^{c}(\mathcal{A})\right)^{*} \longrightarrow B\left(L_{2}(\mathcal{M}), L_{2}^{\circ}\left(\mathbb{R},\left(1-+t^{2}\right) d t\right)^{*} \otimes_{2} L_{2}(\mathcal{M})^{*}\right)-
$$

is a weak ${ }^{*}$-continuous injective bounded operator.
Proof. Given-an-arbitrary-element- (f, h)-in- $L_{2}^{\circ}\left(\mathbb{R},\left(1+t^{2}\right) d t ; L_{2}(\mathcal{M})\right) \times L_{2}(\mathcal{M})$, there-holds-

$$
\|Q(f, h)\|_{H_{1}^{c}(\mathcal{A})}=-\sum_{i=0}^{\infty} \lambda_{i} b_{i} h_{H_{1}^{c}(\mathcal{A})} \leq \sum_{i=0}^{\infty}\left(\lambda_{i} \left\lvert\,\|h\|_{L_{2}(\mathcal{M})} \quad b_{i} \frac{h}{\|h\|_{L_{2}(\mathcal{M})}} H_{1}^{c}(\mathcal{A})\right.\right.
$$

CHAPTER-4.- CALDERỚN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-

KERNEL-

$$
=-\sum_{i=0}^{\infty}\left\langle\lambda \lambda_{i}\right|\|h\|_{L_{2}(\mathcal{M})} \lesssim\|f\|_{L_{2}^{\circ}\left(\mathbb{R},\left(1+t^{2}\right) d t ; L_{2}(\mathcal{M})\right)}\|h\|_{L_{2}(\mathcal{M})} .
$$

Therefore- Q is-a-bilinear-map-which-extends-to-a-bounded-operator-on-the-projective-tensor-product- $L_{2}^{\circ}\left(\mathbb{R},\left(1-+t^{2}\right) d t ;-L_{2}(\mathcal{M})\right) \widehat{\otimes}_{\pi} L_{2}(\mathcal{M})$-into- $H_{1}^{c}(\mathcal{A})-[76$,-Theorem-2.9].- Since- c-atoms -are-elements- of $-L_{2}^{\circ}\left(\mathbb{R},\left(1-+t^{2}\right) d t ; L_{2}(\mathcal{M})\right) \widehat{\otimes}_{\pi} L_{2}(\mathcal{M})$,-the-range- of- Q is-dense-in- $H_{1}^{c}(\mathcal{A})$,-so-the-adjoint ${ }^{-m a p}-Q^{*}$ is-a-weak*-continuous-injection-from-the-dual-space- $\left(H_{1}^{c}(\mathcal{A})\right)^{*}$ into-

$$
B\left(L_{2}(\mathcal{M}), L_{2}^{\circ}\left(\mathbb{R},\left(1-+t^{2}\right) d t\right)^{*} \otimes_{2} L_{2}(\mathcal{M})^{*}\right) .
$$

Lemma 4.2.12. Given a semifinite von Neumann algebra \mathcal{M} with n.s.f. trace, there holds

$$
\overline{Q^{*}\left(H_{1}^{c}(\mathcal{A})^{*}\right)^{w^{*}}}=\overline{Q^{*} i^{*}\left(L_{\infty}(\mathbb{R})-\otimes \mathcal{M}\right)^{w^{*}}}=-U\left(L_{\infty}\left(\mathcal{M} ;-L_{2}^{\circ, r}\left(\mathbb{R},\left(1-+t^{2}\right) d t\right)\right)\right)
$$

where Q^{*} and U denote the maps from Propositions 4.2.11 and 4.1.5.
Proof. Let- $g=-\sum_{j=1}^{n} g_{j} \otimes m_{j} \in L_{\infty}(\mathbb{R})-\otimes \mathcal{M}$.- We-claim- that- there- exists- some- $G \in$ $L_{\infty}\left(\mathcal{M} ;-L_{2}^{\circ, r}\left(\mathbb{R},\left(1+t^{*}\right) d t\right)\right.$-such-that- $Q^{*} i^{*}(g)=-U(G)$.- First,-it-holds

$$
\begin{aligned}
\left\langle Q^{*} i^{*}(g), f \otimes h\right\rangle & =\left\langle i^{*}(g), \sum_{j=1}^{\infty} \bigcap_{j} b_{j} h\right\rangle_{\left(H_{1}^{c}(\mathcal{A})\right)^{*}, H_{1}^{c}(\mathcal{A})} \\
& =\left\langle g, \sum_{j=1}^{\infty} \not_{j} b_{j} h\right\rangle_{L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}, L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)} \\
& =-\langle g, f h\rangle_{L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}, L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)} \\
& =-\tau_{\mathcal{M}} \int\left(\int_{\mathbb{f}} h g f\right.
\end{aligned}
$$

for-any- $f \otimes h \operatorname{in}^{-}\left(L_{2}^{\circ}\left(\mathbb{R},\left(1-+t^{2}\right) d t\right)-\otimes_{2} L_{2}(\mathcal{M})\right) \widehat{\otimes}_{\pi} L_{2}(\mathcal{M})$.- On-the-other-hand,-taking-

$$
G=\sum_{j=1}^{n}\left((\frac { \mathbb { 1 } } { 1 + t ^ { 2 } } \otimes \frac { g _ { j } - \frac { 1 } { \pi } \int _ { \mathbb { R } } g _ { j } \frac { d t } { 1 + t ^ { 2 } } } { 1 + t ^ { 2 } }) \left(m_{j} \in\left(L_{\infty} \cap L_{2}^{\circ}\right)\left(\mathbb{R},\left(1-+t^{2}\right) d t\right)-\otimes \mathcal{M}\right.\right.
$$

$$
\begin{aligned}
\langle f, U(G)-\otimes h\rangle & =\left\langle f, \sum_{j=1}^{n} \frac{\overline{g_{j}-\frac{1}{\pi} \int_{\mathscr{f}} g_{j} \frac{d t}{1+t^{2}}}}{1+t^{2}} \otimes \overline{\left.m_{j}^{*} h^{*}\right\rangle_{L_{2}\left(\mathbb{R},\left(1+t^{2}\right) d t ; L_{2}(\mathcal{M})\right)}}\right. \\
& =\sum_{j=1}^{n}\left(\mathcal{M} \int_{\mathbb{R}}\left(h m_{j} \otimes g_{j}\right) f=\tau_{\mathcal{M}} \int_{\mathbb{R}} h g f .\right.
\end{aligned}
$$

The-map- $Q^{*} i^{*}(g)-\mapsto U(G)$-is-injective-since- g_{1} and- g_{2} induce-the-same-functional-if- and-only- $g_{1}-g_{2} \in \mathcal{M}$.-For-the-reverse-inclusion,-it-only-remains-to-check-that,- given-

$$
G=\sum_{j=1}^{n}\left(\left(\frac{\mathbb{1}}{1+t^{2}} \otimes g_{j}\right)-\otimes m_{j} \in\left(L_{\infty} \cap L_{2}^{\circ}\right)\left(\mathbb{R},\left(1-+t^{2}\right) d t\right)-\otimes \mathcal{M}\right.
$$

if $-g=-\sum_{j}^{n}\left(=1 g_{j}\left(1-+t^{2}\right)-\otimes m_{j}\right.$, then- $U(G)$-and $-Q^{*} i^{*}(g)$-coincide.- Therefore, -there-exists-andisomorph sm^{-}between $Q^{*} i^{*}\left(L_{\infty}(\mathbb{R})-\otimes \mathcal{M}\right)$ - and- the- image- under- U of- $\left(L_{\infty} \cap L_{2}^{\circ}\right)\left(\mathbb{R},\left(1^{-+-}\right.\right.$ $\left.\left.t^{2}\right) d t\right)-\otimes \mathcal{M}$, -so-their-weak ${ }^{*}$ closures-coincide,- yielding-the-statement.-

The-previous-statements-enable-us-to-represent-any-functional-on- $H_{1}^{c}(\mathcal{A})$-as-an-operator-in$\mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$.

Theorem 4.2.13. Given a semifinite von Neumann algebra \mathcal{M}, it holds

$$
H_{1}^{c}(\mathcal{A})^{*} \subseteq \mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M}) .
$$

Proof. By-Lemma-4.2.12, the- image- of $H_{1}^{c}(\mathcal{A})^{*}$ under- Q^{*} is- a- normed- subspace- of$U\left(L_{\infty}\left(\mathcal{M} ;-L_{2}^{\circ, r}\left(\mathbb{R},\left(1-+t^{2}\right) d t\right)\right)\right.$).- Indeed,- by- Corollary-4.1.6. $U^{-1} Q^{*}\left(H_{1}^{c}(\mathcal{A})^{*}\right)$ - is- a- sub-space-of- $L_{\infty}\left(\mathcal{M} ; L_{2}^{\circ, r}\left(\mathbb{R},\left(1-+t^{2}\right) d t\right)\right)$,-so- $V U^{-1} Q^{*}\left(H_{1}^{c}(\mathcal{A})^{*}\right)$,-where- V denotes-the-map-from Lemma 4.2.3. is-a-subspace-of- $L_{\infty}\left(\mathcal{M}, L_{2}^{r}\left(\mathbb{R}, d t /\left(1-+t^{2}\right)\right)\right)$.- Let- $g \in H_{1}^{c}(\mathcal{A})^{*}$.- Then,-

$$
\begin{aligned}
\left\|V U^{-1} Q^{*} g\right\|_{\mathrm{BMO}_{r}} & =\sup _{I \subseteq \mathbb{R}}-\left\|R_{I}\left(\operatorname{Id}-a_{I}\right) V U^{-1} Q^{*} g\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{r}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& =-\sup _{I} \sup _{f}-\left\langle f, R_{I}\left(\operatorname{Id}-a_{I}\right) V U^{-1} Q^{*} g\right\rangle \mid
\end{aligned}
$$

where-the-supremum-is-taken-over- $f \in L_{1}\left(\mathcal{M} ;-L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)$-such-that-

$$
\|f\|_{L_{1}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \leq 1
$$

As-a-consequence-of-Corollary 4.1.6, -there-exists-some- F in-the-chosen-predual-for-

$$
U\left(L_{\infty}\left(\mathcal{M} ;-L_{2}^{c}\left(\mathbb{R},\left(1-+t^{2}\right) d t\right)\right)\right)-
$$

such-that $-f=-U_{*}(F)$.- Therefore,-

$$
\begin{aligned}
\left\|V U^{-1} Q^{*} g\right\|_{\mathrm{BMO}_{r}} & =\sup _{I}^{-} \sup _{\left\|U_{*}(F)\right\| \leq 1}\left|\left\langle U_{*}(F), R_{I}\left(\mathrm{Id}-a_{I}\right) V U^{-1} Q^{*} g\right\rangle\right| \\
& =\sup _{I}^{-} \sup _{\left\|U_{*}(F)\right\| \leq 1}\left|\left\langle F, U R_{I}\left(\mathrm{Id}-a_{I}\right) V U^{-1} Q^{*} g\right\rangle\right| \\
& \leq \sup _{I}^{-} \sup _{\|F\| \leq\left\|U_{*}^{-1}\right\|}\left|\left\langle F, U R_{I}\left(\mathrm{Id}-a_{I}\right) V U^{-1} Q^{*} g\right\rangle\right| \\
& =-\left\|U_{*}^{-1}\right\| \sup _{I}^{-} \sup _{\|F\| \leq 1}^{-}\left|\left\langle U_{*}(F), R_{I}\left(\mathrm{Id}^{-}-a_{I}\right) V U^{-1} Q^{*} g\right\rangle\right| .
\end{aligned}
$$

CHAPTER-4.- CALDERÓN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-

KERNEL-
Moreover,- fixed- F and- $\varepsilon>0$,- there- exists- $h_{\varepsilon, F} \in U\left(L_{\infty}\left(\mathcal{M} ;-L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)\right)_{\perp}$ such- that-$U_{*}(F)=-U_{*}\left(F+h_{\varepsilon, F}\right)$-and $-\left\|F+h_{\varepsilon, F}\right\| \leq 1+$ - $^{-}$. Therefore -

$$
\begin{aligned}
\left\|V U^{-1} Q^{*} g\right\|_{\mathrm{BMO}_{r}} & \leq\left\|U_{*}^{-1}\right\| \sup _{I}^{-} \sup _{\left\|F+h_{\varepsilon, F}\right\| \leq 1+\varepsilon}^{-}\left|\left\langle U_{*}\left(F+h_{\varepsilon, F}\right), R_{I}\left(\mathrm{Id}^{-}-a_{I}\right) V U^{-1} Q^{*} g\right\rangle\right| \\
& \leq\left\|U_{*}^{-1}\right\| \sup _{I}^{-} \sup _{\left\|F^{\prime}\right\| \leq 1+\varepsilon}^{-}\left|\left\langle U_{*}\left(F^{\prime}\right), R_{I}\left(\mathrm{Id}^{-}-a_{I}\right) V U^{-1} Q^{*} g\right\rangle\right| \\
& =-(1+\varepsilon)\left\|U_{*}^{-1}\right\| \sup _{I}^{-} \sup _{\left\|F^{\prime}\right\| \leq 1}^{-}\left|\left\langle U_{*}\left(F^{\prime}\right), R_{I}\left(\mathrm{Id}^{-}-a_{I}\right) V U^{-1} Q^{*} g\right\rangle\right|
\end{aligned}
$$

where- the-supremum- is- taken- over- $F^{\prime} \in L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}} ; L_{2}(\mathcal{M})\right) \widehat{\otimes}_{\pi} L_{2}(\mathcal{M})$.- Indeed,- we- can-replace-the-supremum-on- F^{\prime} by-tensors-

$$
f \otimes h=\sum_{j=1}^{n}\left(\left(f_{j} \otimes m_{j}\right) \otimes h\right.
$$

such- that- $\|f\|_{L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right) \otimes_{2} L_{2}(\mathcal{M})} \leq 1$ - and- $\|h\|_{L_{2}(\mathcal{M})} \leq 1$.- In- other- words,- Remark- -4.1 .7 implies ${ }^{-t h a t-}$

$$
\begin{aligned}
\left\|V U^{-1} Q^{*} g\right\|_{\mathrm{BMO}_{r}} & \lesssim \sup _{I} \sup _{\|f\|,\|h\| \leq 1}\left|\left\langle U_{*}(f \otimes h), R_{I}\left(\mathrm{Id}-a_{I}\right) V U^{-1} Q^{*} g\right\rangle\right| \\
& \leq \sup _{I} \sup _{\|f\|,\|h\| \leq 1}^{-}\left|\left\langle\sum_{j=1}^{n}\left(f_{j} \otimes \mathbb{1}\right)-\otimes m_{j} h, R_{I}\left(\mathrm{Id}-a_{I}\right) V U^{-1} Q^{*} g\right\rangle\right| .
\end{aligned}
$$

Then,-by-Lemma-4.2.3--it-holds-

$$
\begin{aligned}
& \left\|V U^{-1} Q^{*} g\right\|_{\mathrm{BMO}_{r}} \lesssim \sup _{I} \sup _{f, h} \nmid\left\langle\sum_{j=1}^{n}\left(\left(f_{j} \otimes \mathbb{1}\right)-\otimes m_{j} h, R_{I}\left(\mathrm{Id}^{-}-a_{I}\right) V U^{-1} Q^{*} g\right\rangle\right| \\
& \left.=-\sup _{I} \sup _{f, h}+\left\langle\sum_{j=1}^{n}\left(\frac{\sqrt{1+t^{2}}}{\sqrt{|\overparen{ }|}} \chi_{I} f_{j} \otimes \mathbb{1}\right)-\otimes m_{j} h,\left(\operatorname{Id}-a_{I}\right) V U^{-1} Q^{*} g\right\rangle \right\rvert\, \\
& \begin{array}{l}
=-\sup _{I, f, h}-\left|\left\langle\sum_{j=1}^{n}\left(\left(\frac{\sqrt{1+t^{2}}}{\sqrt{\left|\mathbb{I}^{2}\right|}} \chi_{I} f_{j}-\frac{1+t^{2}}{|I|} \chi_{I}\left\langle\frac{\sqrt{1+t^{2}}}{\sqrt{|\mathbb{T}|}} \chi_{I} f_{j}, 1\right\rangle 1\right) \otimes \mathbb{1}\right) \otimes m_{j} h, V U^{-1} Q^{*} g\right\rangle\right| \\
\left.=-\sup _{I, f, h}-\left\langle\sum_{j=1}^{n}\left(\left(\frac{\chi_{I}}{\sqrt{| | \mathbb{I} \mid} \sqrt{1+t^{2}}} f_{j}-\frac{\chi_{I}}{|I|}\left\langle\frac{\sqrt{1+t^{2}}}{\sqrt{| |(\mid}} \chi_{I} f_{j}, 1\right\rangle 1\right) \otimes \frac{\mathbb{1}}{1+t^{2}}\right) \otimes m_{j} h, U^{-1} Q^{*} g\right\rangle \right\rvert\, .
\end{array}
\end{aligned}
$$

Now,-recall- that-for-dny- $j=1, \ldots, n$,-by-denoting-
there-holds-

$$
F_{j}=-\frac{\chi_{I}}{\sqrt{\mid\{\mid} \mid \sqrt{1+t^{2}}} f_{j}-\frac{\chi_{I}}{|I|}\left\langle\frac{\sqrt{1+t^{2}}}{\sqrt{| | \mathbb{} \mid}} \chi_{I} f_{j}, 1\right\rangle 1
$$

$$
U_{*}\left(\left(q_{j}^{\prime} \otimes m_{j}\right) \otimes h\right)=-\left(y_{j} \otimes \frac{\mathbb{1}}{1+t^{2}}\right) \otimes m_{j} h
$$

Therefore,-

$$
\begin{aligned}
\left\|V U^{-1} Q^{*} g\right\|_{\mathrm{BMO}_{r}} & \lesssim \sup _{I, f, h}\left|\left\langle\sum_{j=1}^{n}\left(F_{j} \otimes m_{j}\right)-\otimes h, Q^{*} g\right\rangle\right| \\
& =\sup _{I, f, h}-\left\langle Q\left(\sum_{j=1}^{n}\left(F_{j} \otimes m_{j}\right)-\otimes h\right),(g\rangle_{H_{1}^{c},\left(H_{1}^{c}\right)^{*} \mid}\right. \\
& =-\sup _{I, f, h}-\left\langleQ \left(\left(\frac{\chi_{I}}{\sqrt{| | T \mid} \sqrt{1+t^{2}}} f-\frac{\chi_{I}}{|I|} \int\left(\frac{1-}{\sqrt{|f|} \sqrt{1+t^{2}}} f\right)-\otimes h\right),(g\rangle_{H_{1}^{c},\left(H_{1}^{c}\right)^{*}} \mid .\right.\right.
\end{aligned}
$$

Moreover,-notice-that,-fixed-an-ihterval- I,-the-operatorst
$\begin{aligned} f^{I} & =\frac{\chi_{I}}{\sqrt{\mid\lceil\mid} \mid \sqrt{1+t^{2}}} f-\frac{\chi_{I}}{|I|} \int\left(\frac{1-}{\sqrt{|\Psi|} \sqrt{1+t^{2}}} f\right. \\ \text { satisfy-supp }\left(f^{I}\right)-\subset I-\int f^{I} & =-0 \text {-and- }\end{aligned}$
satisfy $-\operatorname{supp}\left(f^{I}\right) \subseteq I,-\iint f^{I}=-0$-and-

$$
\begin{aligned}
& \quad\left(\int \left(\frac{\chi_{I}}{\sqrt{||f|} \sqrt{1+t^{2}}} f-\frac{\chi_{I}}{|I|} \int\left(\frac{1-}{\sqrt{\mid\{T \mid} \sqrt{1+t^{2}}} f^{2} d t\right)^{1 / 2} \leq \frac{2}{\sqrt{|f|}}\|f\|_{L_{2}\left(\mathbb{R}, \frac{d t}{\left.1+t^{2}\right)}\right.} \leq \frac{2-}{\sqrt{|f|}} .\right.\right. \\
& \text { In-other-words, }-f^{I} h \text { is-a-c-atom,-so- }
\end{aligned}
$$

$$
\begin{aligned}
\left\|V U^{-1} Q^{*} g\right\|_{\mathrm{BMO}_{r}} & \lesssim \sup _{I, f, h}-\left|\left\langle Q\left(f^{I} \otimes h\right), g\right\rangle_{H_{1}^{c},\left(H_{1}^{c}\right)^{*}}\right| \\
& =-\sup _{I, f, h}-\left\langle f^{I} h, g\right\rangle_{H_{1}^{c},\left(H_{1}^{c}\right)^{*}} \mid \\
& \leq \sup _{a c-\operatorname{atom}}\left|\langle a, g\rangle_{H_{1}^{c},\left(H_{1}^{c}\right)^{*}}\right| \\
& =-\|g\|_{H_{1}^{c}(\mathcal{A})^{*}} .
\end{aligned}
$$

Since- ε is-arbitrary,-the-best-inequality-to-obtain-is-

$$
\left\|V U^{-1} Q^{*} g\right\|_{\mathrm{BMO}_{r}} \leq\left\|U_{*}^{-1}\right\|\|g\|_{H_{1}^{c}(\mathcal{A})^{*}}
$$

In- order- to- prove- the-reverse- inclusion- $\mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})-\subseteq H_{1}^{c}(\mathcal{A})^{*}$,- we- only- need- to- check-that- every-operator-in- $\mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$-induces-a-continuous- functional-on- $H_{1}^{c}(\mathcal{A})$.- For-this-purpose,-introduce-some-auxiliar-maps.-

Lemma 4.2.14. Let J be a finite interval of \mathbb{R}, and let ϕ be a non-negative smooth function supported on $B(0,1)$-such that $\int \phi=1$ - and $\phi(-x)=-\phi(x)$. Consider the bounded maps

$$
\begin{array}{rlr}
A^{J}:- & L_{1}\left(\mathcal{M} ;-L_{2}^{\lambda}(\mathbb{R}, d t)\right)^{-} & \longrightarrow \\
& m \otimes\left(L_{1}\left(\mathcal{M} ;-L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)^{-}\right. \\
& m \otimes\left(f \otimes \frac{1}{\sqrt{1+t^{2}}}\right)^{-} & \longmapsto \\
& m \otimes\left(\left(1-+t^{2}\right) \chi_{J} f \otimes \mathbb{1}\right),
\end{array}
$$

CHAPTER-4.- CALDERỚN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-
KERNEL-

$$
\begin{array}{rlrl}
R_{\phi}:- & L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)- & \longrightarrow & L_{1}\left(\mathcal{M} ;-L_{2}^{c}(\mathbb{R}, d t)\right)- \\
m \otimes f^{\prime} & \longmapsto & m \otimes\left(\left(\phi * f^{\prime}\right)-\otimes \frac{1}{\sqrt{1+t^{2}}}\right), \\
& & & \\
B:- & L_{1}\left(\mathcal{M} ; L_{2}^{c}(\mathbb{R}, d t)\right)- & \longrightarrow & L_{1}\left(\mathcal{M} ;-L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)- \\
& m \otimes\left(f \otimes \frac{1}{\sqrt{1+t^{2}}}\right) & \longmapsto & m \otimes\left(\sqrt{1+t^{2}} f \otimes \mathbb{1}\right)
\end{array}
$$

where $m \in L_{1}(\mathcal{M}), f \in L_{2}(\mathbb{R})$-and $f^{\prime} \in L_{1}(\mathbb{R})$. Then, there holds

$$
\left\|A^{J}\right\| \leq \sup _{t \in J}\left(1-+t^{2}\right)^{1 / 2},\left\|R_{\phi}\right\| \leq\|\phi\|_{L_{2}(\mathbb{R})},\|B\|=1-
$$

and

$$
\begin{aligned}
& \left(A^{J}\right)^{*}:-L_{\infty}\left(\mathcal{M} ;-L_{2}^{r}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)^{-} \longrightarrow \quad L_{\infty}\left(\mathcal{M} ;-L_{2}^{r}(\mathbb{R}, d t)\right)^{-} \\
& m \otimes(\mathbb{1} \otimes g)^{-} \longmapsto m \otimes\left(-\frac{1}{\sqrt{1+t^{2}}} \otimes \chi_{J} g\right), \\
& R_{\phi}^{*}:-L_{\infty}\left(\mathcal{M} ;-L_{2}^{r}(\mathbb{R}, d t)\right)^{-} \longrightarrow \quad L_{\infty}\left(\mathcal{M} ;-L_{2}^{r}(\mathbb{R}, d t)\right) \\
& m \otimes\left(\frac{-1}{\sqrt{1+t^{2}}} \otimes g\right)^{-} \longmapsto m \otimes\left(\frac{1}{\sqrt{1+t^{2}}} \otimes \phi * g\right), \\
& B^{*}:-L_{\infty}\left(\mathcal{M} ;-L_{2}^{r}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)^{-} \longrightarrow \quad L_{\infty}\left(\mathcal{M} ;-L_{2}^{r}(\mathbb{R}, d t)\right)^{-} \\
& m \otimes(\mathbb{1} \otimes g)^{-} \quad \longmapsto m \otimes\left(\frac{1}{\sqrt{1+t^{2}}} \otimes \frac{1}{\sqrt{1+t^{2}}} g\right),
\end{aligned}
$$

where $g \in L_{2}(\mathbb{R})$ - and $m \in \mathcal{M}$.
Proof. The-claims-related-to-the-maps- A^{J} and- B are-straightforward-computations-in-the-spirit-of-Lemma 4.2 .3 - On-the-other-hand,-the-universal-property-of-projective-tensor-product-assures-that-

$$
\left\|R_{\phi}\right\|=\sup _{\substack{\|m\|_{L_{1}(\mathcal{M})} \leq 1,\left\|f^{\prime}\right\|_{L_{1}(\mathbb{R})} \leq 1}}\left\|R_{n}\left(m \otimes f^{\prime}\right)\right\|_{L_{1}\left(\mathcal{M} ; L_{2}^{c}(\mathbb{R}, d t)\right)}
$$

but-there-holds-

$$
\begin{aligned}
\left\|R_{\phi}\left(m \otimes f^{\prime}\right)\right\|_{L_{1}\left(\mathcal{M} ; L_{2}^{c}(\mathbb{R}, d t)\right)} & =-m \otimes\left(\phi * f^{\prime} \otimes \frac{\mathbb{1}}{\sqrt{1+t^{2}}}\right)_{L_{1}\left(\mathcal{M} ; L_{2}^{c}(\mathbb{R}, d t)\right)} \\
& =-\left(m^{*} m \int\left(\left|\phi * f^{\prime}\right|^{2}\right)^{1 / 2} L_{L_{1}(\mathcal{M})}\right. \\
& =-\|m\|_{L_{1}(\mathcal{M})}\left\|\phi * f^{\prime}\right\|_{L_{2}(\mathbb{R})} \\
& \leq\|\phi\|_{L_{2}(\mathbb{R})}\|m\|_{L_{1}(\mathcal{M})}\left\|f^{\prime}\right\|_{L_{1}(\mathbb{R})}
\end{aligned}
$$

by-Young's-inequality.- Then,-the-adjoint- R_{ϕ}^{*} admits-the-expression-of-the-statement-since

$$
\begin{aligned}
& \left(\tau_{\mathcal{M}} \otimes \operatorname{Tr}_{B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right)\left(n_{1} \otimes\left(\phi * f^{\prime} \otimes \frac{\mathbb{1}}{\sqrt{1+t^{2}}}\right) \cdot m_{2} \otimes\left(\frac{\mathbb{1}}{\sqrt{1+t^{2}}} \otimes g\right)\right) \\
& \quad=-\tau\left(m_{1} m_{2}\right)-\int \bar{g}(x)^{-} \iint\left(\phi(x-y)-f^{\prime}(y)-d x d y\right. \\
& \quad=-\tau\left(m_{1} m_{2}\right)^{-} \int f^{\prime}(y)^{-} \int\left(\overline{g(x)^{-}}-\phi(x-y)^{-} d y d x\right.
\end{aligned}
$$

102-

$$
=-\left(f_{\mathcal{M}} \otimes \operatorname{Tr}_{B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right)\left(\not n_{1} \otimes f^{\prime} \cdot m_{2} \otimes \phi * g\right)
$$

for-any- $m_{1} \in L_{1}(\mathcal{M})$-and- $m_{2} \in \mathcal{M}$.-
The-starting- point- of- our- argument- is- that- every- operator- $\varphi \in \mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$-induces- a-functional-on-the-vector-subspace-generated-by the $-c$-atoms.- For that-purpose,-any- c-atom-must-be-showed-to-admit-a-representation-as-an-operator-belonging-to- $L_{1}\left(\mathcal{M} ;-L_{2}^{c}(\mathbb{R}, d t)\right)$.-Indeed,- the-map- Γ - $:-\operatorname{span}\{c-$ atoms $\} \longrightarrow L_{1}\left(\mathcal{M} ;-L_{2}^{c}(\mathbb{R}, d t)\right.$-sending- $b h$ to- $b\left(h \otimes\left(\frac{1}{\sqrt{1+t^{2}}} \otimes\right.\right.$ $\left.\frac{1}{\sqrt{1+t^{2}}}\right)$)- is-well-defined-since-

$$
\begin{aligned}
b\left(h \otimes \left(\frac{\mathbb{1}}{\sqrt{1+t^{2}}}\right.\right. & \left.\left.\otimes \frac{\mathbb{1}}{\sqrt{1+t^{2}}}\right)\right)^{-}{ }_{L_{1}\left(\mathcal{M} ; L_{2}^{c}(\mathbb{R}, d t)\right)}=-\left(\int|b h|^{2}\right)^{1 / 2} L_{L_{1}(\mathcal{M})} \\
& =-\| \int\left(h^{*}|b|^{2} h\left\|_{L_{1 / 2}(\mathcal{M})}^{1 / 2} \leq\right\| h\left\|_{L_{2}(\mathcal{M})}\right\| b \|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)}\right.
\end{aligned}
$$

whenever- $b \in L_{2}(\mathcal{M}) \otimes L_{2}(\mathbb{R})$,-and-the-estimate-extends-to-general- c-atoms-by-approxima-tion.-

Lemma 4.2.15. Let $\varphi \in \mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$. If $a=$-bh is a c-atom in $H_{1}^{c}(\mathcal{A})$-supported on I, there holds

$$
\left|\left\langle\varphi, A^{I}(\Gamma(b h))\right\rangle_{L_{\infty}\left(\mathcal{M} ; L_{2}^{r}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right), L_{1}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right| \leq C\|\varphi\|_{\mathrm{BMO}_{r}}
$$

Proof. Let- I be-the-interval-for-which- $a=-b h$ satisfies-the-definition- of $-c$-atom.- Let- a_{I}^{\prime} denote-the-map-from- $L_{\infty}\left(\mathcal{M} ;-L_{2}^{c}(\mathbb{R}, d t)\right.$-into-itself-which-sends- $m \otimes\left(\frac{1}{\sqrt{1+t^{2}}} \otimes g\right)$-into-

$$
\sqrt{\pi} \operatorname{Tr}_{B\left(L_{2}(\mathbb{R}, d t)\right)}\left(\frac{\mathbb{1}}{\sqrt{1+t^{2}}} \otimes \frac{\sqrt{1+t^{2}} g \chi_{I}}{|I|}\right) m^{\prime} \otimes\left(\frac{\mathbb{1}}{\sqrt{1+t^{2}}} \otimes 1\right) .
$$

Then,-

$$
\begin{aligned}
&\left\langle\varphi, A^{I}(\Gamma(b h))\right\rangle=-\left\langle\left(A^{I}\right)^{*} \varphi, \Gamma(b h)\right\rangle_{L_{\infty}}\left(\mathcal{M} ; L_{2}^{r}(\mathbb{R}, d t)\right), L_{1}\left(\mathcal{M} ; L_{2}^{L}(\mathbb{R}, d t)\right) \\
&=-\left\langle\left(A^{I}\right)^{*} \varphi-a_{I}^{\prime}\left(A^{I}\right)^{*} \varphi, \Gamma(b h)\right\rangle_{L_{\infty}}\left(\mathcal{M} ; L_{2}^{r}(\mathbb{R}, d t)\right), L_{1}\left(\mathcal{M} ; L_{2}^{c}(\mathbb{R}, d t)\right) \\
&=-\left\langle\left(B^{-1}\right)^{*}\left[\left(A^{I}\right)^{*} \varphi-a_{I}^{\prime}\left(A^{I}\right)^{*} \varphi\right], B \Gamma(b h)\right\rangle_{L_{\infty}\left(\mathcal{M} ; L_{2}^{r}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right), L_{1}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
&=-\left\langle\widetilde{P}_{I} \widetilde{T}_{\mid I}{ }^{\prime}-1\right. \\
&\left.\left(B^{-1}\right)^{*}\left[\left(A^{I}\right)^{*}(\varphi)-a_{I}^{\prime}\left(A^{I}\right)^{*}(\varphi)\right], \widetilde{P}_{I} \widetilde{T}_{|I|} B \Gamma(b h)\right\rangle .
\end{aligned}
$$

Therefore,-it-follows-that-

$$
\begin{aligned}
\left\langle\varphi, A^{I}(\Gamma(b h))\right\rangle & =-\left\langle\left(A^{I}\right)^{*} \varphi-a_{I}^{\prime}\left(A^{I}\right)^{*} \varphi, \Gamma(b h)\right\rangle_{L_{\infty}\left(\mathcal{M} ; L_{2}^{r}(\mathbb{R}, d t)\right), L_{1}\left(\mathcal{M} ; L_{2}^{c}(\mathbb{R}, d t)\right)} \\
& =-\left\langle\left(B^{-1}\right)^{*}\left[\left(A^{I}\right)^{*} \varphi-a_{I}^{\prime}\left(A^{I}\right)^{*} \varphi\right], B \Gamma(b h)\right\rangle_{L_{\infty}\left(\mathcal{M} ; L_{2}^{r}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right), L_{1}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& =\left\langle\widetilde{P}_{I} \widetilde{T}_{\mid I Y^{-1}}\left(B^{-1}\right)^{*}\left[\left(A^{I}\right)^{*}(\varphi)^{-}-a_{I}^{\prime}\left(A^{I}\right)^{*}(\varphi)\right], \widetilde{P}_{I} \widetilde{T}_{|I|} B \Gamma(b h)\right\rangle .
\end{aligned}
$$

CHAPTER-4.- CALDERỚN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-

KERNEL-
Recalling-that- $\left(B^{-1}\right)^{*}\left(A^{I}\right)^{*}(\varphi)=-\widetilde{T}_{\omega} \widetilde{T}_{I}$ and- $\widetilde{P}_{I}\left(B^{-1}\right)^{*} a_{I}^{\prime}\left(A^{I}\right)^{*} \varphi=-\widetilde{P}_{I} \widetilde{T}_{\omega} a_{I} \varphi$, then-the-dual-ity-product-can-be-bounded-as-follows

$$
\begin{aligned}
\left|\left\langle\varphi, A^{I}(\Gamma(b h))\right\rangle\right| & \leq\left\|\widetilde{P}_{I \varphi} \widetilde{T}_{|I|^{-1}}\left(B^{-1}\right)^{*}\left[\left(A^{I}\right)^{*}(\varphi)-a_{I \varphi}^{\prime}\left(A^{I}\right)^{*} \varphi\right]\right\|\left\|\widetilde{P}_{I} \widetilde{T}_{|I|} B\left(b_{i} h_{i}\right)\right\| \\
& =-\left\|\widetilde{P}_{I} \widetilde{T}_{\mid I(-1} \widetilde{T}_{\omega}\left(\varphi-a_{I} \varphi\right)\right\|\left\|\widetilde{P}_{I} \widetilde{T}_{\mid I} B\left(b_{i} h_{i}\right)\right\| \\
& \leq\|\varphi\|_{\mathrm{B}}\left(\mathrm { O } _ { r } \| \widetilde { P } _ { I } \widetilde { T } _ { | I | } B (\Gamma (b h)) \| _ { L _ { 1 } } \left(\mathcal{M}_{\left.; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right.\right.
\end{aligned}
$$

so-the-statement-is-a-consequence-of-the-estimate-

Given- $m \geq 1$,-and-given-a-function- ϕ as-in-the-statement-of-Lemma 4.2.14-define-

$$
R_{n}=-R_{\phi_{n}} \text { where }-\phi_{n}(x)=-n \phi(n x) .
$$

Then,-given-a-finite-interval- J and- $\varphi \in \mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$,-there-holds-

$$
\begin{aligned}
\langle\varphi & \left., A^{J} R_{n}\left(\sum_{i} \chi_{i} b_{i} h_{i}\right)\right\rangle_{L_{\infty}\left(\mathcal{M} ; L_{2}^{r}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right), L_{1}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& =\left\langle R_{n}^{*}\left(A^{J}\right)^{*} \varphi, \sum_{i} \chi_{i} b_{i} h_{i}\right\rangle_{L_{\infty}(\mathbb{R}) \otimes \mathcal{M}, L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)}=0^{-}
\end{aligned}
$$

whenever- $\sum_{i} \lambda_{i} b_{i} h_{i}=0$-in- $L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)$.- This-is-the-starting-point-which-ensures-that any- $\psi \in \operatorname{BM} \phi_{r}(\mathbb{R}, \mathcal{M})$-with-compact-support-induces-a-functional-in- $H_{1}^{c}(\mathcal{A})$.-

Lemma 4.2.16. Let ϕ be a function as in the statement of Lemma 4.2.14. Given a c-atom $a=-b h$ supported on I, the following holds:

1. $\left\|\phi_{n} * b-b\right\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)} \longrightarrow 0$ - as n goes to infinity,
2. the operator

$$
\frac{\sqrt{|I|}}{2 \sqrt{|I|+-\frac{2}{n}}}\left(\phi_{m} * b-b\right) h
$$

is a c-atom supported on $I+\frac{1}{n}(-1,1)$.
Let $\left\{K_{j}\right\}_{j=1}^{N}$ be a family of finite intevals such that $(-1,1)=-\bigcup_{j=1}^{N} K_{j}$. Then,
(3) the operator

$$
\left(\phi \chi_{K_{j}}\right)_{n} * b h-\int\left(\left(\phi \chi_{K_{j}}\right)_{n}(y)-d y \cdot b h\right.
$$

is a multiple of a c-atom supported on $I+-\frac{1}{n} K_{j}$ satisfying

$$
\left\|\left(\phi \chi_{K_{j}}\right)_{n} * b-\int\left(\phi \chi_{K_{j}}\right)_{n}(y)-d y \cdot b\right\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)} \leq \frac{2^{-}}{\sqrt{|\mathbb{C |}|}} \iint_{k_{j}} \varphi
$$

Proof. The-claim-(1)-is-a consequence-of the-fact that translation-operators-are-continuous-on- $L_{2}\left(\mathbb{R} ;-L_{2}(\mathcal{M})\right.$). - On-the-other-hand,-(2)-follows-from-the-fact-that- $\phi_{n} * b-b$ is-supported-on- $I+\frac{1}{n}(-1,1)$,-it-has-integral-zero,-that-is,

$$
\int\left(\phi_{n} * b(x)-d x=-\iint\left(\phi_{n}(y) b(x-y)-d y d x=-\int \phi_{n}(y)^{-} \int(b(x-y)-d x d y=0,\right.\right.
$$

and-

$$
\left\|\phi_{n} * b-b\right\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)} \leq \int\left(\phi(y)-\|b(\cdot-y)-b\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)} \leq \frac{2^{-}}{\sqrt{|I|}} .\right.
$$

Analogously,-it-is-straightforward-to-check-that-the-support-of- $\left(\phi \chi_{K_{j}}\right)_{m} * b-b$ is-supportedon $-I+-\frac{1}{m} K_{j}$ and $-\int\left(\phi \chi_{I_{j}}\right)_{n} * b-b=-0$. - Moreover, -

$$
\begin{aligned}
\|\left(\phi \chi_{K_{j}}\right)_{n} * b & -\int\left(\left(\phi \chi_{K_{j}}\right)_{n}(y)-d y \cdot b \|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)}\right. \\
& \leq \int\left(\left(\phi \chi_{K_{j}}\right)_{n}(y)[b(\cdot-y)-b(\cdot)]-d y \|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)}\right. \\
& \leq \frac{2^{-}}{\sqrt{|\mathbb{T}|}} \int\left(\left(\phi \chi_{K_{j}}\right)_{n}(y)-d y\right. \\
& =\frac{2}{\sqrt{|\mathbb{T}|}} \iint_{k_{j}} \phi .
\end{aligned}
$$

Given- $\mathrm{a}^{-} \mathrm{c}$-atom- $a=-b h$, Lemma-4.2.16 justifies-that-the-identity-

$$
R_{n}(b h)=-\Gamma\left(\phi_{n} * b h\right)-
$$

holds.-

Proposition 4.2.17. Let $\psi \in \mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$-satisfying $\widetilde{P}_{j} \psi=-\psi$ for some finite interval J. Then, there holds

$$
\sum_{i} \chi_{i}\left\langle\psi, A^{J} \Gamma\left(b_{i} h_{i}\right)\right\rangle_{L_{\infty}\left(\mathcal{M} ; L_{2}^{r}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right), L_{1}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}=0
$$

whenever $\sum_{i}\left(\lambda_{i} b_{i} h_{i}=0-\right.$ in $L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)$.

CHAPTER-4.- CALDERỚN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-

KERNEL-
Proof. As-a-consequence-of-the-discussion-preceding-Lemma4.2.16-it-is-sufficient-to-show-that-

$$
\sum_{i} \not_{i}\left\langle\psi, A^{J}\left(\Gamma-R_{n}\right)\left(b_{i} h_{i}\right)\right\rangle_{L_{\infty}\left(\mathcal{M} ; L_{2}^{r}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right), L_{1}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}=0
$$

Arguing-as-in-the-proof-of-Lemma 4.2 .15 . it-follows-that,-if- $I_{i}^{(n)}$ denotes- $I_{i}+\frac{1}{n}(-1,1)$, there-holds-

$$
\begin{aligned}
& \left|\left\langle\psi, A^{J}\left(\Gamma^{-}-R_{n}\right)\left(b_{i} h_{i}\right)\right\rangle=-\left|\left\langle\left(A^{J}\right)^{*} \psi,\left(\Gamma^{-}-R_{n}\right)\left(b_{i} h_{i}\right)\right\rangle_{L_{\infty}\left(\mathcal{M} ; L_{2}^{r}(\mathbb{R}, d t)\right), L_{\infty}\left(\mathcal{M} ; L_{2}^{c}(\mathbb{R}, d t)\right)}\right|\right. \\
& =-\left|\left\langle\widetilde{P}_{I(n)} \widetilde{T}_{\left|I \ell_{i}^{(n)}\right|^{-1}}\left(B^{-1}\right)^{*}\left[\left(A^{J}\right)^{*}(\psi)-a_{I_{i}^{(n)}}^{\prime}\left(A^{J}\right)^{*}(\psi)\right], \widetilde{P}_{I_{i}^{(n)}} \widetilde{T}_{\left|I_{i}^{(n)}\right|} B\left(\Gamma^{-}-R_{n}\right)(b h)\right\rangle\right|
\end{aligned}
$$

Since- ψ has-complact-support-contained-in- J,-it-follows-that-
and-

$$
\widetilde{P}_{I(n)}\left(B^{-1}\right)^{*}\left(A^{J}\right)^{*} \psi=-\widetilde{P}_{I}\left({ }^{(n)} \widetilde{T}_{\omega} \widetilde{P}_{J} \psi=-\widetilde{P}_{I}\left(\widetilde{T}_{\omega} \psi\right.\right.
$$

This-implies-the estimate-

$$
\begin{aligned}
& \left|\left\langle\psi, A^{J}\left(\Gamma^{-}-R_{n}\right)\left(b_{i} h_{i}\right)\right\rangle\right| \\
& \leq \| \widetilde{P}_{I(n)} \widetilde{T}_{\omega} \widetilde{T}_{I \psi^{(n)}}\left[\psi-a_{\left.I_{i}^{(n)} \psi\right]}\| \| \widetilde{P}_{I^{(n)}} \widetilde{T}_{\left|I_{i}^{(n)}\right|} B\left(\Gamma-R_{n}\right)\left(b_{i} h_{i}\right) \|_{L_{1}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right. \\
& \leq\|\psi\|\left(\mathrm{BMO}_{r} \| \widetilde{\widetilde{I}}_{I j^{(n)}} \widetilde{T}_{\left|\Psi_{2}^{(n)}\right|} B\left(\Gamma-R()^{-}\right)\left(b_{i}\left(k_{i}\right) \|_{L_{1}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right.\right. \\
& \leq\|\psi\|_{\mathrm{BMO}_{r}} \sqrt{\left|\lambda_{i}\right|+2 / n}\left\|\left(\Gamma^{-}-R_{n}\right)\left(b_{i} h_{i}\right)\right\|_{L_{1}\left(\mathcal{M} ; L_{2}^{c}(\mathbb{R}, d t)\right)} \\
& \leq\|\psi\|_{\mathrm{BMO}_{r}} \sqrt{\left|\tilde{F}_{i}\right|+2 / n}\left\|\phi_{n} * b_{i}-b_{i}\right\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)} . \\
& \text { Thus,-it-only-remains-to-justify-that-dominated-convergence-theorem-applies-so-that- }
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty}-\sum_{i}\left|\lambda_{i}\right|\left|\left\langle\psi, A^{J}\left(\Gamma^{-}-R_{n}\right)\left(b_{i} h_{i}\right)\right\rangle\right|=\sum_{i}\left\langle\lambda_{i}\right| \lim _{n \rightarrow \infty}\left|\left\langle\psi, A^{J}\left(\Gamma^{-}-R_{n}\right)\left(b_{i} h_{i}\right)\right\rangle\right|,
$$

and-

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i}\left|\lambda_{i}\right| \mid\langle\psi, & \left.A^{J}\left(\Gamma^{-}-R_{n}\right)\left(b_{i} h_{i}\right)\right\rangle \mid \\
& \leq \sum_{i}\left|\lambda_{i}\right|\|\psi\|_{\mathrm{BMO}_{r}} \lim _{n \rightarrow \infty}-\sqrt{\left|I_{i}\right|+2 / n}\left\|\phi_{n} * b_{i}-b_{i}\right\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)}=0^{-}
\end{aligned}
$$

by-Lemma-4.2.16. - Nevertheless,- the-estimate-

$$
\|\psi\|_{\mathrm{BMO}_{r}} \sqrt{\left|I_{i}\right|+2 / n}\left\|\phi_{n} * b_{i}-b_{i}\right\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)} \leq\|\psi\|_{\mathrm{BMO}_{r}} \frac{\sqrt{\left|I_{i}\right|+2 / n}}{\sqrt{\left|I_{i}\right|}}
$$

4.2.- DUALITY-BETWEEN-HARDY-SPACES-AND-BMO SPACES-

does-not-provide-a-satisfactory-bound-since-the-series-

$$
\sum_{i}\left(\lambda_{i} \left\lvert\,\|\psi\|_{\mathrm{BMO}_{r}} \frac{\sqrt{\left|I_{i}\right|+2 / n}}{\sqrt{\left|I_{i}\right|}}\right.\right.
$$

is-not-convergent-in-general.- Therefore,-a-finer-estimate-is-needed.-
Fix- $n \geq 1$.- Whenever- $\left|I_{i}\right| \geq 2 / n$,-there-follows-

$$
\begin{equation*}
\left|\left\langle\psi, A^{J}\left(\Gamma-R_{n}\right)\left(b_{i} h_{i}\right)\right\rangle\right| \leq\|\psi\|_{\mathrm{BMO}_{r}} \frac{\sqrt{\left|I_{i}\right|+2 / n}}{\left|I_{i}\right|} \leq \sqrt{2}-\|\psi\|_{\mathrm{BMO}_{r}} . \tag{4.7}
\end{equation*}
$$

Otherwise,-consider-the-family-of-intervals- $\left\{K_{j}^{i}\right\}_{j}$ defined-as

$$
K_{j}^{i}=\left(-1+(j-1)-n\left|I_{i}\right|,-1+-j n\left|I_{i}\right|\right) \text {-for }-j=1, \ldots,\left\lfloor 2 /\left(n\left|I_{i}\right|\right)\right\rfloor,
$$

$\operatorname{and}-K_{j}^{i}=(-1,1)-\backslash \bigcup_{\ell=1}^{\left\lfloor 2 /\left(n\left|I_{i}\right|\right)\right\rfloor} K_{\ell}^{i}$ for $-j=-\left\lfloor 2 /\left(n I_{i}\right)\right\rfloor+$ - . In-that-case, recalling-that

$$
\phi_{n} * b_{i}-b_{i}=\sum_{j}\left(\phi \chi_{K_{j}^{i}}\right)_{n} * b_{i}-\int\left(\phi \chi_{K_{j}}\right)_{n}(y)-d y \cdot b_{i}
$$

and-setting- $I_{i}^{(n, j)}=-I+-\frac{1}{n} K_{j}^{i}$ and $-b_{i}^{(n, j)}=\left(\phi \chi_{K_{j}^{i}}\right)_{n} * b_{i}-\int\left(\phi \chi_{K_{j}}\right)_{n}(y)-d y \cdot b_{i}$, it-follows-that-

$$
\begin{aligned}
& \left|\left\langle\psi, A^{J}\left(\Gamma-R_{m}\right) b_{i} h_{i}\right\rangle\right| \leq \sum_{j}\left\langle\left\langle\left(A^{J}\right)^{*} \psi, \Gamma\left(b_{i}^{(n, j)} h_{i}\right)\right\rangle\right| \\
& \quad \leq \sum_{j}\left\langle\left\langle\widetilde{T}_{\left|\left|V_{i}^{(n, j)}\right|-1\right.} \widetilde{P}_{I_{i}^{(n, j)}} \widetilde{T}_{\omega \omega}\left\langle\psi-a_{I_{i}^{(n, j)}} \psi\right], \widetilde{T}_{\left|I_{i}^{(n, j)}\right|} \widetilde{P}_{I_{i}^{(n, j)}} B \Gamma\left(b_{i}^{(n, j)} h_{i}\right)\right\rangle\right| \\
& \quad \leq \sum_{j}\left|\psi\left\|_{\mathrm{BMO}_{r}} \sqrt{\left|I_{i}^{(n, j)}\right|}| | b_{i}^{(n, j)}\right\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)} .\right.
\end{aligned}
$$

Therefore,- point-(3)-from-Lemma-4.2.16 implies-that-

$$
\begin{aligned}
\left|\left\langle\psi, A^{J}\left(\Gamma^{-}-R_{m}\right) b_{i} h_{i}\right\rangle\right| & \leq 2\|\psi\|_{\mathrm{BMO}_{r}} \sum_{j} \frac{\sqrt{\left|I_{i}\right|+\left|K_{j}^{i}\right| / n}}{\sqrt{\left|I_{i}\right|}} \\
& \leq 2\|\psi\|_{\mathrm{BMO}_{r}} \frac{\sqrt{2\left|I_{i}\right|}}{\sqrt{\left|\Psi_{i}\right|}} \sum_{j}\left(\iint_{k_{i}^{i}} \phi=2\|\psi\|_{\mathrm{BMO}_{r}} \sqrt{2} .\right.
\end{aligned}
$$

In-conclusion,-this-estimate-along-with- 4.7) -implies-that-

$$
\sum_{i}\left|\lambda_{i}\right|\left|\left\langle\psi, A^{J}\left(\Gamma^{-}-R_{n}\right)\left(b_{i} h_{i}\right)\right\rangle\right| \leq 2 \sqrt{2}\|\psi\|_{\mathrm{BMO}_{r}}
$$

so-the-application-of-the-dominated-convergence-theorem-applies,-yielding-the-statement.-

CHAPTER-4.- CALDERỚN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-

KERNEL-
In-order-to-conclude-the-argument,-it-remains-to-show-that-any-operator- $\varphi \in \mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$ induces a a well-defined-functional- on $-H_{1}^{c}(\mathcal{A})$.- The- estimates obtained- for compactly-sup-ported- $\psi \in \mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$-will- yield-a-general-result-under-a-suitable-approximation-argu-ment.-

Lemma 4.2.18. Suppose $\varphi \in \mathrm{BMO}_{c}(\mathbb{R}, \mathcal{M})$-and suppose J is an interval such that $\varphi_{J}=-$ 0 . Let 3J be the interval concentric with J having length $3|J|$. Then there exists $\psi \in$ $\mathrm{BMO}_{c}(\mathbb{R}, \mathcal{M})$ - such that

- $\widetilde{P}_{3 J} \psi=-\psi$,
- $\widetilde{P}_{J}(\psi-\varphi)=0$,
- there exists some universal constant $C>0$ - such that

$$
\|\psi\|_{\mathrm{BMO}_{c}} \leq C\|\varphi\|_{\mathrm{BMO}_{c}}
$$

Theorem 4.2.19. Given a semifinite von Neumann algebra \mathcal{M}, there holds

$$
\mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M}) \subseteq H_{1}^{c}(\mathcal{A})^{*} .
$$

Proof. Let- $\varphi \in \mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$-and-let- $f \in H_{1}^{c}(\mathcal{A})$-admit-an-atomic-decomposition $\sum_{i} \lambda_{i} b_{i} h_{i}$ which-is-equal-to-zero-in- $L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)$.- Given- $\varepsilon>0$,-let- $N \geq 1$-such-that- $\sum_{i} \beta_{N}| |_{i} \mid<\varepsilon$ and-let- J be-a-finite-interval-satisfying-

$$
\operatorname{supp}_{\mathbb{R}}\left(\sum_{i=1}^{N} \lambda_{i} a_{i}\right) \notin J
$$

Without-loss- of- generality,-we-can-assume-that- $\varphi_{J}=-0$,-so-by-Lemma-4.2.18, there-exists-some- $\psi \in \mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$-satisfying- $\widetilde{P}_{3 J} \psi=-\psi,-\widetilde{P}_{J}(\varphi-\psi)=-0$-and-

$$
\|\psi\|_{\mathrm{BMO}_{r}} \leq C\|\varphi\|_{\mathrm{BMO}_{r}}
$$

for-some-universal-constant- $C>0$.- Therefore,-as-a-consequence-of-Proposition 4.2.17.-

$$
\begin{aligned}
\sum_{i} \lambda_{i}\left\langle\varphi, A^{I_{i}} \Gamma\left(b_{i} h_{i}\right)\right\rangle & =-\sum_{i} \lambda_{i}\left\langle\varphi, A^{I_{i}} \Gamma\left(b_{i} h_{i}\right)\right\rangle-\sum_{i}\left\langle\psi, A^{3 J} \Gamma\left(b_{i} h_{i}\right)\right\rangle \\
& =-\sum_{i=1}^{N} \not{ }_{i}\left\langle\varphi-\psi, A^{I_{i}} \Gamma\left(b_{i} h_{i}\right)\right\rangle \\
& +-\sum_{i=N+}^{\infty}\left(\lambda_{i}\left(\left\langle\varphi, A^{I_{i}} \Gamma\left(b_{i} h_{i}\right)\right\rangle-\left\langle\psi, A^{3 J} \Gamma\left(b_{i} h_{i}\right)\right\rangle\right)-\right. \\
& =-\sum_{i=N+}^{\infty}\left(\lambda_{i}\left(\left\langle\varphi, A^{I_{i}} \Gamma\left(b_{i} h_{i}\right)\right\rangle-\left\langle\psi, A^{3 J} \Gamma\left(b_{i} h_{i}\right)\right\rangle\right),\right.
\end{aligned}
$$

108-
so-

$$
\left|\sum_{i} \lambda_{i}\left\langle\varphi, A^{I_{i}} \Gamma\left(b_{i} h_{i}\right)\right\rangle\right| \leq \sum_{i=N+}^{\infty}\left(\left|\lambda_{i}\right|(1-+C)\|\varphi\|_{\mathrm{BMO}_{r}}<(1-+C)\|\varphi\|_{\mathrm{BMO}_{r}} \varepsilon\right.
$$

In-conclusion, -the-statement-follows-since- ε is-arbitrarily-small.-
This-last-theorem-completes-the-proof-of-the-identity-

$$
\left(H_{1}^{c}(\mathcal{A})\right)^{*} \simeq \mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})
$$

Therefore,-a-new-description-for-a-predual-of- $\mathrm{BMO}_{r}(\mathbb{R}, \mathcal{M})$-has-been-obtained-just-in-terms-of-a-new-atomic-decomposition,-which-will-be-crucial-for-the-study-of-the-boundedness-of-Calderón-Zygmund-operators-from- $H_{1}^{c}(\mathcal{A})$-to- $L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)$.-

4.3 Proof of a result by Garnett

The-justification-for-Lemma-4.2.18 is- included-in-this-section.- This-result- was-stated-in-the- commutative-setting- by- Garnett- [21]- and- by- Mei- in- the- semicommutative- one- too,-both- without including- a- complete- proof- [54].- For-that-reason,- a- general- version- of the argumentis-developed-here.- Before-giving the-explicit-construction,-some preliminar results-are-showed.-

Lemma 4.3.1. Suppose $g \in L_{\infty}\left(\mathcal{M} ;-L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)$-and let A be a measurable set such that $|A| \neq 0$. Then, there holds

$$
\begin{gathered}
\left\|\sqrt{\pi}\left(\operatorname{Id} \otimes \operatorname{Tr}_{B\left(L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right)\left(\widetilde{T}_{\omega} \widetilde{P}_{A} \widetilde{T}_{\left.A\right|^{-1}} g\right)-\otimes(1-\otimes \mathbb{1})\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
\leq\|g\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} .
\end{gathered}
$$

Proof. Given- $g \in L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)$,-there-holds-

$$
\begin{aligned}
\int\left(g \chi _ { A } \frac { \sqrt { 1 + t ^ { 2 } } } { \sqrt { | A | } } \frac { d t } { 1 + t ^ { 2 } } \quad L _ { 2 } \left(\mathbb{R}, \frac{d t}{\left.1+t^{2}\right)}\right.\right. & =-\int\left(g \frac{1-}{\sqrt{1+t^{2}}} \frac{\chi_{A}}{\sqrt{|A|}} d t\right. \\
& \leq\left(\int (| g | ^ { 2 } \frac { d t } { 1 + t ^ { 2 } }) ^ { 1 / 2 } \left(\int\left(\frac{\chi_{A}}{|A|}\right)^{1 / 2}=-\|g\|_{L_{2}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right.} .\right.\right.
\end{aligned}
$$

Then,-the-statement-follows-by-Corollary 4.1.3.

Lemma 4.3.2. Let $\varphi \in \mathrm{BMO}_{c}(\mathbb{R}, \mathcal{M})$-and let Q and Q^{\prime} be two bounded intervals such that $|Q| \sim\left|Q^{\prime}\right|$ with distance $d\left(Q, Q^{\prime}\right)-\lesssim|Q|$. Then, there holds

$$
\left\|a_{Q} \varphi-a_{Q^{\prime}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}
$$

CHAPTER-4.- CALDERÓN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-
KERNEL-

$$
\leq\left(\frac{|R|^{1 / 2}}{|Q|^{1 / 2}}+\frac{|R|^{1 / 2}}{\left|Q^{\prime}\right|^{1 / 2}}\right)\|\varphi\|_{\mathrm{BMO}_{c}}
$$

where R is the smallest interval concentric to Q containing Q^{\prime} such that $|R| \sim|Q|$.
Proof. Let- R denote-an-interval-as-in-the-statement.- Then,-it-follows-that-

$$
\begin{aligned}
\left\|a_{Q} \varphi-a_{Q^{\prime}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} & \leq\left\|a_{Q} \varphi-a_{R} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +\left\|a_{Q} \varphi-a_{R} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} .
\end{aligned}
$$

As-a-consequence-of-Lemma-4.3.1,-there-holds-

$$
\begin{aligned}
\left\|a_{Q} \varphi-a_{R} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} & =-\left\|a_{Q}\left(\varphi-a_{R} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq\left\|\widetilde{T}_{\omega} \widetilde{T}_{\left.Q\right|^{-1}} \widetilde{P}_{Q}\left(\varphi-a_{R} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& =-\frac{|R|^{1 / 2}}{|Q|^{1 / 2}}\left\|\widetilde{T}_{\omega} \widetilde{T}_{|Z|^{-1}} \widetilde{P}_{R}\left(\varphi-a_{R} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|R|^{1 / 2}}{|Q|^{1 / 2}}\|\varphi\|_{\mathrm{BMO}}^{c}
\end{aligned},
$$

as-well-as-an-analogous-estimate-for- $\left\|a_{Q^{\prime}} \varphi-a_{R} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right) \text {, } \text {, yielding-the-claim-from- }}$ the-statement.-

The- previous-estimate-is-the-key-tool-for-proving-Lemma-4.2.18. Indeed,-it-encodes-the-almost-characterization ofelements from-BMO spaces:- even when $-f \in \mathrm{BMO}$ is not-bounded,-the-differences-between-averages-can-be-controlled-somehow-by-the-norm-of- f -

Lemma 4.3.3. Let A, B and C be some measurable sets such that $A \subseteq B$ and $|B|,|C| \neq 0$. Then, it holds

$$
\frac{|A|}{|B|} a_{C} g=-a_{B} \widetilde{P}_{A} a_{C} g
$$

for any $g \in L_{\infty}\left(\mathcal{M} ;-L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)$.
Proof. This-is-a-straightforward-verification.-
Let- $J=(a, b)$-be-a-finite-interval-and-let $-c_{J}=-\frac{a+b}{2}$ denote-the-center-of $J .-$ Write-

$$
J=-J_{0} \cup \bigcup_{n=1}^{\infty} J_{n} \cup \bigcup_{n=1}^{\infty}\left(J_{n}^{\prime}\right.
$$

where $-d\left(J_{n}, \partial J\right)=-\left|J_{n}\right|$ for $-n \geq 0-$ and $-d\left(J_{n}^{\prime}, \partial J\right)=-\left|J_{n}^{\prime}\right|$ for $-n \geq 1$.- Then J_{0} coincides - with the-middle-third-of $-J$,-that-is,-

$$
J_{0}=-\frac{1}{3} J=-\left(q_{J}-\frac{1}{2} \frac{1}{3} \frac{1}{}^{-} J\left|, c_{J}+\frac{1}{2} \frac{1}{3} \frac{-}{3} J\right|\right),(
$$

while-for-any- $n \geq 1,-$

$$
\begin{aligned}
& J_{n}=-\left(\phi_{J}+\frac{|J|}{3} \sum_{k=0}^{n-1}\left(\frac{1-}{2^{k}}, c_{J}+\frac{|J|}{3} \sum_{k=0}^{n} \frac{\mathcal{L}^{-}}{2^{k}}\right)(\right. \\
& J_{n}^{\prime}=-\left(\phi_{J}-\frac{|J|}{3} \sum_{k=0}^{n} \frac{1-}{2^{k}}, c_{J}-\frac{|J|}{3} \sum_{k=0}^{n-1} \frac{1-}{2^{k}}\right) \cdot(
\end{aligned}
$$

Thus, $-\left|J_{n}\right|=-\left|J_{n}^{\prime}\right|=-\frac{|J|}{3} \frac{1}{2^{n}}$.- Set- K_{n} (respectively- K_{n}^{\prime})-as-the-reflection- of $-J_{n}$ (respectively ${ }^{-}$ $\left.J_{n}^{\prime}\right)$-across-b (respectively-a).- Then,

$$
\begin{aligned}
& K_{n}=-\left(\phi+\frac{|J|}{3}-\frac{|J|}{3-} \sum_{k=1}^{n}\left(2^{-}, b+-\frac{|J|}{3}-\frac{|J|}{2^{-}} \sum_{k=1}^{n-1}\left(\frac{1-}{2^{k}}\right),(\right.\right. \\
& K_{n}^{\prime}=-\left(q-\frac{|J|}{3}+-\frac{|J|}{3} \sum_{k=1}^{n-1}\left(2^{-k}, a-\frac{|J|}{3}+-\frac{|J|}{3-} \sum_{k=1}^{n}\left(2^{-k}\right),(\right.\right.
\end{aligned}
$$

so- $\left|K_{n}\right|=-\left|K_{n}^{\prime}\right|=-\left|J_{n}\right|=-\left|J_{n}^{\prime}\right|$.- Finally,- define- $L=\left(b+-\frac{|J|}{3}, \infty\right)$-and- $L^{\prime}=\left(-\infty, a-\frac{|J|}{3}\right)$. Assuming $-\varphi \in \mathrm{BMO}_{c}$ and $-\varphi_{J}=-0$, -this-construction-yields-the-desired-operator $-\psi$,-which- is-given-by-the-following-expression:-

$$
\begin{aligned}
\psi & =-\widetilde{P}_{J} \varphi+\sum_{n \geq 1} \varphi_{J_{n}} \otimes\left(\chi_{K_{n}} \otimes \mathbb{1}\right)+\sum_{n \geq 1} \varphi_{J_{n}^{\prime}} \otimes\left(\chi_{K_{n}^{\prime}} \otimes \mathbb{1}\right) \\
& =-\widetilde{P}_{J} \varphi+\sum_{n \geq 1} \widetilde{P}_{K_{n}} a_{J_{n}} \varphi+\sum_{n \geq 1}{\widetilde{T_{n}^{\prime}}}_{n} a_{J_{n}^{\prime}} \varphi .
\end{aligned}
$$

Therefore,-the-average-of- ψ on-some-finite-interval- $I \subseteq \mathbb{R}$ coincides-with-

$$
\begin{aligned}
a_{I} \psi & =a_{I} \widetilde{P}_{I \cap J} \varphi+\sum_{n \geq 1} \frac{\left|K_{n} \cap I\right|}{|I|} a_{J_{n}} \varphi+\sum_{n \geq 1} \frac{\left|K_{n}^{\prime} \cap I\right|}{|I|} a_{J_{n}^{\prime}} \varphi \\
& =a_{I} \widetilde{P}_{I \cap J} \varphi+\sum_{n \geq 1} \frac{\left|K_{n} \cap I\right|}{|I|} \varphi_{J_{n}} \otimes(1-\otimes \mathbb{1})+\sum_{n \geq 1} \frac{\left|K_{n}^{\prime} \cap I\right|}{|I|} \varphi_{J_{n}^{\prime}} \otimes(1 \otimes \mathbb{1}) .
\end{aligned}
$$

From-the-definition,-it- is- clear-that- $\widetilde{P}_{3 J} \psi=-\psi$ and $-\widetilde{P}_{J}(\varphi-\psi)=-0$ - On- the- other-hand, setting $-K=-\bigcup_{n \geq 1} K_{n}$ and $-K^{\prime}=-\bigcup_{n}\left(\geq 1 K_{n}^{\prime}\right.$, -it-follows-that-
(4.8)-

$$
\begin{align*}
& \|\psi\|_{\mathrm{BMO}_{c}}=-\sup _{I}\left\|R_{I}\left(\mathrm{Id}-a_{I}\right) \psi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \tag{4.8}\\
& \quad \leq \sup _{I}=\left[\left\lvert\,\left(\widetilde{P}_{K} R_{I}\left(\operatorname{Id}-a_{I}\right) \psi\left\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}+-\right\| \widetilde{P}_{K} R_{I}\left(\operatorname{Id}-a_{I}\right) \psi \|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right.\right.\right. \\
& \quad+-\left\|\widetilde{P}_{J} R_{I}\left(\operatorname{Id}-a_{I}\right) \psi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}
\end{align*}
$$

CHAPTER-4.- CALDERỚN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-
KERNEL

$$
\left.++\left\|\widetilde{P}_{L} R_{I}\left(\operatorname{Id}-a_{I}\right) \psi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}+-\left\|\widetilde{P}_{L^{\prime}} R_{I}\left(\operatorname{Id}-a_{I}\right) \psi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right] \cdot
$$

so-it-is-sufficient-to-bound-each-one-of-these-summands-when- I is-fixed.- Although-some-of-them-may-become-zero-(for-instance,-the-last-norm-is-zero-whenever- $I \cap L=-\emptyset$),-every-casereduces to-bound -these-terms-when they-do-not-vanish.- The-structure-of the-decomposition-and-Lemma-4.3.1 ensure- that-

- $\left\|a_{J_{n}} \varphi-a_{J_{n+1}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \leq\left(\frac{2 \nmid J_{n+1} \mid}{\left(J_{n+1} \mid\right.}+-\frac{2\left|J_{n+1}\right|}{\left|J_{n}\right|}\right)-\|\varphi\|_{\mathrm{BMO}_{c}} \leq 6-\|\varphi\|_{\mathrm{BMO}_{c}},-$
- $\left\|a_{J_{n_{0}}} \varphi-a_{\tilde{K}^{\prime}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{L}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \leq\left(\frac{\left|\widetilde{K_{\mid}}\right|}{\left|J_{n_{0}}\right|}+1\right)\|\varphi\|_{\mathrm{BMO}_{c}}=\left(1+\sum_{j}\left(\sum_{n_{0}} 2^{-j}\right)\|\varphi\|_{\mathrm{BMO}_{c}}\right.$
where- $\widetilde{K} \mathcal{U}_{n=1}^{\infty} J_{n},-$

These-and-finer-estimates-will-be-used-along-the-proof-of-the-lemma.
Given- $A \subseteq J$ or- $A \subseteq K, K^{\prime}$--define- \widetilde{A} as-the-reflection-across-the-closer-point-of-the-border∂J to $-A .{ }^{-}$Then, -

$$
\begin{aligned}
&\left\|\widetilde{P}_{K \cap I} R_{I}\left(\operatorname{Id}-a_{I}\right) \psi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq\left\|\widetilde{P}_{K \cap I} \widetilde{T}_{\omega} \widetilde{T}_{|I|^{-1}}\left(\psi-a_{\widetilde{K \cap I}} \psi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
&+\left\|\widetilde{P}_{K \cap I} \widetilde{T}_{\omega} \widetilde{T}_{I I Y^{-1}}\left(a_{I} \widetilde{P}_{J \cap I} \psi-\frac{\mid J \cap I}{|I|} a_{\widetilde{K \cap I}} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
&+\left\|\widetilde{P}_{K \cap I} \widetilde{T}_{\omega} \widetilde{T}_{\mid I C_{-1}}\left(\sum_{n} \frac{\left|K_{n} \cap I\right|}{|I|} a_{J_{n}} \varphi-\frac{|K \cap I|}{|I|} a_{\widetilde{K \cap I}} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
&+\left\|\widetilde{P}_{K \cap I} \widetilde{T}_{\omega} \widetilde{T}_{\mid I Y^{-1}}\left(\sum_{n} \frac{\left|K_{n}^{\prime} \cap I\right|}{|I|} a_{J_{n}} \varphi-\frac{\left|K^{\prime} \cap I\right|}{|I|} a_{\widetilde{K \cap I}} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
&+\left\|\widetilde{P}_{K \cap I} \widetilde{T}_{\omega} \widetilde{T}_{|I|^{-1}}\left(\frac{|L \cap I|}{|I|} a_{\widetilde{K \cap I}} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
&+-\left\|\widetilde{P}_{K \cap I} \widetilde{T}_{\omega} \widetilde{T}_{|I|^{-1}}\left(\frac{\left|L^{\prime} \cap I\right|}{|I|} a_{\widetilde{K \cap I}} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
&=-A_{1}+-A_{2}+-A_{3}+-A_{4}+A_{5}+-A_{6} .
\end{aligned}
$$

Now,-we-estimate-each-of-these-terms.-First,-assuming-that- n_{0} and- N_{0} respectively-denote-the-smallest-and-largest-natural-number n such-that- K_{n} intersects- I,-there-holds-

$$
\begin{aligned}
A_{1} & \leq \widetilde{P}_{K \cap I} \widetilde{T}_{\omega} \widetilde{T}_{\mid I}{ }^{-1}\left(\sum_{n} \widetilde{P}_{K_{n} \cap I}\left(a_{J_{n}} \varphi-a_{\widetilde{K \cap I}} \varphi\right)\right)| |_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|K \cap I|^{1 / 2}}{|I|^{1 / 2}} \sum_{n} \frac{\left|K_{n} \cap I\right|}{|K \cap I|}\left\|\widetilde{P}_{K_{n} \cap I} \widetilde{T}_{\omega} \widetilde{T}_{|I \cap K|^{-1}}\left(a_{J_{n}} \varphi-a_{\widetilde{K \cap I}} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|K \cap I|^{1 / 2}}{|I|^{1 / 2}} \sum_{n} \frac{\left|K_{n} \cap I\right|}{|K \cap I|}\left\|\widetilde{P}_{K_{n} \cap I} \widetilde{T}_{\omega} \widetilde{T}_{|I \cap K|^{-1}}\left(\sum_{k=n_{0}}^{n-1} a_{J_{k+1}} \varphi-a_{J_{k}} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}
\end{aligned}
$$

$$
\begin{aligned}
& +-\frac{|K \cap I|^{1 / 2}}{|I|^{1 / 2}} \sum_{n} \frac{\left|K_{n} \cap I\right|}{|K \cap I|}\left\|\widetilde{P}_{K_{n} \cap I} \widetilde{T}_{\omega} \widetilde{T}_{|I \cap K|^{-1}}\left(a_{J_{n_{0}}} \varphi-a_{\widetilde{K \cap I}} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{1-}{\sqrt{\pi}} \frac{|K \cap I|^{1 / 2}}{|I|^{1 / 2}} \sum_{n} \frac{\left|K_{n} \cap I\right|}{|K \cap I|}\left(n-n_{0}\right)-\cdot 3 \cdot \sum_{k=n_{0}}^{N_{0}-1}\left\|a_{J_{k+1}} \varphi-a_{J_{k}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +-\frac{1-}{\sqrt{\pi}} \frac{|K \cap I|^{1 / 2}}{|I|^{1 / 2}} \sum_{n}\left(\frac{K_{n} \cap I \mid}{|K \cap I|}\left(1+-\frac{\left|J_{n_{0}}\right| \sum_{j} 2^{-j}}{\left|J_{n_{0}}\right|}\right)\left\|a_{J_{n_{0}}} \varphi-a_{\widetilde{K \cap I}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right. \\
& \lesssim \frac{1-}{\sqrt{\pi}} \frac{|K \cap I|^{1 / 2}}{|I|^{1 / 2}} \sum_{n} \frac{\left|K_{n} \cap I\right|}{|K \cap I|}\left[\left(n-n_{0}\right)-+-1\right]-\|\varphi\|_{\mathrm{BMO}_{c}} \lesssim \frac{|K \cap I|^{1 / 2}}{|I|^{1 / 2}}\|\varphi\|_{\mathrm{BMO}_{c}} .
\end{aligned}
$$

On-the-other-hand,-Lemma 4.3.3 implies- that-

$$
\begin{aligned}
& A_{2}=-\frac{|K \cap I|^{1 / 2}}{|I|^{1 / 2}} \frac{1-}{\sqrt{\pi}}\left\|a_{I} \widetilde{P}_{J \cap I} \psi-\frac{|J \cap I|}{|I|} a_{\widetilde{K \cap I}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& =-\frac{|K \cap I|^{1 / 2}}{|I|^{1 / 2}} \frac{1-}{\sqrt{\pi}}\left\|a_{I} \widetilde{P}_{J \cap I} \psi-a_{I} \widetilde{P}_{J \cap I} a_{\widetilde{K \cap I}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|K \cap I|^{1 / 2}}{|I|^{1 / 2}}\left\|\widetilde{T}_{\omega} \widetilde{P}_{J \cap I} \widetilde{T}_{\mid I} Y^{-1}\left(\varphi-a_{\widetilde{K \cap I}} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|K \cap I|^{1 / 2}|J \cap I|^{1 / 2}}{|I|}\left\|\widetilde{T}_{\omega} \widetilde{P}_{J \cap I} \widetilde{T}_{|J \cap I|^{-1}}\left(\varphi-a_{\widetilde{K \cap I}} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|K \cap I|^{1 / 2}|J \cap I|^{1 / 2}}{|I|}\left\|\widetilde{T}_{\omega} \widetilde{P}_{J \cap I} \widetilde{T}_{|J \cap I|^{-1}}\left(\varphi-a_{J \cap I} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +-\frac{|K \cap I|^{1 / 2}|J \cap I|^{1 / 2}}{|I|}\left\|a_{J \cap I} \varphi-a_{\widetilde{K \cap J}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|K \cap I|^{1 / 2}|J \cap I|^{1 / 2}}{|I|}\|\varphi\|_{\text {BMО }_{c}}\left[1-+\max \left\{\frac{|K \cap I|^{1 / 2}}{|J \cap I|^{1 / 2}}, \frac{|J \cap I|^{1 / 2}}{|K \cap I|^{1 / 2}}\right\}\right], \\
& A_{3} \leq \frac{|K \cap I|^{1 / 2}}{|I|^{1 / 2}} \sum_{n} \frac{\left|K_{n} \cap I\right|}{|I|}\left\|a_{J_{n}} \varphi-a_{\widetilde{K \cap I}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|K \cap I|^{3 / 2}}{|I|^{3 / 2}} \sum_{n} \frac{\left|K_{n} \cap I\right|}{|K \cap I|}\left[\left(n-n_{0}\right)-+-1\right]-\|\varphi\|_{\mathrm{BMO}_{c}} \lesssim \frac{|K \cap I|^{3 / 2}}{|I|^{3 / 2}}\|\varphi\|_{\mathrm{BMO}_{c}} .
\end{aligned}
$$

Whenever- A_{4} appears-in-the-above-estimate,-there-holds- $J \cap I=-J$,-so-

$$
\begin{aligned}
A_{4} & \leq \frac{|K \cap I|^{1 / 2}\left|K^{\prime} \cap I\right|}{|I|^{3 / 2}} \sum_{n} \frac{\left|K_{n}^{\prime} \cap I\right|}{\left|K^{\prime} \cap I\right|}\left\|a_{J_{n}^{\prime}} \varphi-a_{\widetilde{K \cap J}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|K \cap I|^{1 / 2}\left|K^{\prime} \cap I\right|}{|I|^{3 / 2}} \sum_{n} \frac{\left|K_{n}^{\prime} \cap I\right|}{\left|K^{\prime} \cap I\right|}\left\|a_{J_{n}^{\prime}} \varphi-a_{\widetilde{K^{\prime} \cap I}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}
\end{aligned}
$$

CHAPTER-4.- CALDERÓN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-

KERNEL-

Finally,

$$
\begin{aligned}
& +-\frac{|K \cap I|^{1 / 2}\left|K^{\prime} \cap I\right|}{|I|^{3 / 2}} \sum_{n} \frac{\left|K_{n}^{\prime} \cap I\right|}{\left|K^{\prime} \cap I\right|}\left\|a_{\widetilde{K^{\prime} \cap I}} \varphi-a_{J} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +-\frac{|K \cap I|^{1 / 2}\left|K^{\prime} \cap I\right|}{|I|^{3 / 2}} \sum_{n} \frac{\left|K_{n}^{\prime} \cap I\right|}{\left|K^{\prime} \cap I\right|}\left\|a_{J} \varphi-a_{\widetilde{K \cap I}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \lesssim \frac{|K \cap I|^{1 / 2}\left|K^{\prime} \cap I\right|}{|I|^{3 / 2}}\left[1+-\frac{|J|^{1 / 2}}{\left|K^{\prime} \cap I\right|^{1 / 2}}+-\frac{|J|^{1 / 2}}{|K \cap I|^{1 / 2}}\right]\|\varphi\|_{\mathrm{BMO}_{c}} .
\end{aligned}
$$

$$
\begin{aligned}
A_{5} & \leq \frac{|K \cap I|^{1 / 2}|L \cap I|}{|I|^{3 / 2}}\left\|a_{\widetilde{K \cap I}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|K \cap I|^{1 / 2}|L \cap I|}{|I|^{3 / 2}}\left[\left\|a_{\widetilde{K \cap I}}-a_{J_{1}}\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right. \\
& \left.+-\left\|a_{J_{1}} \varphi-a_{\widetilde{K \cap I}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right] \\
& \leq \frac{|K \cap I|^{1 / 2}|L \cap I|}{|I|^{3 / 2}}\left[1+-\frac{\left|J_{1}\right| \cdot 2^{-}}{\left|J_{1}\right|}+1+9\right]-\|\varphi\|_{\mathrm{BMO}_{c}} \\
& \lesssim \frac{|K \cap I|^{1 / 2}|L \cap I|}{|I|^{3 / 2}}\|\varphi\|_{\text {BMO }_{c}},
\end{aligned}
$$

and-

$$
\begin{aligned}
A_{6} & \leq \frac{|K \cap I|^{1 / 2}\left|L^{\prime} \cap I\right|}{|I|^{3 / 2}}\left\|a_{\widetilde{K \cap I}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& =-\frac{|K \cap I|^{1 / 2}\left|L^{\prime} \cap I\right|}{|I|^{3 / 2}}\left\|a_{\widetilde{K \cap I}} \varphi-a_{J} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \lesssim \frac{|K \cap I|^{1 / 2}\left|L^{\prime} \cap I\right|}{|I|^{3 / 2}}\|\varphi\|_{\mathrm{BMO}_{c}}+\frac{|J|^{1 / 2}\left|L^{\prime} \cap I\right|}{|I|^{3 / 2}}\|\varphi\|_{\mathrm{BMO}_{c}} .
\end{aligned}
$$

Analogous-estimates-can-be-computed-for-the-norm-

$$
\left\|\widetilde{P}_{K^{\prime} \cap I} R_{I}\left(\operatorname{Id}-a_{I}\right) \psi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \leq A_{1}^{\prime}+\cdots+A_{6}^{\prime}
$$

by-interchanging $-K$ and $-K^{\prime}$ as -well-as $-L$ and $-L^{\prime}$.- Moreover,-

$$
\begin{aligned}
\| \widetilde{P}_{J} R_{I}(\mathrm{Id}- & \left.-a_{I}\right) \psi \|_{L_{\infty}}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right) \\
& \leq\left\|\widetilde{P}_{J \cap I} \widetilde{T}_{\omega} \widetilde{T}_{\left.I I\right|^{-1}}\left(\psi-a_{J \cap I} \psi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +\| \widetilde{P}_{J \cap I} \widetilde{T}_{\omega} \widetilde{T}_{\mid I}\left(-1\left(a_{I} \widetilde{P}_{J \cap I} \psi-\frac{|J \cap I|}{|I|} a_{J \cap I} \varphi\right) \|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right. \\
& +\left\|\widetilde{P}_{J \cap I} \widetilde{T}_{\omega} \widetilde{T}_{|I|^{-1}}\left(\sum_{n} \frac{\left|K_{n} \cap I\right|}{|I|} a_{J_{n}} \varphi-\frac{|K \cap I|}{|I|} a_{J \cap I} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}
\end{aligned}
$$

$$
\begin{aligned}
& +-\left\|\widetilde{P}_{J \cap I} \widetilde{T}_{\omega} \widetilde{T}_{\mid I}\left(\sum_{n} \frac{\left|K_{n}^{\prime} \cap I\right|}{|I|} a_{J_{n}} \varphi-\frac{|K \cap I|}{|I|} a_{J \cap I} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +-\left\|\widetilde{P}_{J \cap I} \widetilde{T}_{\omega} \widetilde{T}_{|I|^{-1}}\left(\frac{|L \cap I|}{|I|} a_{J \cap I} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +-\left\|\widetilde{P}_{J \cap I} \widetilde{T}_{\omega} \widetilde{T}_{|I|^{-1}}\left(\frac{\left|L^{\prime} \cap I\right|}{|I|} a_{J \cap I} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& =-B_{1}+-B_{2}+-B_{3}+-B_{4}+-B_{5}+-B_{6} .
\end{aligned}
$$

Then, - it- is- clear- that- $B_{1} \leq\|\varphi\|_{\mathrm{BMO}_{c}}$ follows-from-the-identity- $\widetilde{P}_{I \cap J}(\varphi-\psi)=0$.- On the-other-hand,-

$$
\begin{aligned}
& B_{2}=-\frac{1-}{\sqrt{\pi}} \frac{|J \cap I|^{1 / 2}}{|I|^{1 / 2}}\left\|a_{I} \widetilde{P}_{J \cap I} \varphi-a_{I} \widetilde{P}_{J \cap I} a_{J \cap I} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|J \cap I|}{|I|}\left\|\widetilde{P}_{J \cap I} \widetilde{T}_{\omega} \widetilde{T}_{|J \cap I|^{-1}}\left(\varphi-a_{J \cap I} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|J \cap I|}{|I|}\|\varphi\|_{\mathrm{BMO}_{c}} . \\
& B_{3} \leq \frac{|I \cap J|^{1 / 2}}{|I|^{1 / 2}} \sum_{n} \frac{\left|K_{n} \cap I\right|}{|I|}\left\|a_{J_{n}^{\prime}} \varphi-a_{J \cap I} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& =-\frac{|I \cap J|^{1 / 2}|K \cap I|}{|I|^{3 / 2}} \sum_{n} \frac{\left|K_{n} \cap I\right|}{|K \cap I|}\left\|a_{J_{n}} \varphi-a_{J \cap I} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|I \cap J|^{1 / 2}}{|I|^{1 / 2}} \sum_{n} \frac{\left|K_{n} \cap I\right|}{|I|}\left\|a_{J_{n}^{\prime}} \varphi-a_{J \cap I} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|I \cap J|^{1 / 2}|K \cap I|}{|I|^{3 / 2}} \sum_{n} \frac{\left|K_{n} \cap I\right|}{|K \cap I|}\left\|a_{J_{n}} \varphi-a_{\widetilde{K \cap J}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +\frac{|I \cap J|^{1 / 2}|K \cap I|}{|I|^{3 / 2}} \sum_{n} \frac{\left|K_{n} \cap I\right|}{|K \cap I|}+-\left\|a_{\widetilde{K \cap J}} \varphi-a_{J \cap I} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|I \cap J|^{1 / 2}|K \cap I|}{|I|^{3 / 2}}\left[1-+\max \left\{\frac{|K \cap I|^{1 / 2}}{|I \cap J|^{1 / 2}}, \frac{|J \cap I|^{1 / 2}}{|K \cap I|^{1 / 2}}\right\}\right], \\
& B_{4} \leq \frac{|J \cap I|^{1 / 2}\left|K^{\prime} \cap I\right|}{|I|^{3 / 2}} \sum_{n} \frac{\left|K_{n}^{\prime} \cap I\right|}{\left|K^{\prime} \cap I\right|}\left\|a_{J_{n}^{\prime}} \varphi-a_{J \cap I} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|J \cap I|^{1 / 2}\left|K^{\prime} \cap I\right|}{|I|^{3 / 2}} \sum_{n} \frac{\left|K_{n}^{\prime} \cap I\right|}{\left|K^{\prime} \cap I\right|}\left\|a_{J_{n}^{\prime}} \varphi-a_{\widetilde{K^{\prime} \cap I}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +-\frac{|J \cap I|^{1 / 2}\left|K^{\prime} \cap I\right|}{|I|^{3 / 2}} \sum_{n} \frac{\left|K_{n}^{\prime} \cap I\right|}{\left|K^{\prime} \cap I\right|}\left\|a_{J \cap I} \varphi-a_{\widetilde{K^{\prime} \cap I}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}
\end{aligned}
$$

CHAPTER-4.- CALDERỚN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-

KERNEL-

$$
\begin{aligned}
& \lesssim \frac{|J \cap I|^{1 / 2}\left|K^{\prime} \cap I\right|}{|I|^{3 / 2}}\left[1-+\max \left\{\frac{\left|K^{\prime} \cap I\right|^{1 / 2}}{|J \cap I|^{1 / 2}}, \frac{|J \cap I|^{1 / 2}}{\left|K^{\prime} \cap I\right|^{1 / 2}}\right\}\right]-\|\varphi\|_{\mathrm{BMO}_{c}}, \\
& B_{5} \leq \frac{|I \cap J|^{1 / 2}|L \cap I|}{|I|^{3 / 2}}\left\|a_{J \cap I} \varphi-a_{J} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|I \cap J|^{1 / 2}|L \cap I|}{|I|^{3 / 2}}\left\|a_{J \cap I} \varphi-a_{\tilde{K}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +-\frac{|I \cap J|^{1 / 2}|L \cap I|}{|I|^{3 / 2}}\left\|a_{J_{1}} \varphi-a_{\widetilde{K}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +-\frac{|I \cap J|^{1 / 2}|L \cap I|}{|I|^{3 / 2}}\left\|a_{J_{1}} \varphi-a_{J} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \lesssim \frac{|I \cap J|^{1 / 2}|L \cap I|}{|I|^{3 / 2}}\left(1+-\frac{|K|^{1 / 2}}{|J \cap I|^{1 / 2}}\right)-\|\varphi\|_{\mathrm{BMO}_{c}} \\
& \leq \frac{|I \cap J|^{1 / 2}|L \cap I|}{|I|^{3 / 2}}\|\varphi\|_{\mathrm{BMO}_{c}}+\frac{|K|^{1 / 2}|L \cap I|}{|I|^{3 / 2}}\|\varphi\|_{\mathrm{BMO}_{c}}, \\
& B_{6} \leq \frac{|J \cap I|^{1 / 2}\left|L^{\prime} \cap I\right|}{|I|^{3 / 2}}\left\|a_{J \cap I} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{L}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \lesssim \frac{|J \cap I|^{1 / 2}\left|L^{\prime} \cap I\right|}{|I|^{3 / 2}}\|\varphi\|_{\mathrm{BMO}_{c}}+\frac{\left|K^{\prime}\right|^{1 / 2}\left|L^{\prime} \cap I\right|}{|I|^{3 / 2}}\|\varphi\|_{\mathrm{BMO}_{c}} .
\end{aligned}
$$

Now,-it-only-remains-to-prove-that- $\left\|\widetilde{P}_{L \cap J} R_{I}\left(\mathrm{Id}-a_{I}\right) \psi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \lesssim\|\varphi\|_{\mathrm{BMO}_{c}}$ since, by-symmetry,-an-analogous-estimate-follows-for- $\left\|\widetilde{P}_{L / \cap J} R_{I}\left(\mathrm{Id}-a_{I}\right) \psi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}$. Re-
call-that-

$$
\begin{aligned}
& \left\|\widetilde{P}_{L \cap I} R_{I}\left(\operatorname{Id}-a_{I}\right) \psi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq\left\|\widetilde{P}_{L \cap I} \widetilde{T}_{\omega} \widetilde{T}_{\mid X(-1} a_{I} \widetilde{P}_{I \cap J} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +-\left\|\sum_{n \geq 1} \frac{\mid K_{n}(I \mid}{|I|} \widetilde{P}_{L} \widetilde{I}_{I} \widetilde{T}_{\omega} \widetilde{T}_{|I|^{-1}} a_{J_{n}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \begin{array}{l}
+-\| \sum_{n \geq 1} \frac{\left|K_{n}^{\prime} \cap I\right|}{|I|} \widetilde{P}_{L \mathcal{L}} \widetilde{T}_{\omega} \widetilde{T}_{|I|^{-1} a_{J_{n}^{\prime}} \varphi \|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}}=-C_{1}+C_{2}+C_{3} .
\end{array}
\end{aligned}
$$

Then,-if- \widetilde{K} denotes-the-union- $\bigcup_{n=1}^{\infty} J_{n}$,-there-holds-

$$
C_{1} \leq \frac{|L \cap I|^{1 / 2}}{|I|^{1 / 2}}\left\|a_{I} \widetilde{P}_{I \cap J} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}
$$

$$
\begin{aligned}
& \leq \frac{|L \cap I|^{1 / 2}}{|I|^{1 / 2}}\left\|\widetilde{P}_{I \cap J} \widetilde{T}_{\omega} \widetilde{T}_{\mid I(-1} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|L \cap I|^{1 / 2}|I \cap J|^{1 / 2}}{|I|}\left[\mid \widetilde{P}_{I \cap J} \widetilde{T}_{\omega} \widetilde{T}_{|I \cap J|^{-1}}\left(\varphi-a_{I \cap J} \varphi\right) \|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right. \\
& \left.+-\frac{|L \cap I|^{1 / 2}|I \cap J|^{1 / 2}}{|I|} \| \widetilde{P}_{I \cap J} \widetilde{T}_{\omega} \widetilde{T}_{\mid I}\right\}\left.^{S}\right|^{-1}\left(a_{I \cap J} \varphi-a_{\widetilde{K}} \varphi\right) \|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +-\frac{|L \cap I|^{1 / 2}|I \cap J|^{1 / 2}}{|I|}\left\|\widetilde{P}_{I \cap J} \widetilde{T}_{\omega} \widetilde{T}_{|I \cap J|^{-1}}\left(a_{\widetilde{K}} \varphi-a_{J_{1}} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \left.+\frac{|L \cap I|^{1 / 2}|I \cap J|^{1 / 2}}{|I|}\left\|\widetilde{P}_{I \cap J} \widetilde{T}_{\omega} \widetilde{T}_{|I \nmid J|^{-1}}\left(a_{J_{1}} \varphi-a_{J} \varphi\right)\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)}\right] \\
& \lesssim \frac{|L \cap I|^{1 / 2}|I \cap J|^{1 / 2}}{|I|}\left[1+-\frac{\left.|K|^{1}\right|^{2}}{|I \cap J|^{1 / 2}}\right]-\|\varphi\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq\left[\frac{|L \cap I|^{1 / 2}|I \cap J|^{1 / 2}}{|I|}+-\frac{|L \cap I|^{1 / 2}|K|^{1 / 2}}{|I|}\right]\|\varphi\|_{\text {вмО }_{c}} .
\end{aligned}
$$

On-the-other-hand,-it-follows-that-

$$
\begin{aligned}
C_{2} & \leq \frac{|L \cap I|^{1 / 2}}{|I|^{1 / 2}} \sum_{n} \frac{\left|K_{n} \cap I\right|}{|I|}\left\|a_{J_{n}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& =-\frac{|L \cap I|^{1 / 2}|K \cap I|}{|I|^{3 / 2}} \sum_{n} \frac{\left|K_{n} \cap I\right|}{|K \cap I|}\left\|a_{J_{n}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \leq \frac{|L \cap I|^{1 / 2}|K \cap I|}{|I|^{3 / 2}} \sum_{n} \frac{\left|K_{n} \cap I\right|}{|K \cap I|}\left\|a_{J_{n}} \varphi-a_{J_{1}} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{c}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& +-\frac{|L \cap I|^{1 / 2}|K \cap I|}{|I|^{3 / 2}} \sum_{n} \frac{\left|K_{n} \cap I\right|}{|K \cap I|}\left\|a_{J_{1}} \varphi-a_{J} \varphi\right\|_{L_{\infty}\left(\mathcal{M} ; L_{2}^{L}\left(\mathbb{R}, \frac{d t}{1+t^{2}}\right)\right)} \\
& \lesssim \frac{|L \cap I|^{1 / 2}|K \cap I|}{|I|^{3 / 2}}\|\varphi\|_{\text {BMO }_{c}},
\end{aligned}
$$

and-analogous-computations-show-that-

$$
C_{3} \lesssim \frac{|L \cap I|^{1 / 2}\left|K^{\prime} \cap I\right|}{|I|}\|\varphi\|_{\mathrm{BMO}_{c}} .
$$

From-the-expression- 4.8 -for-the- BMO_{c} norm-of- ψ and -the-computations-above,-it-followsthat

$$
\|\psi\|_{\mathrm{BMO}_{c}} \lesssim\|\varphi\|_{\mathrm{BMO}_{c}}
$$

so- that- the constant-does-not-depends-on- J or- φ.- An-analogous-argument-shows-a-row-version-of-Lemma 4.2.18.

4.4 Calderón-Zygmund operators with operator-valued kernel

Let- \mathcal{M} be-a-von-Neumann-algebra-over-a-separable-Hilbert-space.- Through-this-section-we-establish-the-conditions-under-which-a-kernel- K,-defined-outside-the-diagonal-with-values-in- \mathcal{M},-will-induce-a-Calderón-Zygmund-operator-from- $H_{1}^{c}(\mathcal{A})$-into- $L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)$.- As-one-could- expect,- the-resulting-operator-will-be-defined-up-to-a-left- pointwise-multiplication-operator.- Before-giving-a-suitable-definition,-some-facts-about-vector-valued-functions-and-von-Neumann-algebras-should-be-tackled-(see-[14,-Chapter-2]-and-[77,-Section-1.22]).-

Let-X be-a-Banach-space,-and-let- (Ω, μ)-be-a- σ-finite-measure-space-(or-more-generally,-a-localizable-measure-space-[79]).- Then,- - - function $f: \Omega-\mathbb{X}$ is-said-to-be- μ-measurable whenever-there-exists-a-sequence- of-simple-functions- $\left(f_{n}\right)_{n \geq 1},-f_{n}=-\sum_{i}\left(x_{i}^{n} \chi_{A_{i}^{n}}\right.$ for-some
$x_{i}^{n} \in \mathbb{X}$ and- μ-measurable-sets- A_{i}^{n},-such-that-

$$
\lim _{n \rightarrow \infty}-\left\|f_{n}-f\right\|_{\mathbb{X}}=0-\mu-\text { almost-everywhere }
$$

On-the-other-hand,-we-will-say-that-a-function- $f: \Omega-\longrightarrow \mathbb{X}^{*}$ is-weak ${ }^{*} \mu$-measurable if- $J_{x} \circ f$ is-measurable-for-each- $x \in \mathbb{X}$,- where- J_{x} denotes-the-continuous-functional-on- \mathbb{X}^{*} given-by-$J_{x}\left(x^{*}\right)=-x^{*}(x)$-for-every- x^{*} in- \mathbb{X}^{*}.-

Define- $L_{\infty}(\Omega, \mu ; \mathcal{M})$-as-the-Banach-space-of-all- \mathcal{M}-valued-weak* μ-measurable-functions-which-are-essentially-bounded,-that-is,-

$$
\operatorname{esssup}_{t \in \Omega}\|f(t)\|_{\mathcal{M}}<\infty
$$

Then, $-L_{\infty}(\Omega, \mu ; \mathcal{M})$-is-a-von-Neumann-algebra-under-the-pointwise-multiplication.- More-over,- the map-

$$
f \otimes m \longmapsto f(t) m, \quad f \in L_{\infty}(\Omega), m \in \mathcal{M},
$$

can-be-extended-to-a-isomorphism-of- $L_{\infty}(\Omega) \bar{\otimes} \mathcal{M}$ onto- $L_{\infty}(\Omega, \mu ; \mathcal{M})$.-

Definition 4.4.1. Assume that T is a bounded operator on $L_{2}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)$. We say that T is a Calderón-Zygmund-operator- $i f$ there exists some function

$$
K:-\mathbb{R} \times \mathbb{R} \backslash\{x=-y\} \longrightarrow \mathcal{M}
$$

such that for every pair of intervals I, J satisfying $d(I, J)->0$, there exist

- $K_{I, J} \in L_{\infty}(I \times J) \bar{\otimes} \mathcal{M}$,
- $\widehat{K}_{I, J} \in L_{\infty}(I \times J ;-\mathcal{M})$ - such that

$$
\widehat{K}_{I, J}(t)=-K(t) \text {-for-almost-every- } t \in I \times J,
$$

4.4.- CALDERÓN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-KERNEL-

and

$$
\left(f \circ \int\right)(g T f)=-\left\langle f(y) g(x), K_{I, J}\right\rangle_{L_{1}\left(L_{\infty}(I \times J) \bar{\otimes} \mathcal{M}\right), L_{\infty}(I \times J) \bar{\otimes} \mathcal{M}}
$$

for any $f, g \in\left(L_{\infty} \cap L_{2}\right)\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)$-satisfying

$$
\operatorname{supp}_{\mathbb{R}}\|f(y)\|_{L_{2}(\mathcal{M})} \subseteq J \text { and }-\operatorname{supp}_{\mathbb{R}}\|g(x)\|_{L_{2}(\mathcal{M})} \subseteq I
$$

In addition, T will be required to satisfy

$$
T(f h)=-T(f) h
$$

for any compactly supported $f \in L_{2}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)$ - and $h \in \mathcal{M}$.
When studying the boundedness of Calderón-Zygmund operators, the kernel K is usually supposed to satisfy some smoothness conditions. In particular, K will be said to satisfy the Hörmander-condition-whenever

$$
\begin{equation*}
\iint_{|\nmid-y| \geq 2\left|y^{\prime}-y\right|}\left\|K(x, y)--K\left(x, y^{\prime}\right)\right\|_{\mathcal{M}} d x \leq C \tag{4.9}
\end{equation*}
$$

for some constant $C>0$.

Lemma 4.4.2. Let \mathcal{M} be a von Neumann algebra. Let T be a Calderón-Zygmund operator bounded on $L_{2}\left(\mathbb{R} ;-L_{2}(\mathcal{M})\right)$ - with associated kernel

$$
K:-\mathbb{R} \times \mathbb{R} \backslash\{x=-y\} \longrightarrow \mathcal{M}
$$

If K satisfies the condition

$$
\iint_{\mid\left\{-y|\geq \lambda| y^{\prime}-y \mid\right.}\left\|K(x, y)-K\left(x, y^{\prime}\right)\right\|_{\mathcal{M}} d x \leq C
$$

for some constants $\lambda>1$ - and $C>0$, and

$$
T(a)=-T(b) h \text { for }- \text { any }-c-\text { atom },
$$

then there holds

$$
\|T(a)\|_{L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)} \leq \max \left\{C, \lambda^{1 / 2}\|T\|\right\} .
$$

Proof. Let- $a=-b h$ be-a- $c-$ atom-in- $H_{1}^{c}(\mathcal{A})$ - with-support-contained-in-the-interval- $I=-$ $B\left(y_{0}, d\right)$-and-let $-\lambda I=-B\left(y_{0}, \lambda d\right)$.- Then, ${ }^{-}$the-norm-

$$
\|T(a)\|_{L_{1}\left(\mathbb{R} ; L_{1}(\mathcal{M})\right)}=\int_{\lambda I}\|T(a)\|_{L_{1}(\mathcal{M})}+-\int\left(_{\lambda I)^{c}}\|T(a)\|_{L_{1}(\mathcal{M})}\right.
$$

CHAPTER-4.- CALDERÓN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-

KERNEL-
can-be-bounded-in-two-steps.- First,-the-continuity-of- T on- $L_{2}\left(\mathbb{R} ;-L_{2}(\mathcal{M})\right)$-implies-that-

$$
\begin{aligned}
& \int_{\lambda I}\|T(a)\|_{L_{1}(\mathcal{M})}=-\int_{\lambda I}\|T(b) h\|_{L_{1}(\mathcal{M})} \leq\left(\iint_{I}\|T(b)\|_{L_{2}(\mathcal{M})}^{2}\right)^{1 / 2}\left(\int_{\lambda I}\|h\|_{L_{2}(\mathcal{M})}^{2}\right)^{1 / 2} \\
& \leq\|T(b)\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)}|\lambda I|^{1 / 2}\|h\|_{L_{2}(\mathcal{M})} \\
& \leq\left\|T:-L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)-\rightarrow L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)\right\|\|b\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)}|\lambda I|^{1 / 2}\|h\|_{L_{2}(\mathcal{M})} \\
& \leq \lambda^{1 / 2}\left\|T:-L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)-\rightarrow L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)\right\| .
\end{aligned}
$$

On-the-other-hand,-since- I and $-(\lambda I)^{c}$ are-disjoint-measurable-sets-and- b has-integral-zero,-it-follows-

$$
\begin{aligned}
& \left\|T(a) \chi_{(\lambda I)^{c}}\right\|_{L_{1}\left(\mathbb{R} ; L_{1}(\mathcal{M})\right)}=-\left\|T(b) h \chi_{(\lambda I)^{c}}\right\|_{L_{1}\left(\mathbb{R} ; L_{1}(\mathcal{M})\right)}=\underset{\substack{g \in L_{\infty}\left((\lambda I)^{c}\right) \bar{\otimes} \mathcal{M} \\
\|g\|_{L_{\infty} \overline{\mathcal{M}}} \leq 1}}{ } \tau \int(T(b) h g \\
& =-\sup _{g}\left\langle b(y) h g(x), K_{(\lambda I)^{c}, I}\right\rangle \mid=\sup _{g}-\tau \int_{(\lambda I)^{c}} \int\left(\widehat{K}_{(X I)^{c}, I}(x, y)-b(y) h g(x)^{-d x d y}\right. \\
& =-\sup _{g}^{-} \tau \int_{(\lambda I)^{c}} \int\left(\left(\widehat{K}_{\left(\chi_{I}\right)^{c}, I}(x, y)^{-}-\widehat{K}_{\left(\chi_{I)^{c}, I}\right.}\left(x, y_{0}\right)\right)-b(y) h g(x)^{-d x d y}\right. \\
& =\iint_{(}\left(\widehat{K}_{(X I)^{c}, I}(x, y)-\widehat{K}_{(X I)^{c}, I}\left(x, y_{0}\right)\right)^{\left.-b(y) h d y L_{L_{1}\left((\lambda I)^{c} ; L_{1}(\mathcal{M})\right)}\right)} \\
& \left.\leq \iint_{(I)^{c}}\right)\left(\|\left(\widehat{K}_{\left(X_{I)^{c}, I}(x, y)\right.}\right)-\widehat{K}_{(X I)^{c}, I}\left(x, y_{0}\right)\right)-b(y) h \|_{L_{1}(\mathcal{M})} d x d y
\end{aligned}
$$

In-order-to-extend-a-Calderón-Zygmund-operator-to-the-whole-Hardy-space- $H_{1}^{c}(\mathcal{A})$,-we-will-proceed-as-in- 57].- A-family- of-bounded-kernels- will- be-constructed,- yielding-a-bounded-family-of-Calderón-Zygmund-operators-which-will-approximate-the-original-operator.-

Lemma 4.4.3. Let T be a Calderón-Zygmund operator whose associated kernel K satisfies the Hörmander condition 4.9). Then, there exists a sequence of kernels $\left(K_{m}\right)_{m \geq 1} \subseteq$ $L_{\infty}(\mathbb{R} \times \mathbb{R}) \bar{\otimes} \mathcal{M}$ such that

$$
\begin{equation*}
\iint_{|x-y| \geq 4\left|y-y^{\prime}\right|}\left\|K_{m}(x, y)-K_{m}\left(x, y^{\prime}\right)\right\|_{\mathcal{M}} d x \leq C, \tag{4.10}
\end{equation*}
$$

so that the constant C is uniform in m. Moreover, there holds

$$
\lim _{m \rightarrow \infty}^{-}\left\|T_{m}(f)--T(f)\right\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)}=0^{-}
$$

for every $f \in L_{2}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)$.

4.4.- CALDERÓN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-KERNEL-

Proof. Let- ϕ be-a-non-negative-smooth-function-supported-on- $B(0,1)-=-(-1,1)$ - with integral- $\int \phi=-1$ - and-satisfying $-\phi(-t)=-\phi(t)$,- and-let $-R_{m}$ be- the- operator-defined- on$L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)^{-}$to- itself- as $R_{m}(f)^{-}=-f * \phi_{m}$ where $\phi_{m}(x)^{-}=-m \phi(m x)^{-}$. Then,- for any ${ }^{-}$ $f, g \in L_{2}\left(\mathbb{R} ;-L_{2}(\mathcal{M})\right)$-it-follows-that-

$$
\begin{aligned}
\left\langle R_{m} T R_{m} f, g\right\rangle & =-\tau \int\left(R_{m} T R_{m} f(x)-g(x)-d x=-\tau \int\left(\int \left(T R_{m} f(t)-\phi_{m}(x-t)-d t g(x)-d x\right.\right.\right. \\
& =-\tau \iint T\left(\int\left(\phi_{m}(\cdot-y)-f(y)-d y\right)(t)-\phi_{m}(x-t)^{-d t} g(x)-d x\right. \\
& =-\tau \iiint\left(T \phi_{m}(\cdot-y)(t)-f(y)-d y \phi_{m}(x-t)^{-d t} g(x)-d x\right.
\end{aligned}
$$

where- the-last-identity-holds-since-the-integral-in- y can-be-approximated-by-a-particu-lar-chosen-sequence- of- Riemann-sums- whenever- ϕ_{m} and- f belong- to- the- Schwartz- class$\mathcal{S}\left(\mathbb{R} ;-L_{2}(\mathcal{M})\right)$ - (see-[26],-p.- 200]-and-[26],-Theorem-2.3.20]).- Then,- the-argument-follows-for-any- $f \in L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)$-by-density.-In-conclusion,-

$$
\left\langle R_{m} T R_{m} f, g\right\rangle=\tau \iint\left\langle\left\langle\tau_{y} \phi_{m}, \tau_{x} \phi_{m}\right\rangle f(y)^{-g} g(x)^{-} d x d y\right.
$$

where $-\tau_{x} \phi(t)=-\phi(t-x)$.- Therefore,

$$
K_{m}(x, y)=-\left\langle T \tau_{y} \phi_{m}, \tau_{x} \phi_{m}\right\rangle
$$

is- the-kernel- for $-R_{m} T R_{m}$ in- the-sense- of- Definition-4.4.1.- Under- this- definition,- $K_{m} \in$ $L_{\infty}(\mathbb{R} \times \mathbb{R}) \bar{\otimes} \mathcal{M}$ for-any- $m \geq$ 1.- Indeed,

$$
\begin{aligned}
\left\|K_{m}(x, y)\right\|_{\mathcal{M}}= & \sup _{g \in \mathcal{S})}\left|\left\langle K_{m}(x, y), g\right\rangle\right|=\sup _{g} \nmid\left\langle\int\left(T\left(\tau_{y} \phi_{m}\right)^{-} \tau_{x} \phi_{m}, g\right\rangle\right| \\
= & \sup _{g} \nmid\left(-\int(\circ \tau)\left(T\left(\tau_{y} \phi_{m}\right)\right)^{-} \tau_{x} \phi_{m} g\right) \mid(
\end{aligned}
$$

where-the-supremum-can-be-taken-over- g belonging-to- $\mathcal{S}(\mathcal{M})$,-the-subspace-of-operators-in\mathcal{M} supported by a τ-finite projection.- The-operator $-g$ admits-some-partial-isometry- u such-that- $g=-u|g|$,-so-it-follows-that-

$$
\begin{aligned}
\left\|K_{m}(x, y)\right\|_{\mathcal{M}} & =\sup _{g} \dashv\left(-\int(\circ \tau)\left(T\left(\tau_{y} \phi_{m}\right) u|g|^{1 / 2} \tau_{x} \phi_{m}|g|^{1 / 2}\right) \mid\right. \\
& =\sup _{g} \backslash\left(-\int(\circ \tau)\left(T\left(\tau_{y} \phi_{m} u|g|^{1 / 2}\right)-\tau_{x} \phi_{m}|g|^{1 / 2}\right) \mid\right. \\
& \leq \sup _{g}-\left\|T\left(\tau_{y} \phi_{m} u|g|^{1 / 2}\right)\right\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)}\left\|\tau_{x} \phi_{m}|g|^{1 / 2}\right\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)} \\
& \leq \sup _{g}-\left\|\tau_{y} \phi_{m} u|g|^{1 / 2}\right\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)}\left\|\tau_{x} \phi_{m}|g|^{1 / 2}\right\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)} \\
& =\sup _{g}-\left\|\tau_{y} \phi_{m}\right\|_{L_{2}(\mathbb{R})}\|g\|_{L_{1}(\mathcal{M})}^{1 / 2}\left\|\tau_{x} \phi\right\|_{L_{2}(\mathbb{R})}\|g\|_{L_{1}(\mathcal{M})}^{1 / 2}
\end{aligned}
$$

$$
\leq m
$$

On- the-other-hand,- the-kernel- K_{m} satisfies-the-Hörmander-condition-too.- First,- consider-the-case-in-which- $|x-y|>4 / m$.- Then,-there-holds-

$$
\begin{aligned}
\iint_{|x-y| \geq 4\left|y^{\prime}-y\right|} & \left\|K_{m}(x, y)-K_{m}\left(x, y^{\prime}\right)\right\|_{\mathcal{M}} d x \\
& =-\iint_{|x-y| \geq 4\left|y^{\prime}-y\right|}\left\|\left\langle T\left(\tau_{y} \phi_{m}\right)-T\left(\tau_{y^{\prime}} \phi_{m}\right), \tau_{x} \phi_{m}\right\rangle_{L_{2}(\mathbb{R})}\right\|_{\mathcal{M}} d x \\
& =-\iint_{|x-y| \geq 4\left|y^{\prime}-y\right|\|g\|_{L_{1}(\mathcal{M})} \leq 1} \sup _{\mathcal{M}}\left(\left\langle T\left(\tau_{y} \phi_{m}\right)-T\left(\tau_{y^{\prime}} \phi_{m}\right), \tau_{x} \phi_{m}\right\rangle_{L_{2}(\mathbb{R})} g\right)(x .
\end{aligned}
$$

The-functions- $\tau_{y} \phi_{m}-\tau_{y^{\prime}} \phi_{m}$ and $-\tau_{x} \phi_{m}$ have-disjoint-supports-since,-whenever- $u, v \in B(0,1)$,-

$$
\left|x-\frac{u}{m}-\left(y-\frac{v}{m}\right)\right| \geq|x-y|-\frac{2}{m}>\frac{2-}{m}
$$

and-

$$
\left|x-\frac{u}{m}-\left(y^{\prime}-\frac{v}{m}\right)\right| \geq\left|x-y^{\prime}\right|-\frac{2}{m} \geq \frac{3}{4}-|x-y|-\frac{2-}{m}>\frac{|x-y|}{4-}>0 .
$$

Let- $I_{y, y^{\prime}}$ and I_{x} denote-some-disjoint-intervals-containing-the-support-of- $\tau_{y} \phi_{m}-\tau_{y^{\prime}} \phi_{m}$ and$\tau_{x} \phi_{m}$ respectively.- Then,-there-holds-

$$
\begin{aligned}
& \int\left(\int_{|x-y| \geq 4\left|y^{\prime}-y\right|}\left\|K_{m}(x, y)-K_{m}\left(x, y^{\prime}\right)\right\|_{\mathcal{M}} d x\right. \\
& =-\iint_{|x-y| \geq 4\left|y^{\prime}-y\right|} \sup _{g} \backslash\left\langle\left(\tau_{y} \phi_{m}-\tau_{y^{\prime}} \phi_{m}\right)-\tau_{x} \phi_{m} g, K_{I_{x}, I_{y, y^{\prime}}}\right\rangle \mid d x \\
& =-\iint_{|x-y| \geq 4\left|y^{\prime}-y\right|} \sup _{g} \tau \iint\left(\widehat{K}_{I_{x}, I_{y, y^{\prime}}}(u, v)-T\left(\tau_{y} \phi_{m}(v)-\tau_{y^{\prime}} \phi_{m}(v)\right)-\tau_{x} \phi_{m}(u) g d u d v d x\right. \\
& \lesssim \iint_{\mid\left(-y|\geq 4| y^{\prime}-y \mid\right.} \iint\left(\widehat{K}_{I_{x}, I_{y, y^{\prime}}}\left(x-\frac{u}{m}, y+\frac{v}{m}\right)-\widehat{K}_{I_{x}, I_{y, y^{\prime}}}\left(x-\frac{u}{m}, y^{\prime}+\frac{v}{m}\right)-\mathcal{M} d u d v d x .\right.
\end{aligned}
$$

Now, -the-Hörmander-condition-for-the-kernel- K implies-that- K_{m} satisfies- 4.10 -since-

$$
\left|x-\frac{u}{m}-y-\frac{v}{m}\right| \geq|x-y|-\frac{2}{m}>\frac{1}{2}|x-y| \geq 2\left|y^{\prime}-y\right| .
$$

On-the-other-hand,-whenever- $|x-y| \leq 4 / m$ holds,-it- yields-

$$
\begin{aligned}
& \int\left(|x-y| \geq 4\left|y^{\prime}-y\right|\right. \\
& =\int_{|x-y| \geq 4\left|y^{\prime}-y\right|} \sup _{\substack{g \in L_{2}(\mathcal{M}) \\
\|g\|_{L_{2}(\mathcal{M})} \leq 1}} \| \int\left(T\left(\tau_{y} \phi_{m}-\tau_{y^{\prime}} \phi_{m}\right)(t)-g \tau_{x} \phi_{m}(t)-d t \|_{L_{2}(\mathcal{M})} d x\right. \\
& =K_{m}\left(x, y^{\prime}\right) \|_{\mathcal{M}} d x
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sup _{g} \int_{|x-y| \geq 4\left|y^{\prime}-y\right|} \int\left(\left\|T\left(\tau_{y} \phi_{m}-\tau_{y^{\prime}} \phi_{m}\right)(t)-g \tau_{x} \phi_{m}(t)\right\|_{L_{2}(\mathcal{M})} d x d t\right. \\
& \leq \sup _{g} \iint_{|x-y| \geq 4\left|y^{\prime}-y\right|}\left(\int\left(\left\|T\left(\tau_{y} \phi_{m}-\tau_{y^{\prime}} \phi_{m}\right)(t)-g\right\|_{L_{2}(\mathcal{M})}^{2} d t\right)^{1 / 2}\left(\int\left|\tau_{x} \phi_{m}(t)\right|^{2} d t\right)^{1 / 2} d x\right. \\
& \leq\|T\| \sup _{g}-\iint_{\mid\left\{-y|\geq 4| y^{\prime}-y \mid\right.} m^{1 / 2}\left\|\left(\tau_{y} \phi_{m}-\tau_{y^{\prime}} \phi_{m}\right)^{-g}\right\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)} d x .
\end{aligned}
$$

This-integral-is-finite-since,-by-the-mean-value-theorem-for-vector-valued-functions,-

$$
\begin{aligned}
\left\|\left(\tau_{y} \phi_{m}-\tau_{y^{\prime}} \phi_{m}\right)^{-g}\right\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)} & =-\left(\iint_{(0,1 / m)}\left\|\left(\phi_{m}(t-y)^{-}-\phi_{m}\left(t-y^{\prime}\right)\right) g\right\|_{L_{2}(\mathcal{M})}^{2} d t\right)^{1 / 2} \\
& \leq\left(\iint_{(0,1 / m)}\left|y-y^{\prime}\right|^{2} \sup _{c}^{-} \frac{\partial \phi_{m}}{\partial t}(c)^{-g} \|_{L_{2}(\mathcal{M})}^{2} d t\right)^{1 / 2} \\
& =m^{2}\left(\iint_{(0,1 / m)}\left|y-y^{\prime}\right|^{2} \sup _{c}-\phi^{\prime}(m c)^{-g} \|_{L_{2}(\mathcal{M})}^{2}\right)^{1 / 2} \\
& \leq m^{3 / 2}\left|y^{\prime}-y\right| \sup _{c}\left\|\phi^{\prime}(m c) g\right\|_{L_{2}(\mathcal{M})} .
\end{aligned}
$$

Indeed,-then- it-follows-from-the-assumption- $|x-y| \leq 4 / m$ that-

$$
\begin{aligned}
& \iint_{|x-y| \geq 4\left|y^{\prime}-y\right|}\left\|K_{m}(x, y)--K_{m}\left(x, y^{\prime}\right)\right\|_{\mathcal{M}} d x \\
& \leq\|T\| \sup _{g}^{-} \iint_{|x-y| \geq 4\left|y^{\prime}-y\right|} m^{1 / 2}\left\|\left(\tau_{y} \phi_{m}-\tau_{y^{\prime}} \phi_{m}\right)^{-g}\right\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)} d x \\
& \leq\|T\| \iint_{|x-y| \geq 4\left|y^{\prime}-y\right|} m^{2}\left|y^{\prime}-y\right| \sup _{g, c}\left\|\phi^{\prime}(m c) g\right\|_{L_{2}(\mathcal{M})} d x \\
& =-\|T\|\left\|\phi^{\prime}\right\|_{L_{\infty}} \int\left(\int_{|x-y| \geq 4\left|y^{\prime}-y\right|} m^{2}\left|y^{\prime}-y\right| d x\right. \\
& \lesssim\|T\|\left\|\phi^{\prime}\right\|_{L_{\infty}} \iint_{|x-y| \geq 4\left|y^{\prime}-y\right|} \frac{\left|y^{\prime}-y\right|}{|x-y|^{2}} d x=4-\|T\|\left\|\phi^{\prime}\right\|_{L_{\infty}} .
\end{aligned}
$$

Finally,-given- $f \in L_{2}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)$-there-holds-

$$
\begin{aligned}
\left\|T_{m}(f)-T(f)\right\|_{L_{2}} & \leq\left\|R_{m} T\left(R_{m}(f)-f\right)\right\|_{L_{2}}+-\left\|\left(R_{m}-\mathrm{Id}\right) T(f)\right\|_{L_{2}} \\
& \leq\|T\|\left\|R_{m}(f)-f\right\|_{L_{2}}+-\left\|\left(R_{m}-\mathrm{Id}\right) T(f)\right\|_{L_{2}} \rightarrow 0-
\end{aligned}
$$

as- m tends-to-infinity.-
Before- proving- that- a- Calderón-Zygmund-operator- extends- to-a-bounded-operator-from-$H_{1}^{c}(\mathcal{A})$-into- $L_{1}(\mathcal{A})$,-a-fundamental-property-of-Calderón-Zygmund-operators-is-included.-

Proposition 4.4.4. Let \mathcal{M} be a von Neumann algebra and let T be Calderón-Zygmund operator which is bounded on $L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)$ - whose kernel is zero. Then T is an operator of pointwise multiplication by some $F \in L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}$.

CHAPTER-4.- CALDERÓN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-

KERNEL-
Proof. Let- $f \in L_{\infty}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)-\cap L_{2}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)$-such-that-supp $\mathbb{R}_{\mathbb{R}}\|f\|$ is-compact-and-contained-in-some-interval- J.- Then,-we-claim-that-for-any- $g, g^{\prime} \in L_{2}\left(\mathbb{R} ;-L_{2}(\mathcal{M})\right.$)-it-holds-

$$
\begin{equation*}
\left\langle g^{\prime}, T(f g)\right\rangle_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)}=\left\langle g^{\prime}, T(f) g\right\rangle_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)} . \tag{4.11}
\end{equation*}
$$

As-a-consequence-of-Definition 4.4.1.- given- $m \in \mathcal{M} \cap L_{2}(\mathcal{M})$-and- I an-arbitrary-interval,-it-holds-

$$
\begin{aligned}
& \left\langle g^{\prime}\left(\chi_{(\bar{I})^{c}} \otimes 1\right), T\left(f\left(\chi_{I} \otimes m\right)\right)\right\rangle=-\left\langle f(y)\left(\chi_{I} \otimes m\right)(y) g^{\prime}(x)\left(\chi_{\left(\bar{I}{ }^{c}\right.} \otimes 1\right)(x), K_{(\bar{I})^{c}, I \cap J}\right\rangle=0, \\
& \left\langle g^{\prime}\left(\chi_{I} \otimes 1\right), T\left(f\left(\chi_{(\bar{I})^{c}} \otimes m\right)\right)\right\rangle=-\left\langle f(y)\left(\chi_{(\bar{I})^{c}} \otimes m\right)(y) g^{\prime}(x)\left(\chi_{I} \otimes 1\right)(x), K_{I, J \cap(\bar{I})^{c}}\right\rangle=0 .
\end{aligned}
$$

Moreover,-it-follows-

$$
\begin{aligned}
\left\langle g^{\prime}\left(\chi_{I} \otimes 1\right), T(f)\left(\chi_{I} \otimes m\right)\right\rangle & =-\left\langle g^{\prime}\left(\chi_{I} \otimes 1\right), T\left(f\left(\chi_{I} \otimes m\right)\right)\right\rangle \\
& +-\left\langle g^{\prime}\left(\chi_{I} \otimes 1\right), T\left(f\left(\chi_{(\bar{I})^{c}} \otimes m\right)\right)\right\rangle \\
& =-\left\langle g^{\prime}\left(\chi_{I} \otimes 1\right), T\left(f\left(\chi_{I} \otimes m\right)\right)\right\rangle
\end{aligned}
$$

and-

$$
\left\langle g^{\prime}\left(\chi_{(\bar{I})^{c}} \otimes 1\right), T(f)\left(\chi_{I} \otimes m\right)\right\rangle=0=\left\langle g^{\prime}\left(\chi_{(\bar{I})^{c}} \otimes 1\right), T\left(f\left(\chi_{I} \otimes m\right)\right)\right\rangle,
$$

yielding- $\left\langle g^{\prime}, T(f)\left(\chi_{I} \otimes m\right)\right\rangle=-\left\langle g^{\prime}, T\left(f\left(\chi_{I} \otimes m\right)\right)\right\rangle$.- Indeed,-this-identity-remains-valid-when-replacing- $\chi_{I} \otimes m$ by- $h \otimes b \in L_{2}(\mathbb{R})-\otimes\left(\mathcal{M} \cap L_{2}(\mathcal{M})\right)$,-so-claim- 4.11 -follows.-

On- the-other-hand,- there- exists- a- increasing-sequence- of- projections- $\left(e_{i}\right)_{i=1}^{\infty}$ which- have-finite-trace-and-strongly-converges-to-1-in- $L_{2}(\mathcal{M})$.- Therefore,-taking- $1-\leq j \leq j^{\prime}$,

$$
\begin{aligned}
\left\langle g^{\prime}, T\left(\chi_{B(0, j)} \otimes e_{j}\right)\right\rangle & =-\left\langle g^{\prime}, T\left(\chi_{B(0, j)} \chi_{B\left(0, j^{\prime}\right)} \otimes e_{j} e_{j^{\prime}}\right)\right\rangle \\
& =\left\langle g^{\prime}, T\left(\chi_{B\left(0, j^{\prime}\right)} \otimes e_{j^{\prime}}\right)\left(\chi_{B(0, j)} \otimes e_{j}\right)\right\rangle,
\end{aligned}
$$

so-there-holds- $T\left(\chi_{B(0, j)} \otimes e_{j}\right)\left(\chi_{B(0, j)} \otimes e_{j}\right)=-T\left(\chi_{B\left(0, j^{\prime}\right)} \otimes e_{j}^{\prime}\right)\left(\chi_{B(0, j)} \otimes e_{j}\right)$,-and-there-exists some-operator- $F \in L_{2}\left(\mathbb{R} ;-L_{2}(\mathcal{M})\right.$)-such-that-

$$
\left\langle g^{\prime}, F\left(\chi_{B(0, j)} \otimes e_{j}\right)\right\rangle=\left\langle g^{\prime}, T\left(\chi_{B(0, j)} \otimes e_{j}\right)\left(\chi_{B(0, j)} \otimes e_{j}\right)\right\rangle
$$

for-every- $j \geq 1$.- Then,- given- $g \in L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)$-such-that- $\left(\chi_{B(0, j)} \otimes e_{j}\right) g=-g$,

$$
\begin{aligned}
\left\langle g^{\prime}, T(g)\right\rangle & =-\left\langle g^{\prime}, T\left(\left(\chi_{B(0, j)} \otimes e_{j}\right) g\right)\right\rangle=-\left\langle g^{\prime}, T\left(\left(\chi_{B(0, j)} \otimes e_{j}\right)\right)-\left(\chi_{B(0, j)} \otimes e_{j}\right) g\right\rangle \\
& =-\left\langle g^{\prime}, F\left(\chi_{B(0, j)} \otimes e_{j}\right) g\right\rangle=-\left\langle g^{\prime}, F g\right\rangle
\end{aligned}
$$

from-which-follows-that- $T(g)=-F g$ for-every- $g \in L_{2}\left(\mathbb{R} ;-L_{2}(\mathcal{M})\right)$.- It-only-remains-to-checkthat $-F$ is-a-bounded-operator.- Otherwise,-given- $n \in \mathbb{N}$,-there-would-hold-

$$
\left(\int(\otimes \tau)\left(F e_{(n,+\infty)}(|F|)\right)->0^{-}\right.
$$

4.4.- CALDERỚN-ZYGMUND-OPERATORS-WITH-OPERATOR-VALUED-KERNEL-

where- $_{(n,+\infty)}(|F|)$-denotes-the-spectral- projection-for- $|F|$ on-the-set- $(n,+\infty)$ - Since- $\int(\otimes \tau$ is- semifinite,- there- would- exist- - ${ }^{-}$projection- $p_{n} \leq e_{(n,+\infty)}(|F|)$ - with- finite- trace.- Then,$p_{n} \in L_{2}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)$-and- $|F| p_{n} \geq n p_{n}$ so $^{-}$

$$
\left\|T\left(p_{n}\right)\right\|_{L_{2}} \geq n\left\|p_{n}\right\|_{L_{2}}
$$

what-contradicts-the-boundedness-of- T.-

Theorem 4.4.5. Let \mathcal{M} be a von Neumann algebra. Let T be a Calderón-Zygmund operator bounded on $L_{2}\left(\mathbb{R} ;-L_{2}(\mathcal{M})\right)$ - with associated kernel $K:-\mathbb{R} \times \mathbb{R} \backslash\{x=-y\} \rightarrow \mathcal{M}$. If K satisfies Hörmander condition (4.9), then T extends to a bounded operator from $H_{1}^{c}(\mathcal{A})$ into $L_{1}\left(\mathbb{R} ;-L_{1}(\mathcal{M})\right)$.

Proof. Let- $f=-\sum_{i} \lambda_{i} b_{i} h_{i}$ in- $H_{1}^{c}(\mathcal{A})$-such-that- $\sum_{i=1}^{\infty} \lambda_{i} b_{i} h_{i}=0$-in- $L_{1}\left(\mathcal{M} \bar{\otimes} L_{\infty}(\mathbb{R})\right)$.- First, recall-that-since- $K_{m}(x, \cdot)$-belongs-to- $L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}$,-there-holds-

$$
T_{m}\left(\sum_{i} \lambda_{i} b_{i} h_{i}\right)(x)=-\int K_{m}(x, y)-\sum_{i} \chi_{i} b_{i}(y) h_{i} d y=-0 \text {-in- } L_{1}(\mathcal{M}) \text {-for-almost-every-x }
$$

and-

$$
T_{m}(a)(x)=-\int K_{m}(x, y)^{-b}(y) h d y=-\int\left(K_{m}(x, y)^{-b}(y)^{-} d t \cdot h\right.
$$

Therefore,-the-operator $-T$ can-be-extended-to- $c-$ atoms. - Indeed, -given-a- $c-$ atom- $a=-b h=-$ $b^{\prime} h^{\prime},-T_{m}(b) h=-T_{m}\left(b^{\prime}\right) h^{\prime}$ in- $L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)$.- Moreover, $-T(a)$-can-be-defined-as- $T(b) h=-$ $T\left(b^{\prime}\right) h^{\prime}$ since-the-norm-of-the-difference-is-

$$
\left\|T(b) h-T\left(b^{\prime}\right) h^{\prime}\right\|_{L_{1}\left(L_{\infty}(\mathbb{R}) \bar{\otimes} \mathcal{M}\right)} \leq\left\|T(b) h-T_{m}(b) h\right\|_{L_{1}}+\left\|T_{m}\left(b^{\prime}\right) h^{\prime}-T\left(b^{\prime}\right) h^{\prime}\right\|_{L_{1}}
$$

and-

$$
\begin{align*}
\left\|T(b) h-T_{m}(b) h\right\|_{L_{1}(\mathcal{A})} & \leq\left\|T(b) h-T R_{m}(b) h\right\|_{L_{1}}+-\left\|\left(R_{m} T R_{m}(b)-T R_{m}(b)\right) h\right\|_{L_{1}} \\
& \leq\left\|T\left(R_{m} b-b\right) h\right\|_{L_{1}}+-\left\|\left(R_{m}-\operatorname{Id}\right)\left[T R_{m}(b) h\right]\right\|_{L_{1}} . \tag{4.12}
\end{align*}
$$

Regard-that,-given-a-c-atom- $a=-b h$ with-support-contained-in-the-interval- I, -then- $R_{m} a=-$ $\phi_{m} * a=\left(\phi_{m} * b\right) h$ is-a-multiple-of-a- $c-$ atom-since-

$$
\operatorname{supp}_{\mathbb{R}}\left\|\phi_{m} * b(\cdot)\right\|_{L_{2}(\mathcal{M})} \subseteq I+-B(0,1 / m), \quad \int\left(\left(\phi_{m} * b\right)(x)-d x=0\right.
$$

and- $\|\phi * b\|_{L_{2}\left(\mathbb{R} ; L_{2}(\mathcal{M})\right)} \leq \frac{1}{\sqrt{|I|}} .-$ Moreover, $-\phi_{m} * a-a$ is-then-also-a-multiple-of-a-c-atom-and-

$$
\frac{\phi_{m} * a-a}{\left\|\phi_{m} * b-b\right\|_{L_{2}} \sqrt{|\tilde{f}|+|B(0,1 / m)|}} H_{1}^{c} \leq 1
$$

which-implies-that- $\left\|\phi_{m} * a-a\right\|_{H_{1}^{c}} \leq \sqrt{|I|+|B(0,1 / m)|}\left\|\phi_{m} b-b\right\|_{L_{2}}$ goes-to- 0 -as- m grows-for-a-fixed- $c-$ atom- a.- Then,-the-first-term-from- 4.12 -goes-to-zero-as-m-grows-by-a-similarargument to the proof-of-Lemma 4.4 .2 , while the-second-norm-goes to-zero-since- R_{m} is-given-by-convolution-against-an-approximate-identity.- Therefore,-it-follows-that- $T(b) h=-T\left(b^{\prime}\right) h^{\prime}$ in- $L_{1}(\mathcal{A})$.-

Again,-as-a-consequence-of-Lemma-4.4.2,

$$
\begin{equation*}
\left\|T(a)-T_{m}(a)\right\|_{L_{1}\left(\mathbb{R} ; L_{1}(\mathcal{M})\right)} \leq C \tag{4.13}
\end{equation*}
$$

for-some-universal-constant- $C>0$.- Moreover,-

$$
\begin{align*}
\left\|T(a)-T_{m}(a)\right\|_{L_{1}} & \leq\left\|R_{m} T R_{m}(a)-R_{m} T(a)\right\|_{L_{1}}+-\left\|R_{m} T(a)--T(a)\right\|_{L_{1}} \\
& \leq\left\|T\left(R_{m} a-a\right)\right\|_{L_{1}}+-\left\|\left(R_{m}-\mathrm{Id}\right) T a\right\|_{L_{1}} \\
& \leq C \sqrt{|I|+2 / m}\left\|\phi_{m} b-b\right\|_{L_{2}}+-\left\|\left(R_{m}-\mathrm{Id}\right) T a\right\|_{L_{1}} . \tag{4.14}
\end{align*}
$$

Finally,-we-obtain-

$$
\begin{aligned}
\sum_{i=1}^{\infty} \lambda_{i} T\left(b_{i} h_{i}\right)^{-} & \leq \sum_{L_{1}\left(\mathbb{R} ; L_{1}(\mathcal{M})\right)}^{\infty} \hat{i}_{i} T_{m}\left(b_{i} h_{i}\right)^{-}{ }_{L_{1}\left(\mathbb{R} ; L_{1}(\mathcal{M})\right)} \\
& +\sum_{i=1}^{\infty} \chi_{i}\left(T\left(b_{i} h_{i}\right)^{-}-T_{m}\left(b_{i} h_{i}\right)\right)^{-}{ }_{L_{1}\left(\mathbb{R} ; L_{1}(\mathcal{M})\right)} \\
& \leq \sum_{i=1}^{\infty}\left|\lambda_{i}\right|\left\|T\left(b_{i} h_{i}\right)-T_{m}\left(b_{i} h_{i}\right)\right\|_{L_{1}\left(\mathbb{R} ; L_{1}(\mathcal{M})\right)} \\
& \leq \sum_{i=1}^{\infty}\left|\lambda_{i}\right|\left\|T\left(b_{i} h_{i}\right)-T_{m}\left(b_{i} h_{i}\right)\right\|_{L_{1}\left(\mathbb{R} ; L_{1}(\mathcal{M})\right)}
\end{aligned}
$$

The-former-series-tends-to- 0^{-}as- m grows-to-infinity-as-consequence-of- 4.13)-and- (4.14).-This-argument-justifies-the-extension-of-the-map- T to-the-whole- $H_{1}^{c}(\mathcal{A})$-as-

$$
T(f)=\sum_{i=1}^{\infty} \mathfrak{\not}_{i} T\left(b_{i} h_{i}\right)-
$$

regardlesss-of-the-chosen-atomic-decomposition-for- f.-

Remark 4.4.6. As we already mentioned in the introduction to this chapter, all of our results hold for functions in \mathbb{R}^{n}. They also readily extend to more general measure metric spaces so long as the underlying measure is doubling, that is, if the condition

$$
\mu(B(x, 2 r))-\leq C_{\mu} \mu(B(x, r),
$$

holds for all $x \in \operatorname{supp}_{\mathbb{R}}(\mu)$-and all $r>0$. When μ is a measure on \mathbb{R}^{n} which fails the doubling condition the definition of the appropriate BMO -type space and a predual is more involved and due to Tolsa in the classical case [80]. A semicommutative definition in that context can be found in [12]. We believe that all our arguments can be transferred to that setting, although the details can be repetitive and are omitted.

Appendix A

Vector-valued Hardy spaces

This-appendix-contains-an-explicit-argument-for-the-construction-of-the-map-

$$
Q:-L_{2}^{\circ}\left(\mathbb{R},\left(1-+t^{2}\right), d t\right)-\longrightarrow H_{1}\left(\mathbb{R} ;-L_{2}(\mathcal{M})\right)
$$

as- stated- in- the- discussion- preceding-Proposition-4.2.11.- Indeed, - the-map- Q is- consid-ered- whenever- $L_{2}(\mathcal{M})$ - is- replaced- by- any-other- Banach- space.- Moreover,- a- brief- study-of- molecules,- which- give- an- additional- description- of- the- vector-valued- Hardy- space,- is-included.-

Given-a-Banach-space- \mathbb{X} we-say that-a function-a belonging to- $L_{1}\left(\mathbb{R}^{n} ; \mathbb{X}\right)$ is-a- $L_{2}\left(\mathbb{R}^{n} ; \mathbb{X}\right)$-atom-in- $H_{1}\left(\mathbb{R}^{n} ; \mathbb{X}\right)$-whenever-it-satisfies-the-following-conditions:-

- $\operatorname{supp}(a)-\subseteq$ for-some-ball- $B,-$
- $\|a\|_{L_{2}\left(\mathbb{R}^{n} ; \mathbb{X}\right)} \leq \frac{1}{\sqrt{|B|}}$,
- $\int_{\nless} a=-0$.

Then,- $X_{1}\left(\mathbb{R}^{n} ; \mathbb{X}\right)$-is-defined-as-the-subspace-of-those-functions- f in- L_{1} admiting-a-decom-position-

$$
\begin{equation*}
f=-\sum_{i=1}^{\infty} \chi_{i} a_{i} \quad \operatorname{in}-L_{1}\left(\mathbb{R}^{n} ; \mathbb{X}\right)- \tag{A.1}
\end{equation*}
$$

for- $^{-}$some- absolutely- summable- sequence- $\left(\lambda_{i}\right)_{i=1}^{\infty}$ and- some- family- of- $L_{2}\left(\mathbb{R}^{n} ; \mathbb{X}\right)$-atoms$\left\{a_{i}\right\}_{i=1}^{\infty} .^{-}$According-to- 32 ,-the-definition-of- $H_{1}\left(\mathbb{R}^{n} ; \mathbb{X}\right)$-can-be-given-via-maximal-functions the-same-way-it-is-done-in-the-scalar-valued-case.- This-justifies-which-sort-of-convergence-is-considered-in-A.1.--It-can-be-checked-that-the-norm-

$$
\|f\|_{H_{1}\left(\mathbb{R}^{n} ; \mathbb{X}\right)}=-\inf \left\{\sum_{i=1}^{\infty}\left|\lambda_{i}\right|:-f=\sum_{i=1}^{\infty}\left(x_{i} a_{i} \text { for-some }-\left(\lambda_{i}\right)_{i} \in \ell_{1} \text { and } L_{2}-\operatorname{atoms}^{-}\left(a_{i}\right)_{i}\right\}\right.
$$

is- equivalent- to- that- ones- defined- via- maximal- functions- with- values- in- arbitrary- Ba-nach-spaces.- On-the-other-hand,-we-include-below-the-characterization-via- molecules of$H_{1}\left(\mathbb{R}^{n} ; \mathbb{X}\right)$.- which-streamlines-proof-for-the-classical-case-[56,-Ch.-5-Sec.-5].-

Let- \mathbb{X} be- a^{-}Banach- space- and consider- the- function- $w_{s}(x)^{-}=-(1+-|x|)^{s}$ for-some- $s>n$.Then, -the-space-

$$
L_{2}\left(\mathbb{R}^{n}, w(x)-d x ; \mathbb{X}\right)=-\left\{f \left(\in L_{0}\left(\mathbb{R}^{n} ; \mathbb{X}\right):-\int_{\mathbb{R}^{n}}\|f(x)\|_{\mathbb{X}}^{2} w_{s}(x)^{-} d x<\infty\right.\right.
$$

is-contained-in- $L_{1}\left(\mathbb{R}^{n} ; \mathbb{X}\right)$.- We-will-consider-the-subspace-

$$
M^{s}(\mathbb{X})=-\left\{f \left(\in L_{2}\left(\mathbb{R}^{n}, w_{s}(x) d x ; \mathbb{X}\right):-\int_{\mathbb{R}^{n}} f=0^{-}\right.\right.
$$

Lemma A.0.1. $M^{s}(\mathbb{X})$-is a dense linear subspace of $H_{1}\left(\mathbb{R}^{n} ; \mathbb{X}\right)$.
Proof. Let $-f \in M^{s}$ and-define-

$$
f_{0}=-f \chi_{\{|x| \leq 1\}} \text { and }-f_{j}=-f \chi_{\left\{2^{j-1}<|x| \leq 2^{j}\right\}} \text { for }{ }^{-} \text {any }{ }^{-} j>0 .
$$

These-functions-satisfy-

$$
\begin{aligned}
\left\|f_{j}\right\|_{L_{2}\left(\mathbb{R}^{n} ; \mathbb{X}\right)} & =-\left(\iint_{\left\{-1<|x| \leq 2^{j}\right.}\|f(x)\|_{\mathbb{X}}^{2} d x\right)^{1 / 2} \\
& =-\left(\iint_{X^{j-1}<|x| \leq 2^{j}}\|f(x)\|_{\mathbb{X}}^{2} w_{s}(x)-w_{s}(x)^{-1} d x\right)^{1 / 2} \\
& \leq(\iint_{\underbrace{j-1<|x| \leq 2^{j}}}\|f(x)\|_{\mathbb{X}}^{2} w_{s}(x)-d x)^{1 / 2} 2^{-j s / 2} 2^{s / 2}=:-R_{j} 2^{-j s / 2}
\end{aligned}
$$

so- that- the-sequence- $\left(R_{j}\right)_{j \geq 0}$ belongs-to- ℓ_{2}.- Let- I_{j} be-the-integral- $\int_{\notin n} f_{j}$.- Then,- by- the Cauchy-Schwarz-inequality-and-a-similar-computation,-it-follows- that,for- $j \geq 0$ -

$$
\begin{aligned}
\left\|I_{j}\right\|_{\mathbb{X}} & \leq \iint_{\mathcal{P}^{(-1}<|x| \leq 2^{j}}\|f(x)\|_{\mathbb{X}} d x \\
& \leq\left(\iint_{\alpha^{j-1}<|x| \leq 2^{j}}\|f(x)\|_{\mathbb{X}}^{2} w_{s}(x)^{-d x}\right)^{1 / 2}\left(\int_{2^{j-1}<|x| \leq 2^{j}} w_{s}(x)^{-1} d x\right)^{1 / 2} \\
& \leq c(n)-R_{j} 2^{-j(s-n) / 2}
\end{aligned}
$$

where- $c(n)^{-}=-\left(\frac{\pi^{n / 2}\left(1-2^{-n}\right)}{\Gamma(n / 2+1)}\right)^{1 / 2}$.- Therefore,- this- yields-some- estimates- for- $S_{j}=-\sum_{k}\left(\geq_{j} I_{j}\right.$.
Indeed,

$$
\left\|S_{j}\right\|_{\mathbb{X}} \leq c(n)-\sum_{k \geq j} \not R_{k} 2^{-(s-n) k / 2}
$$

Now,-let-us-replace-the-functions- f_{j} by-some-perturbed atoms- a_{j} given-by-

$$
a_{j}(x)=-f_{j}(x)+-S_{j+1}\left|B\left(0,2^{j+1}\right)\right|^{-1} \chi_{|x| \leq 2^{j+1}}(x)--S_{j}\left|B\left(0,2^{j}\right)\right|^{-1} \chi_{|x| \leq 2^{j}}(x) .
$$

Then,-the-sequence- $\left(a_{j}\right)_{j \geq 0}$ satisfies-

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} a_{j}(x)-d x & =-\iint_{2,-1<|x| \leq 2^{j}} f(x)-d x+-S_{j+1}-S_{j} \\
& =-\iint_{\int^{-1}<|x| \leq 2^{j}} f(x)-d x-I_{j}=0 .
\end{aligned}
$$

Moreover, it is-easy to-check that,-by-hypothesis, the support-of- a_{j} is-contained in-B(0, $\left.2^{j+1}\right)$ -and-

$$
\begin{aligned}
\left\|a_{j}\right\|_{L_{2}\left(\mathbb{R}^{n} ; \mathbb{X}\right)} & \leq\left\|f_{j}\right\|_{2}+-\left\|S_{j+1}\right\|_{\mathbb{X}}\left|B\left(0,2^{j+1}\right)\right|^{-1 / 2}\left\|\chi_{|x| \leq 2^{j+1}}\right\|_{2} \\
& +-\left\|S_{j}\right\|_{\mathbb{X}}\left|B\left(0,2^{j}\right)\right|^{-1 / 2} \| \chi_{|x| \leq 2^{j} \|_{2}} \\
& \leq R_{j} 2^{-j s / 2}+c(n)-\sum_{k \geq j+}\left(R_{k} 2^{-(s-n) k / 2}\left|B\left(0,2^{j+1}\right)\right|^{-1 / 2}\right. \\
& +c(n)-\sum_{k \geq j} R_{k} 2^{-(s-n) k / 2}\left|B\left(0,2^{j}\right)\right|^{-1 / 2} \\
& =-\left|B\left(0,2^{j+1}\right)\right|^{-1 / 2}\left[\left|B\left(0,2^{j+1}\right)\right|^{1 / 2} R_{j} 2^{-j s / 2}+c(n)-\sum_{k \geq j+}\left(R_{k} 2^{-(s-n) k / 2}\right.\right. \\
& \left.+c(n)-\sum_{k \geq j} k_{k} 2^{-(s-n) k / 2} \frac{\left|B\left(0,2^{j+1}\right)\right|^{1 / 2}}{\left|B\left(0,2^{j}\right)\right|^{1 / 2}}\right](\\
& =-\left|B\left(0,2^{j+1}\right)\right|^{-1 / 2}\left[c(n) 2^{-j(s-n) / 2} R_{j}+c(n)-\sum_{k \geq j+}\left(R_{k} 2^{-(s-n) k / 2}\right.\right. \\
& \left.+-c(n)-\sum_{k \geq j} R_{k} 2^{-(s-n) k / 2}\right] \cdot(
\end{aligned}
$$

Therefore,-by-taking-

$$
\lambda_{i}=c(n) 2^{-j(s-n) / 2} R_{j}+c(n)-\sum_{k \geq j+1} R_{k} 2^{-(s-n) k / 2}+c(n)-\sum_{k \geq j} R_{k} 2^{-(s-n) k / 2}
$$

then- $\left(\lambda_{i}\right)_{i \in \mathbb{N}} \in \ell_{1}$ by-previous-computations-and-since-

$$
\begin{aligned}
\sum_{j=0}^{\infty} \sum_{k \geq j} k_{j} 2^{-(s-n) k / 2} & \leq \sum_{j=0}^{\infty}\left(\sum_{k \geq j} R_{j}^{2}\right)^{1 / 2}\left(\sum_{k \geq j} \not 2^{-(s-n) k}\right)^{1 / 2} \\
& \lesssim \frac{1}{\left(1-2^{-(s-n)}\right)^{1 / 2}} \sum_{j=0}^{\infty} 2^{-(s-n) j / 2}\|f\|_{L_{2}\left(\mathbb{R},\left(1+t^{2}\right) d t ; L_{2}(\mathcal{M})\right)} \\
& =\frac{1}{\left(1--2^{-(s-n)}\right)^{1 / 2}} \frac{1^{-}}{1-2^{-(s-n) / 2}}\|f\|_{L_{2}\left(\mathbb{R},\left(1+t^{2}\right) d t ; L_{2}(\mathcal{M})\right)}
\end{aligned}
$$

Moreover,-redefining $-a_{i}$ as ${ }^{-} a_{i} / \lambda_{i}$,-we-obtain-the-expression-

$$
f=\sum_{i \in \mathbb{N}} \chi_{i} a_{i}
$$

where-each- a_{i} is-an-atom- with-support- $B\left(0,2^{i+1}\right)$-and-convergence-holds-in-the-sense- of-$L_{1}\left(\mathbb{R},\left(1-+t^{2}\right) d t ; \mathbb{X}\right)$.- In-conclusion, $-f$ belongs-to- $H_{1}\left(\mathbb{R}^{n} ; \mathbb{X}\right)$.-

Definition A.0.2. Let $s>n$ be a real number. A molecule $f \in M^{s}$, centered on x_{0} and of width $d>0$, is defined to be a function belonging to M^{s} which is normalized by

$$
\left(\int_{\mathbb{R}^{n}}\|f(x)\|_{\mathbb{X}}^{2}\left(\not\left(+-\frac{\left|x-x_{0}\right|}{d}\right)^{s} d x\right)^{1 / 2} \leq d^{-n / 2}\right.
$$

Remark A.0.3. Given a molecule f with center x_{0} and width d, some modifications in te proof of the previous lemma implies that the $H_{1}\left(\mathbb{R}^{n} ; \mathbb{X}\right)$ - norm of the molecule does not depend on d and x_{0} but on s and n. More clearly, by defining

$$
f_{0}=-f \chi_{\left\{\left|x-x_{0}\right| \leq d\right\}} \text { and }-f_{j}=-f \chi_{\left\{2^{j-1} d\left|x-x_{0}\right| \leq 2^{j} d\right\}} \text { for-any }-j>0,
$$

then it follows

$$
\left\|S_{j}\right\|_{\mathbb{X}} \leq c(n)-d^{n / 2} \sum_{k \geq j} k_{k} 2^{-(s-n) k / 2}
$$

Define the atoms a_{j} by the relation

$$
a_{j}(x) \cdot \lambda_{i}=-f_{j}(x)+S_{j+1}\left|B\left(0,2^{j+1} d\right)\right|^{-1} \chi_{|x| \leq 2^{j+1} d}(x)--S_{j}\left|B\left(0,2^{j} d\right)\right|^{-1} \chi_{|x| \leq 2^{j} d}(x),
$$

where the coefficients λ_{i} are given by

$$
\begin{aligned}
\lambda_{i} & =-d^{n / 2} c(n) 2^{-j(s-n) / 2} R_{j}+-d^{n / 2} c(n)-\sum_{k \geq j+}\left(R_{k} 2^{-(s-n) k / 2}\right. \\
& +-d^{n / 2} c(n)-\sum_{k \geq j} R_{k} 2^{-(s-n) k / 2}
\end{aligned}
$$

so that their ℓ_{1} sum is bounded by a constant which does not depend on x_{0} or d by translation invariance and since R_{j} is bounded by $d^{-n / 2}$ by hypothesis. Then, it is easy to check the identity $f=-\sum_{i}\left(\lambda_{i} a a_{i}\right.$, that $\operatorname{supp}\left(a_{j}\right)^{-} \subseteq B\left(x_{0}, 2^{j+1} d\right)-$ and $\left\|a_{j}\right\|_{L_{2}\left(\mathbb{R}^{n} ; \mathbb{X}\right)} \leq$ $\left|B\left(x_{0}, 2^{j+1} d\right)\right|^{-1 / 2}$.

Conclusiones

Para-concluir,-destacamos-algunas-ideas-que-extraemos-de-esta-tesis-doctoral.-
Los-resultados-presentados-en-los-capítulos-1 y 2 2 indican-que-el-análisis-armónico-no-con-mutativo-proporciona-un-enfoque-natural-para-el-estudio-de-desigualdades- para-funciones-en-el-cubo-de-Hamming.- Por-ejemplo,-la-estructura-de-cociclo-serevela-como-un-ingrediente-crucial-para-codificar-las-posibles-geometrías-de-un-grupo-discreto-dado.-Estas-técnicas-han-llevado-a-otras-aplicaciones-en-el-análisis-de-álgebras-de-von-Neumann-de-grupo- [39, 24, 40], $y^{-e s p e r a m o s-q u e-s e-c o n s o l i d e n-c o m o-u n a-h e r r a m i e n t a-p a r a-e l-e s t u d i o-d e-d e s i g u a l d a d e s-c o n-~}$ origen-en-la-geometría-métrica-de-espacios-de-Banach.- Por-otro-lado,-la-dimension-free Pisier's inequality obtenida-en-el-capítulo-3 refuerza-las-posibilidades-del-análisis-no-con-mutativo-en-este-contexto,-y-esperamos-que-las-aplicaciones-que-sigan-de-este-resultado-lo-confirmen.-

El-capítulo-4 constituye- una-formulación-rigurosa-del-espacio-BMO con-valores-en-oper-adores-introducido- por-Mei- [54,, un-espacio-que-encuentra-aplicaciones-en-varios-trabajos-recientes- 30, , 11].- Nuestro-enfoque-del-espacio-de-Hardy-con-valores-en-operadores-supone-una-novedad-ya-que-su-definición-solo-depende-de-una-decomposición-atómica-apropiada.-Además,-la-acotación-de-operadores-de-Calderón-Zygmund-de- H_{1}^{c} en- L_{1} con-kernels-con valores-en-operadores-establece-un-marco-prometedor-para-otros-resultados-sobre-interpo-lación-con-espacios-BMO.-

Como-posibles-proyectos-de-trabajo-futuro,-nos-concentramos-en-varios-problemas-abiertos.Primero, en- cuanto- al- contenido- de- los- capítulos-1 y-2 - sería- muy- deseable-obtener- unaversión puramente no-conmutativa-de-la-desigualdad- X_{p} métrica.- En-particular,-una-basada-en-probabilidad-libre-arrojaría-luz-sobre-el-significado-de-las-"traslaciones-no-conmutativas"-en-álgebras-de-von-Neumann-de-grupo.- En-otras- palabras,-la-principal-dificultad-de-este-enfoque-es-representar-la-función-

$$
(x, \varepsilon)-\in \mathbb{Z}_{8 m}^{n} \times \Omega_{n} \mapsto f(x+-\varepsilon)-
$$

cuando-se-sustituye-el-par- $\left(\mathbb{Z}_{8 m}^{n}, \mathbb{Z}_{2}^{n}=\widehat{\Omega_{n}}\right)$ - por-otros- grupos-no-abelianos- $^{-}(\mathrm{G}, \mathrm{H})$.- $\mathrm{Si}^{-}-f=$ -$\lambda_{\mathrm{G}}(\mathrm{g})-\in \mathcal{L}(\mathrm{G})$,-entonces-

$$
" f(x+-\varepsilon) " \simeq \lambda_{\mathrm{G}}(g)-\otimes \Lambda_{\mathrm{H}}\left(\lambda_{\mathrm{G}}(g)\right)-
$$

donde- $\Lambda\left(\lambda_{\mathrm{G}}(g)\right)$-denota-la-"restricción"-del-caracter- $\lambda_{\mathrm{G}}(\mathrm{g})$ a-L(H).- Sin-embargo,-no-hemos-encontrado-una-formulación-satisfactoria-hasta-el-momento,-aunque-guardamos-la-sospecha-de-que- Λ^{-}-debería-tomar-valores-en-un-áłgebra semiconmutativa-que-represente-a- $\mathcal{L}(H)$-en-algún-sentido.-

Otras-cuestiones-surgen-de-nuestro-trabajo-en-el-capítulo-2. Una-forma-adecuada-de-las-desigualdades- X_{p} o- unas-nuevas-desigualdades-métricas- podrían- proporcionar- resultados-de-no-embedabilidad-para-subconjuntos-de-la-clase-de-Schatten- S_{q}^{n} en-el-espacio- S_{p} cuando-$2-<q<p$.- Aparte-de-la-discusión-incluida-al-final-del-capítulo-2,- hemos-intentado-otro-enfoque.- Una-versión-matricial-de-la-desigualdad-métrica- X_{p} puede-ser-construida-a-partir-de- una- desigualdad- que-implica-sucesiones- bisimétricas- en- espacios- L_{p} no- conmutativos-[46,-Theorem-7.1].- En-realidad,-este-resultado-se-sigue-de-la-iteración-de-la-desigualdad-de-Johnson,-Maurey,-Schechtman-y-Tzafriri- 34 -para-sucesiones-simétricas-en-espacios- L_{p} no-conmutativos-[46].- El-único-resultado-que-se-sigue-de-estas-desigualdades- X_{p} matriciales-es el-siguiente:- dados- $2-<q<p$ y- $m, n \in \mathbb{N}$,-la-distorsión-bi-Lipschitz-de- $S_{q}^{n}([m])$-en- $L_{p}(\mathcal{M})$ cumple-

$$
c_{L_{p}(\mathcal{M})}\left(S_{q}^{n}([m])\right)-\gtrsim p, q \min \left\{m^{\frac{1}{2}-\frac{1}{q}}, n^{\frac{(p-q)(q-2)}{q^{2}(p-2)}}\right\} .
$$

Sin-embargo,-este-resultado-ya-se-sigue-del-Corolario-2.4.2 pues-

$$
\min \left\{v^{\frac{(p-q)(q-2)}{q^{2}(p-2)}}, m^{1-\frac{2}{q}}\right\}\left(\begin{array}{l}
<_{p, q} c_{L_{p}(\mathcal{M})}\left([m]_{q}^{n}\right)- \\
\\
\underline{\leq} c_{L_{p}(\mathcal{M})}\left(S_{q}^{n}([m])\right)-c_{S_{q}^{n}([m])}\left([m]_{q}^{n}\right)=c_{L_{p}(\mathcal{M})}\left(S_{q}^{n}([m])\right) .
\end{array}\right.
$$

Esto- puede-sugerir- que- el- orden- correcto- de-la-distorsión- $c_{L_{p}(\mathcal{M})}\left(S_{q}^{n}([m])\right)$ - coincide- con $c_{L_{p}(\mathcal{M})}\left([m]_{q}^{n}\right)$,- pero- no- tenemos- ninguna- pista- sobre-si- alguna-técnica- en- esta-dirección daría-una-cota-superior-adecuada.-

Entre-los-méritos-del-trabajo-de-Naor- 60 -sobre-desigualdades-métricas- X_{p} óptimas,-debe-mos- destacar-su-relación- profunda- con- el- análisis- de-Fourier.- A- lo- largo- de- esta- tesis, hemos-explorado-la- generalización- de-este- argumento-en-el-contexto-de-áłgebras de-von-Neumann-de-grupo,-pero-nos-planteamos-si- una-estrategia-opuesta-funcionaría.- En-otras-palabras,-nuestros-resultados-hasta-ahora-tratan-con-las-herramientas-que-hay-en-el-"lado-de-Fourier":- pensamos-en- $f \in L_{p}\left(\Omega_{n}\right)$ - como- un- operador- que- es- combinación-lineal- de-cuantizaciones-de-funciones-de-Walsh- W_{A},-pero-no-como-una-función-definida-en-un-grupo-cuyas-representaciones-irreducibles-tienen-dimensión-uno.- Por-ejemplo,-podríamos-intentargeneralizar reemplazandofunciones-dependientes-de-variables-de-Rademacher por funciones-en-el-grupo-unitario.- Este-enfoque-se-ve-apoyado-por-la-desigualdad-alternativa-a-46,-The-orem-7.1]-que-está-dada-por-una-expressión-que-implica-a-la-integral-de-Haar-en- $U(n)$,- y-que-está-basada-en-el-trabajo-de-Marcus-y-Pisier-en-series-de-Fourier-aleatorias- 51].-

En-cuanto-a-la-segunda-parte-de-esta-tesis,-proponemos-algunos-problemas.- Es-bien-cono-cido-que-varios- espacios-de-funciones- como-los-espacios- L_{p}, - el- espacio-de-Hardy- $H_{1}\left(\mathbb{R}^{n}\right)$ y - $\mathrm{BMO}\left(\mathbb{R}^{n}\right)$-pueden-ser-descritos-en-términos-de-expansiones-de-ondículas.- En-realidad,-
los- argumentos- presentes- en- las- Secciones- $5.4-$ y- 5.6 - de- 29 - se- pueden- adaptar- para- de-mostrar-que-un-sistema-de-ondículas-suave-es-una-base-completamente-incondicional-para$L_{p}\left(\mathbb{R}^{n} ; L_{p}(\mathcal{M})\right)$.- En-particular,-estaríamos-interesados-en-extender-los-resultados-ya-cono-cidos- para- $H_{1}\left(\mathbb{R}^{n}\right)$ - $[566$,- 32$]$ - a- $H_{1}(\mathcal{A})$.- Para- ello,- el- Teorema-4.4.5 será- una- pieza-clave-(del- mismo- modo- que- en- el- argumento- clásico),- y- puede- que- proporcione- resultados- de-interpolación-a-partir-de-los-métodos-de-Bourgain-y-Pisier-4].

Otra-posibilidad-para-estudiar-los-espacios-de-Hardy- $H_{1}(\mathcal{A})$-son-las-moléculas,-introducidas-en-el-contexto-euclídeo-por-Meyer-56-(ver-también-el-Apéndice A $)$.-Un-análogo-semicon-mutativo-sería-especialmente relevante,-ya-que-daría teoremas-de-acotación para-operadores-de-Calderón-Zygmund-de- H_{1}^{c} en-sí-mismo.- Además,-el-argumento-anterior-está-basado-en-demostrar-que-los-operadores-de-Calderón-Zygmund-envían-átomos-en-moleculas,- por-lo-que-esta-nueva-construcción-sería-complementaria-a-nuestro-trabajo.

Conclusions

To-conclude,-we-highlight-some-ideas-extracted-from-this-Ph.D.-thesis.-
The-results-presented-in-chapters-1 and-2 indicate-that-noncommutative-harmonic-analysis-provides-a-natural-approach-for-studying-inequalities-for-functions-on-the-Hamming-cube.Forinstance, the-cocycle-structure turns-out to-be-a-crucial ingredient in-order to-encode the-distinct-possible-geometries-of-a-given-discrete-group.- These-techniques-have-found-some-other-applications-in-analysis-on-group-von-Neumann-algebras- 39, 24, 40, -and-we-expect-it-to-consolidate-as-a-tool-for-the-study-of-inequalities-with-origin-in-the-metric-geometry-of-Banach-spaces.- On-the-other-hand,- the-dimension-free-Pisier's-inequality-obtained-inchapter 3 reinforces ${ }^{-t h e}$ - possibilities- of noncommutative-analysis- in- this- context,- and- we-expect-that-applications-which-follow-from-this-result-will-confirm-it.-

Chapter-4 constitutes-a-rigorous-formulation-of-the-operator-valued-BMO space-introduced-by-Mei-[54],-a space-which finds-applications in-several works from recent years-[30, 11].- Our-approach-through- the-operator-valued-Hardy-space-supposes-a-novelty-since-its-definition-only- depends- on- an- appropriate- atomic- decomposition.- Moreover,- the- boundedness- of-Calderón-Zygmund-operators-from- H_{1}^{c} to- L_{1} with-operator-valued-kernels- establishes-a promising-framework-for-further-results-about-interpolation-with-BMO spaces.-

As-further-work,-we-focus-on-several-open-problems.- First,-regarding-the-content-of-chap-ters-1 and 2 -a-purely-noncommutative-version-of-the-metric- X_{p} inequality-would-be-desir-able.- In-particular,-one-based- on-free-probability-would-shed-light-about-the-meaning-of-"noncommutative-translations"-in-group-von-Neumann-algebras.- In-other-words, - the-main-difficulty-from-this-approach-is-representing-the-function-

$$
(x, \varepsilon)-\in \mathbb{Z}_{8 m}^{n} \times \Omega_{n} \mapsto f(x+-\varepsilon)
$$

when- replacing-the- pair- $\left(\mathbb{Z}_{8 m}^{n}, \mathbb{Z}_{2}^{n}=\widehat{\Omega_{n}}\right)$ by-nonabelian- groups- (G, H).- Whenever- $f=-$ $\lambda_{\mathrm{G}}(\mathrm{g})-\in \mathcal{L}(\mathrm{G})$, , then-

$$
" f(x+-\varepsilon) " \simeq \lambda_{\mathrm{G}}(g)-\otimes \Lambda_{\mathrm{H}}\left(\lambda_{\mathrm{G}}(g)\right)-
$$

where- $\Lambda\left(\lambda_{\mathrm{G}}(g)\right)$ - denotes- the- "restriction" - of- the- character- $\lambda_{\mathrm{G}}(\mathrm{g})$ - to $-\mathcal{L}(\mathrm{H})$.- However,- we-have-not-found-a-satisfactory-formulation-yet,-although-we-have-the-suspicion-that- Λ-would-need-to-take-values-in-a-semicommutative-algebra-which-represents- $\mathcal{L}(H)$-in-some-sense.-

Some-other-questions-arise from-our-work from-chapter2- A-suitable form-of X_{p} inequalities-or-some-new-metric-inequalities-may-provide-nonembeddability-results-for-subsets-of-the-Schatten-class- S_{q}^{n} into the-space ${ }^{-} S_{p}$ whenever $2-<q<p$.- Apart from the-discussion includedat the- end- of- chapter-2,- we- tried- another approach.- A- matricial- version- of the- metricX_{p} inequality- can- be- constructed- relying- on- an- inequality- which- involves- bisymmetric-sequences- in- noncommutative- L_{p} spaces- [46,- Theorem-7.1].- Actually,- this- result- follows-from-the-iteration-of-the-inequality-by-Johnson,-Maurey,-Schechtman-and-Tzafriri-[34]-for-symmetric-sequences-in-noncommutative- L_{p} spaces-[46].- The-only-result-that-follows-from-these- matricial- \mathbf{X}_{p} inequalities- is- the-following:- for- every- $2^{-}<q<p$ and- $m, n \in \mathbb{N}$,- the-bi-Lipschitz-distorsion-of- $S_{q}^{n}([m])$-into- $L_{p}(\mathcal{M})$-satisfies

$$
c_{L_{p}(\mathcal{M})}\left(S_{q}^{n}([m])\right)-\gtrsim_{p, q} \min \left\{m^{\frac{1}{2}-\frac{1}{q}}, n^{\frac{(p-q)(q-2)}{q^{2}(p-2)}}\right\} .
$$

However,-this-result-already-follows-from-Corollary 2.4 .2 since-

This-may-suggest-that-the-correct-order-for-the-distortion-c $c_{L_{p}(\mathcal{M})}\left(S_{q}^{n}([m])\right)$-coincides-with $c_{L_{p}(\mathcal{M})}\left([m]_{q}^{n}\right)$,- but- we-have-no-clue-about- whether-any-technique-in-this-direction- would-give-a-suitable-upper-bound.-

Among-the-merits-of-the-work-by-Naor- $\left[60\right.$-about-sharp-metric- X_{p} inequalities,- we-must-highlight-its-deep-relationship-with-Fourier-analysis.- During-this-thesis,-we-have-explored-the-extension-of-this-argument-to-the-context-of-group-von-Neumann-algebras,-but-we-askourselves if-an-opposite-strategy would work.- In-other-words,-our results-so-far-deal-with the-tools-which-are-present-in-the-"Fourier-side":- we-think-of- $f \in L_{p}\left(\Omega_{n}\right)$-as-an-operator-which-is-a-linear-combination-of-quantizations-of-the-Walsh-functions- W_{A},-but-not-as-a-function-on-a-group-whose-irreducible-representations-are-one-dimensional.- For-instance,-we-could-try-to-generalize-replacing-functions-depending-on-Rademacher-variables-by-functions-on-the- unitary- group- $U(n)$.- This-approach-is-supported-by-an-alternative-inequality-to- 46,-Theorem-7.1]-which-is-given-by-an-expression-that-involves-the-Haar-integral-on- $U(n)$,-and-which-is-based-on-the-work-by-Marcus-and-Pisier-on-random-Fourier-series- 51.-

Regarding- the-second- part- of- this- thesis,-some-further-directions- can-be- proposed.- It- is-a- well-known-fact- that- function-spaces-such-as- L_{p} spaces,- the-Hardy-space- $H_{1}\left(\mathbb{R}^{n}\right)$-and-$\mathrm{BMO}\left(\mathbb{R}^{n}\right)$-can-be-described-in-terms-of-wavelet-expansions.- Actually,-the-arguments-from-Sections-5.3-and- 5.6 - from- 29 -can-be-adapted- in- order-to-show- that-a-smooth-system- of-wavelets- is- a- completely unconditional- basis- for- $L_{p}\left(\mathbb{R}^{n} ; \mathcal{A}\right)$.- In- particular,- we- would- be-interested- in-extending-the-already-known-results-for- $H_{1}\left(\mathbb{R}^{n}\right)$ - $[56,-\sqrt{32}]$ - to- $H_{1}(\mathcal{A})$.- For-that-purpose,- Theorem-4.4.5 will-be-a-key-tool- (as-it-is-in-the-classical-argument),-and-it-may-yield-interpolation-results-following-the-methods-by-Bourgain-and-Pisier-[4].-

Another- possibility-for-studying-operator-valued-Hardy-spaces- $H_{1}^{c}(\mathcal{A})$ - are- molecules,- in-troduced-in-the-Euclidean-context-by-Meyer- 56]-(see-also-Appendix-A).-A-semicommuta-
tive- analogue- will-be-specially-relevant,-since-it- would- provide-boundedness- theorems-for-Calderón-Zygmund-operators-from- H_{1}^{c} to-itself.- Moreover,-the-former-argument-is-based on- showing- that- a- Calderón-Zygmund- operator- sends- atoms- to- molecules, - so- this- new-construction-would-be-complementary-to-our-work.-

Bibliography

[1]- S.-Banach.- Théorie des opérations linéaires.- Éditions- Jacques-Gabay,- Sceaux,-1993.-Reprint-of-the-1932-original.-
[2]- P.-Biane.- Free-hypercontractivity.- Comm. Math. Phys.,-184(2):457-474,-1997.-
[3]- J.-Bourgain.- The-metrical-interpretation-of-superreflexivity-in-Banach-spaces.- Israel J. Math.,-56:222-230,-1986.-
[4]- J.-Bourgain.-Some-consequences-of-Pisier's-approach-to-interpolation.- Israel J. Math.,-77(1-2):165-185,-1992.-
[5]- M.-Bożejko,-T.-Januszkiewicz,-and-R.J.-Spatzier.-Infinite-Coxeter-groups-do-not-have-Kazhdan's-property.- J. Operator Theory,-19:63-67,-1988.-
[6]- L.-Cadilhac.- Weak-boundedness-of-Calderón-Zygmund-operators-on-noncommutative-L_{1}-spaces.- J. Funct. Anal.,-274(3):769-796,-2018.-
[7]- L.-Cadilhac,-J.-M.-Conde-Alonso,-and-J.-Parcet.-Spectral-multipliers-in-group-algebras-and-noncommutative-Calderón-Zygmund-theory.- J. Math. Pures Appl. (9),-163:450--472,-2022.
[8]- A.-I.-Cano-Mármol,-J.-M.-Conde-Alonso,-and-J.-Parcet.- Trigonometric-chaos-and-X ${ }_{p}$ inequalities-I:-Balanced-Fourier truncations-over-discrete-groups.-Preprint-available-at-https://arxiv.org/abs/2209.05986.-
[9]- A.- I.- Cano-Mármol,- J.- M.- Conde-Alonso,- and- J.- Parcet.- Trigonometric- chaos- andX_{p} inequalities-II:- X_{p} inequalities-with-sharp-scaling-parameter.-Preprint-available-at-https://arxiv.org/abs/2209.05991.-
[10]- E.-A.-Carlen-and-E.-H.-Lieb.- Optimal-hypercontractivity-for-Fermi-fields-and-related-noncommutative-integration-inequalities.- Comm. Math. Phys.,-155(1):27-46,-1993.-
[11]- J.-M.-Conde-Alonso,-A.M.-González-Pérez,-J.-Parcet,-and-E.-Tablate.-Schur-multipli-ers-in-Schatten-von-Neumann-classes.- Ann.-of-Math.,-to-appear,-2023.-
[12]- J.-M.-Conde-Alonso-and-J.-Parcet.-Nondoubling-Calderón-Zygmund-theory:- a-dyadic-approach.- J. Fourier Anal. Appl.,-25(4):1267-1292,-2019.-
[13]- K.-de-Leeuw.- On- L_{p} multipliers.- Ann. of Math.,-81:364-379,-1965.-
[14]- J.-Diestel-and-J.-J.-Uhl,-Jr.- Vector measures.-Mathematical-Surveys,-No.-15.-American-Mathematical-Society,-Providence,-R.I.,-1977.- With-a-foreword-by-B.-J.-Pettis.-
[15]- E.-G.-Effros-and-Z.-Ruan.- Operator spaces,-volume-23-of-London Mathematical Society Monographs. New Series.- The-Clarendon-Press,- Oxford-University-Press,-New-York,2000.
[16]- P.-Enflo.- On-infinite-dimensional-topological-groups.- In-Séminaire sur la Géométrie des Espaces de Banach (1977-1978),- pages-Exp.- No.- 10-11,- 11.- École- Polytech.,-Palaiseau,-1978.-
[17]- C.- Fefferman-and-E.- M.- Stein.- H^{p} spaces- of- several- variables.- Acta Math.,-129(3-4):137-193,-1972.
[18]- T.-Figiel.-Singular-integral-operators:- a-martingale-approach.-In-Geometry of Banach spaces (Strobl, 1989),- volume-158- of London Math. Soc. Lecture Note Ser.,- pages-95-110.-Cambridge-Univ.-Press,-Cambridge,-1990.-
[19]- G.- B.-Folland.- A course in abstract harmonic analysis.- Textbooks-in-Mathematics.-CRC-Press,-Boca-Raton,-FL,-second-edition,-2016.-
[20]- J.-García-Cuerva-and-J.-L.-Rubio-de-Francia.- Weighted norm inequalities and related topics,-volume-116-of-North-Holland Mathematics Studies.- North-Holland-Publishing-Co.,-Amsterdam,-1985.- Notas-de-Matemática-[Mathematical-Notes],-104.-
[21]- J.- B.- Garnett.- Bounded analytic functions,-volume-236- of- Graduate Texts in Mathe-matics.- Springer,-New-York,-first-edition,-2007.-
[22]- E.- D.- Gluskin,- A.-Pietsch,- and- J.-Puhl.- A- generalization- of-Khintchine's-inequality-and-its-application-in-the-theory-of-operator-ideals.-Studia Math.,-67(2):149-155,-1980.-
[23]- S.- Goldstein-and-L.- Labuschagne.- Notes on noncommutative L^{p} and Orlicz spaces.-Wydawnictwo-Uniwersytetu-Lódzkiego,-Lódź,-2020.-
[24]- A.-M.-González-Pérez,-M.-Junge,-and-J.-Parcet.- Smooth-Fourier-multipliers-in-group-algebras-via-Sobolev-dimension.-Ann. Sci. Éc. Norm. Supér. (4),-50:879-925,-2017.-
[25]- A.- M.- González-Pérez,- M.- Junge,- and- J.-Parcet.- Singular-integrals-in-quantum-Eu-clidean-spaces.- Mem. Amer. Math. Soc.,-272(1334):xiii+90,-2021.-
[26]- L.-Grafakos.- Modern Fourier analysis,-volume-250-of-Graduate Texts in Mathematics.-Springer,-New-York,-second-edition,-2009.-
[27]- U.-Haagerup.- An-example-of-a-nonnuclear- C^{*}-algebra,-which-has-the-metric-approxi-mation-property.- Invent. Math.,-50:279-293,-1978/79.-
[28]- U.- Haagerup-and- G.- Pisier.- Bounded-linear-operators-between- C^{*}-algebras.- Duke Math. J.,-71:889-925,-1993.-
[29]- E.-Hernández-and-G.-Weiss.- A first course on wavelets.- Studies-in-Advanced-Mathe-matics.-CRC-Press,-Boca-Raton,-FL,-1996.- With-a-foreword-by-Yves-Meyer.-
[30]- G.-Hong-and-Z.-Yin.- Wavelet-approach-to-operator-valued-Hardy-spaces.- Rev. Mat. Iberoam.,-29(1):293-313,-2013.-
[31]- L.-Hörmander.-Estimates for translation-invariant-operators-in- L^{p} spaces.- Acta Math.,-104:93-140,-1960.-
[32]- T.-Hytönen.- Vector-valued-wavelets-and-the-Hardy-space- $H^{1}\left(\mathbb{R}^{n}, X\right)$.- Studia Math.,-172(2):125-147,-2006.-
[33]- P.-Ivanisvili,-R.van-Handel,-and-A.-Volberg.-Rademacher type-and-Enflotype-coincide. Ann. of Math. (2),-192(2):665-678,-2020.-
[34]- W.-B.- Johnson,-B.-Maurey,-G.-Schechtman,-and-L.-Tzafriri.- Symmetric-structures-in-Banach-spaces.- Mem. Amer. Math. Soc.,-19(217),-1979.-
[35]- W.-B.-Johnson,-G.-Schechtman,-and-J.-Zinn.-Best-constantsin-moment-inequalities for-linear-combinations-of-independent-and-exchangeable-random-variables.-Ann. Probab.,-13(1):234-253,-1985.-
[36]- M.-Junge.- Fubini's-theorem-for-ultraproducts-of-noncommutative- L_{p}-spaces.- Canad. J. Math.,-56:983-1021,-2004.
[37]- M.-Junge,-C.-Le-Merdy,-and-Q.-Xu.- H^{∞} functional-calculus-and-square-functions-on-noncommutative- L^{p}-spaces.- Astérisque,-(305):vi+138,-2006.-
[38]- M.- Junge-and-T.-Mei.- Noncommutative-Riesz- transforms-a-probabilistic-approach.Amer. J. Math.,-132:611-680,-2010.-
[39]- M.-Junge,-T.-Mei,-and-J.-Parcet.-Smooth-Fourier-multipliers-on-group-von-Neumann-algebras.- Geom. Funct. Anal.,-24:1913-1980,-2014.-
[40]- M.-Junge,-T.-Mei,-and-J.-Parcet.-Noncommutative-Riesz-transforms-dimension-free-bounds-and-Fourier-multipliers.- J. Eur. Math. Soc.,-20:529-595,-2018.-
[41]- M.-Junge,-T.-Mei,- J.-Parcet,-and-R.-Xia.- Algebraic-Calderón-Zygmund-theory.- Adv. Math.,-376:Paper-No.-107443,-72,-2021.-
[42]- M.- Junge,-C.-Palazuelos,- J.-Parcet,-and-M.-Perrin.- Hypercontractivity-in- group- von-Neumann-algebras.- Mem. Amer. Math. Soc.,-249(1183),-2017.-
[43]- M.-Junge-and-J.-Parcet.- The-norm-of-sums-of-independent-noncommutative-random-

[44]- M.- Junge,- J.- Parcet,- and- Q.- Xu.- Rosenthal- type-inequalities- for- free- chaos.- Ann. Probab.,-35:1374-1437,-2007.-
[45]- M.- Junge- and- Q.- Xu.- Noncommutative-Burkholder/Rosenthal-inequalities.- Ann. Probab.,-31:948-995,-2003.-
[46]- M.-Junge-and-Q.-Xu.- Noncommutative-Burkholder/Rosenthal-inequalities.-II.-Appli-cations.- Israel J. Math.,-167:227-282,-2008.-
[47]- M.- I.- Kadec.- Linear- dimension- of- the ${ }^{-}$spaces- L_{p} and- l_{q}. $^{-}$Uspehi Mat. Nauk,- 13(6-(84)):95-98,-1958.-
[48]- F.- Lust-Piquard.- Inégalités-de-Khintchine-dans- $C_{p}(1-<p<\infty)$.- C. R. Acad. Sci. Paris Sér. I Math.,-303:289-292,-1986.-
[49]- F.-Lust-Piquard.-Riesz-transforms-associated-with-the-number-operator-on-the-Walsh-system-and-the-fermions.- J. Funct. Anal.,-155:263-285,-1998.-
[50]- P.-Mankiewicz.-On-Lipschitz-mappings-between-Fréchet-spaces.-Studia Math.,-41:225--241,-1972.-
[51]- M.- B.-Marcus-and-G.-Pisier.- Random Fourier series with applications to harmonic analysis.-Annals-of-Mathematics-Studies,-No.-101.-Princeton-University-Press,-Prince-ton,-N.J.;-University-of-Tokyo-Press,-Tokyo,-1981.-
[52]- B.- Maurey.- Type,-cotype-and-K-convexity.- In-Handbook of the geometry of Banach spaces, Vol. 2,-pages-1299-1332.-North-Holland,-Amsterdam,-2003.-
[53]- R.-E.- Megginson.- An introduction to Banach space theory,-volume-183- of- Graduate Texts in Mathematics.- Springer-Verlag,-New-York,-1998.-
[54]- T.- Mei.- Operator-valued-Hardy-spaces.- Mem. Amer. Math. Soc.,-188(881):vi+64,-2007.-
[55]- T.-Mei-and-É:-Ricard.- Free-Hilbert-transforms.- Duke Math. J.,-166:2153-2182,-2017.-
[56]- Y.- Meyer.- Wavelets and operators,- volume- 37- of- Cambridge Studies in Advanced Mathematics.- Cambridge- University-Press,- Cambridge,-1992.- Translated- from- the-1990-French-original-by-D.-H.-Salinger.
[57]- Y.-Meyer-and-R.-Coifman.- Wavelets,- volume-48-of-Cambridge Studies in Advanced Mathematics.- Cambridge-University-Press,-Cambridge,-1997.- Calderón-Zygmund-and-multilinear-operators,- Translated- from- the-1990-and-1991-French-originals-by-David-Salinger.-
[58]- S.- G.- Mikhlin.- On- the- multipliers- of- Fourier- integrals.- Dokl. Akad. Nauk SSSR,-109:701-703,-1956.-
[59]- A.-Naor.- An-introduction-to-the-Ribe-program.- Jpn. J. Math.,-7(2):167-233,-2012.-
[60]- A.-Naor.- Discrete-Riesz-transforms-and-sharp-metric- X_{p} inequalities.- Ann. of Math.,-184:991-1016,-2016.-
[61]- A.-Naor,-G.-Pisier,-and-G.-Schechtman.- Impossibility- of-dimension-reduction-in-the-nuclear-norm.- Discrete Comput. Geom.,-63(2):319-345,-2020.-
[62]- A.-Naor-and-G.-Schechtman.- Remarks-on-non-linear-type-and-Pisier's-inequality.- J. Reine Angew. Math.,-552:213-236,-2002.-
[63]- A.-Naor-and-G.-Schechtman.- Metric- X_{p} inequalities.- Forum Math. $\Pi,-4: e 3,-81,-2016 .-$
[64]- R.-O'Donnell.- Analysis of Boolean functions.-Cambridge-University-Press,-New-York,-2014.-
[65]- R.- E.- A.- C.- Paley.- Some- theorems on abstract- spaces.- Bull. Amer. Math. Soc.,-42(4):235-240,-1936.
[66]- J.- Parcet.- Pseudo-localization- of- singular-integrals- and- noncommutative- Calderón-Zygmund-theory.- J. Funct. Anal.,-256(2):509-593,-2009.-
[67]- G.- Pisier.- Holomorphic- semigroups- and- the- geometry- of- Banach- spaces.- Ann. of Math.,-115:375-392,-1982.-
[68]- G.-Pisier.-Non-commutative-vector-valued- L_{p}-spaces-and-completely-p-summing-maps.-Astérisque,-(247):vi+131,-1998.-
[69]- G.-Pisier.- Introduction to operator space theory,-volume-294-of-London Mathematical Society Lecture Note Series.- Cambridge-University-Press, Cambridge,-2003.-
[70]- G.-Pisier-and-Q.- Xu.- Non-commutative- L^{p}-spaces.- In- Handbook of the geometry of Banach spaces, Vol. 2,-pages-1459-1517.-North-Holland,-Amsterdam,-2003.-
[71]- M.- Ribe.- On- uniformly-homeomorphic- normed- spaces.- Ark. Mat.,- 14(2):237-244,1976.
[72]- É:-Ricard.- Décomposition de H1, Multiplicateurs de Schur et Espaces d'Operateurs.-PhD-thesis,-Université-Paris-6,-2001.-
[73]- H.-P.-Rosenthal.-On-the-subspaces-of- $L^{p}(p>2)$-spanned-by-sequences-of-independent-random-variables.- Israel J. Math.,-8:273-303,-1970.-
[74]- W.-Rudin.- Fourier analysis on groups.- Wiley-Classics-Library.-John-Wiley-\&-Sons,-Inc.,-New-York,-1990.-Reprint-of-the-1962-original,-A-Wiley-Interscience-Publication.-
[75]- W.-Rudin.- Functional analysis.-International-Series in-Pure-and-Applied-Mathematics.-McGraw-Hill,-Inc.,-New-York,-second-edition,-1991.-
[76]- R.-A.-Ryan.- Introduction to tensor products of Banach spaces.- Springer-Monographs-in-Mathematics.-Springer-Verlag-London,-Ltd.,-London,-2002.-
[77]- S.-Sakai.- C^{*}-algebras and W^{*}-algebras.- Ergebnisse-der-Mathematik-und-ihrer-Gren-zgebiete,-Band-60.-Springer-Verlag,-New-York-Heidelberg,-1971.-
[78]- I.- J.-Schoenberg.- Metric-spaces-and-completely-monotone-functions.- Ann. of Math.,-39:811-841,-1938.-
[79]- I.-E.-Segal.- Equivalences-of-measure-spaces.- Amer. J. Math.,-73:275-313,-1951.-
[80]- X.- Tolsa.- BMO,- H^{1},- and-Calderón-Zygmund-operators- for- non-doubling- measures.Math. Ann.,-319(1):89-149,-2001.-
[81]- Q.-Xu.- Noncommutative- L^{p} spaces.-Book-in-preparation.-

