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Abstract

Robust and accurate automatic speaker and language recognition, through the voice signal,

remains a challenge for the scientific community mainly due to an old and well-known ’enemy’:

the session variability, defined as the set of variations among recordings belonging to a same

identity (either speaker or language respectively).

During the past decades the issue of compensating/removing undesired variability effects

has been broadly accepted as one of the biggest challenges in the field, giving rise to a number

of publications full of new manners of somehow avoiding or cleaning the distortions present

in the speech signal. However, major advances in the field have not been achieved until the

development of new schemes based on Factor Analysis (FA) modelling. This fact responds to

the conjunction of several ideas, properly combined in FA, which can be roughly summed up

in two key points. First, exploiting prior knowledge in order to model session variability rather

than directly removing it; and second, considering session variability as a continuous source

rather than a discrete one.

This Ph.D. Thesis is focused on the study, analysis and development of new forms to palliate

in a proper way the effects of the session variability problem through recent compensation

schemes based on classical FA. In this sense, an extent analysis of the use and mathematical

background of FA-based techniques, from the eigen-channels approach to more sophisticated

schemes such as Joint Factor Analysis has been conducted.

Further, a special focus has been placed on the use of FA techniques applied to challenging

scenarios, as those where the available background data is far from target conditions or the

amount of train/test speech is very limited. This is a common case in the increasingly relevant

forensic speaker recognition area. Regarding the experimental framework, well-defined and

challenging recent automatic speaker and language recognition evaluations (SRE’08 and LRE’09

respectively) have been employed to assess the proposed and studied methods.
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Miriam Moreno, Virginia Ruiz, Alberto Harriero, Alejandro Abejón, Daniel Hernández, Danilo
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Mathematical Notation

A consistent mathematical notation has been tried throughout this Dissertation, sometimes

at the expense of usual or original conventions in other fields or works. Following symbols denote

corresponding definitions:

x Scalar.

x Multidimensional column vector.

X Matrix.

X
T The transpose of matrix X.

X
−1 The inverse of matrix X.

diag(X) Diagonal of matrix X.

tr(X) Trace of matrix X.

(x1, ...xD)T Column vector of D elements.

ID D ×D identity matrix (abbreviated to I if there is no ambiguity).

x1, ...,xN N samples (multidimensional column vectors).

o1, ...,oN N speech observations (feature vectors in columns form).

X Data or observed space.

Z Latent Space.

λ = {wk,µk,Σk}Kk=1 GMM model of K mixtures, being the kth mixture defined by the

mean vector µk, the covariance matrix Σk and weight wk.

µ Mean supervector formed as the concatenation of K mixtures.

µk Either the mean vector belonging to Gaussian k or the part corresponding

to the Gaussian k within the supervector µ.

µ
a Mean supervector originated by utterance or model a (used just

if there is ambiguity).

Θ Set of parameters of a given problem.

Θ(t) Set of parameters of a given problem in time or step t.

Ex[f(x, y)] Expectation of function f(x, y) with respect to variable x

(the suffix is omitted if there is no ambiguity).

L(Θ) The likelihood function of some density model given a certain sample

defined by a set of parameters Θ.

LcΘ The complete-data likelihood function of some density model

given a certain sample.

defined by a set of parameters φ.

� Scalar product.

�f Gradient of function f .
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Chapter 1

Introduction

This Ph.D Thesis is focused on building robust and efficient automatic speaker and language

recognition systems. In particular, the Thesis is intended to provide a better understanding of

the session variability problem and how this can be mitigated via techniques based on classical

Factor Analysis (FA) modelling.

Automatic speaker and language recognition technologies have historically gone and still go

hand by hand due to sharing numerous similarities in their problem formulation [Bimbot et al.,

2004; Campbell et al., 2006a; Castaldo et al., 2007; Torres-Carrasquillo et al., 2002]. From the

input speech signals to the final decisions given about the identity (speaker or language), a wide

set of similarities can be found among the different approaches used in the several phases, which

conform speaker and language recognition systems. Modules as voice activity detection, feature

extraction or even modelling and classification stages are often identical, based on the same

strategies or slightly modified to the specificities of one task to the other.

In this context, it is not surprising that as the same manner that they share similar com-

ponents, they suffer from similar problems. Among all of them, the session variability problem

requires special attention. Session variability, understood as the set of differences among record-

ings belonging to a same identity (either speaker or language depending on the corresponding

task), has long been identified as the main cause of performance degradation in both fields

[Bimbot et al., 2004; Kinnunen and Li, 2009; Reynolds, 1996, 2002]. Channel distortions or

effects produced by using different devices (landline, GSM) can be considered among the most

relevant of factors that include session variability within the speech signal, but reducing session

variations to the distortions produced by the channels is a naive approximation. Actually, a

myriad of factors cause recordings to be different irrespective of the contained identity; for in-

stance, the environment acquisition conditions at different locations (home, office, street, park,

restaurant) or the emotional status of the speaker (calm, stressed, angry, happy) produce also

session variations. Even in controlled acquisition environments, as smart-rooms, where session

variations are intended to be minimized, slight variations such as an opened/closed window or

changes in the speaker and acquisition terminal distance may lead to significant differences in

resulting speech signals and consequent to performance degradation. [Sturim et al., 2007].
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During the last three decades numerous techniques had been proposed to palliate the session

variability problem, those being based either on blind solutions [Furui, 1981; Hermansky and

Morgan, 1994; Pelecanos and Sridharan, 2001] or based on quantifications of variability types

[Reynolds, 2003; Teunen et al., 2000]. Blind strategies, although desirable from a resource

optimization perspective as non additional data is required to train them, fail to fit to the

specificities of particular session conditions as no any prior information is taken into account.

On the other hand, discrete strategies, even thought allowing a better adjustment, they still

are an approximation to the session variability problem, as a proper quantification of variability

sources or types is extremely difficult.

Extrapolated to our day to day, far from controllable conditions, the problem is scaled to

acquire a major dimension. In a world flooded by an overwhelming number of devices able

to capture and delivering speech, the application scenarios, and therefore the possible session

variability sources, of speaker and language recognition technologies tends to be unquantifiable.

According to Gartner information technology research reports, mobile connections are forecast

to reach 7.4 billion from the current 5.6 billion in 2011 1, supported by the rising trend of mobile

sales, driven in turn, by the emergence of the smart-phones and tablets market. Further, the

increasing availability of broadband lines in the different countries also predicts an explosion of

the voIP (voice over internet protocol) use. In this context, an ever-growing need to cope with

the session variability problem in a disparate number of scenarios is critical.

Driven by these needs, the design paradigm of session variability strategies has been recently

redefined, and built on two main pillars or principles. First, to treat the variability as a contin-

uous source; and second to exploit as much as possible prior information about possible session

conditions encountered in target (operational) data. In 2004, the work conducted by Patrick

Kenny [Kenny and Dumouchel, 2004b] succeeded in joining these two principles under a mod-

elling strategy based on the classical Latent Variable Model, FA [Bartholomew, 1987]. From

this pioneer work in the field, which was highly influenced by several advances in other related

fields, such as face or speech recognition, a huge number of works have followed in a relative

short period of time [Campbell et al., 2006c; Kenny et al., 2005b; Kenny and Dumouchel, 2004b;

Kenny et al., 2008b; Vair et al., 2006; Vogt and Sridharan, 2008]

This Ph.D Thesis addresses the use of FA based methods to palliate the session variability

problem, with the main objective of clarifying the grounds of this modelling strategy and how it

is incorporated to achieve more robust and efficient speaker and language recognition systems.

Regarding the organization, this Dissertation begins by reviewing the foundations of the

state-of-the-art speaker and language automatic recognition technology as well as the most

successful techniques, which have arisen to deal with session effects before Factor Analysis2. Both

acoustic and high level based systems will be detailed following the standard global scheme used

in both speaker and language recognition fields. Also, a taxonomy of the different techniques to

1http://www.gartner.com/it/page.jsp?id=1759714.
2Advanced readers in the area could consider to skip this introduction part to automatic speaker and language

recognition systems.
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face the session variability will be exposed considering diverse criteria. Then, we will go into the

development of techniques based on Factor Analysis by carefully detailing the main motivations,

ideas, related studies, as well as the underlying mathematical framework which sustain them.

A detailed exposition of where and how those techniques are integrated within the speaker and

language recognition systems in an efficient manner, besides some of the original contributions

of this Ph.D. Thesis will be exposed in this part of the Dissertation.

The experimental part starts then evaluating the inclusion of FA in speaker verification

systems to later support the benefits achieved in the field of language recognition. To this aim,

the widely accepted Speaker and Language Recognition Evaluations (LRE, SRE) (databases

and protocols) conducted by the American National Institute of Standards and Technology

(NIST) have been adopted as the experimental set-up. The databases used for such evaluations

constitute challenging corpora presenting many different variability factors.

The use of Factor Analysis in the field of forensic speaker recognition field is then treated.

One of the challenges of this Ph.D. thesis has been to adapt the use of Factor Analysis techniques

to challenging scenarios, as those found in forensic speaker recognition [Gonzalez-Rodriguez

et al., 2007b; Leeuwen and Brümmer, 2007; Ramos, 2007], where the available background data

is far from target conditions or the amount of train/test speech is very limited.

Finally, future work and conclusions are exposed. The research work described in this Dis-

sertation has led to novel contributions which are mainly focused on three areas, namely, i)

improving automatic speaker and language discrimination of state-of-the-art systems, ii) study-

ing and developing new efficient ways to include techniques based on Factor Analysis to deal with

session variability, and iii) facing the session variability problem in forensic speaker recognition.

Moreover, some literature reviews has been derived from this Dissertation.

1.1. Automatic Speaker and Language Recognition: Definitions

and Applications

Even thought automatic and language speaker recognition systems are deeply studied in

Chapter 2, it is convenient at this point to define basics concepts of both fields, as well as their

application framework, in order to properly introduce the motivation of this Dissertation.

1.1.1. Automatic Speaker Recognition

Speaker recognition is defined as the task of recognizing persons from their voice and it has

a history extending back to the 1960s [Atal, 1972, 1976; Bricker and Pruzansky, 1966]. Among

other biometrics, the voice has two main desirable characteristics that have made it an attractive

trait. First, voice acquisition does not generate an intrusive perception, as other traits such as

iris or fingerprint, being on contrary, captured from the individual in a natural and familiar way.

Second, there is not need of using specialized technology, as telephone network, either landline,

GSM or voIP, provides an excellent channel to obtain and delivering speech.
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1. INTRODUCTION

As any other biometric system, speaker recognition system can operate in two different modes

[Bimbot et al., 2004; Gonzalez-Rodriguez et al., 2007c; Kinnunen and Li, 2009]:

Identification. Identification is the task of determining an unknown speaker’s identity

among a group of known identities. This mode can be, in turn, divided in two subsets:

• open-set. In this case the systems has to decide is the unknown test identity is or not

among the speaker stored identities.

• closed-set. Unlike the above case, here, the system is forced to identify one of the

stored speakers with the identity of the unknown test recording, as the test identity

is expected to be in the database.

Identification systems usually returns a ranked list of similarities (in decreased order of

similarity) extracted from a ’one to many’, 1:N, matching process, where the input speech

signals features of the unknown test recording are faced versus all the models stored in the

database. As expected, the open-set condition is, in general, more challenging that the

closed-set one, as a global threshold for final decision has to be properly defined.

Verification. Speaker verification is defined as deciding if a speaker is who claims to be.

In this case, a ’one-to-one’, 1:1 matching process where the testing recording is compared

to the enrolled model associated with the claimed identity is carried out. As a verification

process just an affirmative or negative answer is possible, being this decided in function of

a global threshold defined in the system.

Other traditional classification divides speaker recognition systems in function of the con-

straints imposed to the allowed spoken text within the recordings. Those being

text-dependent. In this mode, the speaker usually pronounces a text or pass-phrase text-

prompted in the testing phase.

text-independent. In this case, no any restrictions to the text within the recordings in both

training and test phases is required.

Unless otherwise stated, throughout this Thesis, the terminology ”speaker recognition or ver-

ification”, short-handed by the acronym SV, will be indistinctly used to refer to the verification

mode (also known as authentication).

1.1.2. SV Applications

Speaker verification technologies have a broad number of scenarios of application such as voice

dialling, on-line banking, tele-commerce, database access service, voice mail, security control for

confidential information etc. Those can broadly classified in the following three groups:
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Speaker Recognition for Authentication. As a biometric modality one of the main

application of the speaker recognition technologies is authentication. Access control ap-

plications for banking or e-commerce are examples of those applications [A. and S., 2006;

James et al., 1997; Zhang, 2002].

Speaker Recognition for Surveillance. The ever-growing penetration of multimedia

web-portals such as Youtube or Facebook, and in general of applications where large

multimedia repositories are stored, have led to an increasing demand of data-indexing

applications. In this context, automatic speaker recognition systems are a powerful tool to

properly classify multimedia content by speakers [Tsekeridou and Pitas, 1998; Viswanathan

et al., 2000-06-01].

Forensic Speaker Recognition. The confluence of accuracy in the technology [Przy-

bocki et al., 2007] and a more comprehensive study about the role of automatic speaker

recognition in forensic science [Gonzalez-Rodriguez et al., 2007b] has led to a increasing

interest for the use of automatic speaker verification in forensics.

1.1.3. Automatic Spoken Language Recognition

Language recognition refers to identify the spoken language within a speech signal and its

origin has a history dating back some decades [Atkinson, 1968; Muthusamy et al., 1993, 1994;

Zissman, 1996; Zissman and Singer, 1994]. As above mentioned, language recognition share many

similarities with speaker recognition, mostly due to both being based on the same biometric trait:

the voice.

Similar to speaker recognition, language recognition systems operate as either language iden-

tification or language verification tasks. Throughout this Thesis, terms ”spoken language recog-

nition or identification”, short-handed by the acronym SLR, will be used to refer to the identi-

fication task.

1.1.4. SLR Applications

Although language recognition has been latent for nearly 40 years [Atkinson, 1968], it has not

been up to the last decade when systems have experienced a major research development [NIST,

2009]. Those advances have favoured the used of automatic language recognition technologies

in several areas and different applications. Among them, the following are highlighted:

1. Call-Centres. One of the most intuitive domains of applications for automatic language

recognition technologies is to automatically route an incoming call to a fluent operator or

automated agent in the call language. This type of services gains importance in security

or health fields, but also can be extended to commerce services or in general, any kind of

phone service [Zissman and Berkling, 2001].
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2. Audio indexing. As in the case of speaker verification, the ever-growing increase of

applications based on large repositories of multimedia data (eg. Youtube, MySpace),

demands efficient tools to index the data in function of several parameters, among them,

the language [Makhoul et al., 2000].

1.2. Motivation of the Thesis

Understanding automatic speaker and language recognition systems as valuable tools for

different industry and scientific applications, which embrace critical fields as security or forensic

apart from others useful applications above mentioned such as data-indexing; and after identi-

fying session variability as the main cause of the performance degradation of this systems, the

main motivation of this Thesis is clear: improving automatic speaker and language recognition

systems by dealing with session variability. But, more precisely, three observations from the

state-of-the-art have mainly motivated the work conducted in this Dissertation. Those being:

Due to its great ability of dealing with the problem of session variability, a high proliferation

of Factor Analysis based methods applied to SV and SLR systems has taken place in a short

period of time. However, whereas the basic concepts and hypothesis of the Factor Analysis

are widely extended, a small amount of work has been published to deep review the

mathematical foundations of Factor Analysis modelling, as well as to clarify the necessary

modifications to its integration into SV and SLR fields. This fact has often conducted to

a certain obscurity about the implementation process and also to the use of FA tools in a

black-box mode, without a deep understanding of them.

Related to the above observation, despite some valuable efforts such as those conducted

in specific workshop in the field as JHU 20081 and Bosaris 20102, little research has

been published to put on the same context the different manners to incorporate Factor

Analysis into speaker and language verification systems. Even although same protocols

or databases are often used by the scientific community, some other systems differences in

the configuration parameters among published works (different number of Gaussians, type

of features) hinder a fair comparison between the different forms of Factor Analysis.

The increasing interest in forensic speaker recognition and the need of finding appropriate

solutions to the often very adverse session variability conditions associated to this field.

Due to the confluence of more robust and accurate systems as well as a better understand-

ing in the field [Gonzalez-Rodriguez et al., 2007b; Ramos, 2007], the interest to integrate

automatic speaker recognition in the forensic field, to adequately supplement the labour

carried out by the expert (eg. phoneticians) has rapidly expanded in recent years. In that

sense, a little amount of research [Gonzalez-Dominguez et al., 2010a; Ramos et al., 2010,

1http://www.clsp.jhu.edu/workshops/ws08/groups/rsrovc/
2http://speech.fit.vutbr.cz/en/workshops/bosaris-2010
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2008] has been conducted to explore, analyse and deal with the multiple problems and

specificities encountered in the area.

1.3. The Thesis

The Thesis developed in this Dissertation can be stated as follows:

Exploiting prior knowledge about speech signal variability, conceived this as a con-

tinuous source, to properly include and adapt it to the particular characteristics of

the target scenarios is essential to build robust and reliable automatic speaker and

language recognition technology.

1.4. Objectives

This Dissertation pursuits the following two prime objectives to a major benefit of the

automatic SV and SLR systems:

Provide insight about Factor Analysis as a powerful and efficient tool to deal with the

session variability problem in automatic speaker and language recognition.

Explore and propose different ways to incorporate FA into speaker and language recogni-

tion systems, able to obtain significant gains even in very adverse scenarios conditions.

1.5. Outline

The Dissertation is structured according to a traditional complex type [Paltridge, 2002] with

background theory, literature review, theoretical and practical methods and three experimental

studies in which the methods are applied. Essentially, chapters are structured as follows:

Chapter 1 has introduced the basics of automatic speaker and language recognition topics,

a description of the session variability problem, main cause of system performance degra-

dation, and the motivation of this Dissertation. Research contributions originated from

this Thesis will also be exposed at the end of this introductory chapter.

Chapter 2 reviews state-of-the-art speaker and language recognition systems, placing spe-

cial interest in most successful approaches adopted by the scientific community. Previous

techniques to the appearance of Factor Analysis to palliate session variability effects are

also presented in the final part of this chapter.

Chapter 3 presents a deep analysis of Factor Analysis mathematical foundations besides

the studies performed in related fields which motivated its application in speaker and

language recognition tasks.

7



1. INTRODUCTION

Chapter 4 details proposed and existent methods to efficiently incorporate Factor Analysis

into both speaker and language recognition systems, presenting different algorithms to get

robust but also efficient acoustic systems.

Chapter 5 describes the speech databases and protocols used to evaluate and provide

empirical support to the different proposed methods and strategies exposed along this

Dissertation.

Chapter 6 opens the experimental part of this Thesis with a wide set of experiments to

support Factor Analysis as an efficient and powerful tool to deal with the session variability

problem. Experiments on the challenging NIST speaker and language evaluations 2008 and

2009 respectively are conducted and deeply analysed with that aim.

Chapter 7 addresses main problems that hinder the deployment of SV and SLR systems

in ”real-world” applications as forensic speaker recognition. Specifically, the database

mismatch and the short durations problems are analysed . Several novel contributions to

deal with those problems are then presented and evaluated.

Chapter 8 concludes the Dissertation summarizing the main results obtained and outlining

future research lines.

The dependence among the chapters is depicted in Figure 1.1.

Some methods developed in this PhD Thesis are strongly based on classical approaches com-

ing from pattern recognition literature. The reader is referred to standard texts for a background

on the topic [Bishop, 2007; Duda et al., 2001; Fukunaga, 1990; Theodoridis and Koutroumbas,

2003]. More specific readings as automatic speaker [Bimbot et al., 2004; Kinnunen and Li, 2009;

Reynolds, 2002] and language recognition tutorials are also advised to get a broader vision of the

field, despite this is intended in Chapter 2. It would be also useful to consult some algebra notes

[Lay, 1997; Strang, 2003] and specialized bibliography about Factor Analysis [Bartholomew,

1987; Bartholomew et al., 2011; Loehlin, 2004; Rubin and Thayer, 1982] for a deep understand-

ing of concepts addressed in Chapter 3.

1.6. Research Contributions

The research contributions of this Ph.D. Thesis are the following (some publications are

repeated in different items of the list):

Literature reviews.

1. Feature extraction for automatic speaker verification. [Ramos et al., 2009]

2. Analysis of the speech signal for automatic speaker verification. [Toledano et al., 2009]

3. Speaker verification systems. [Gonzalez-Dominguez et al., 2010b; Gonzalez-Rodriguez

et al., 2007a; Montero-Asenjo et al., 2006]

8
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4. Spoken language recognition systems. [Gonzalez-Dominguez et al., 2010d, 2009; Montero-

Asenjo et al., 2006]

Novel methods.

1. Novel methods in robust speaker verification [Gonzalez-Dominguez et al., 2010c; Montero-

Asenjo et al., 2006; Perez-Gomez et al., 2010; Ramos et al., 2008].

2. Novel methods in robust spoken language recognition. [Gonzalez-Dominguez et al., 2010d;

Toledano et al., 2007].

3. Novel methods for the use of high level features in language recognition [Montero-Asenjo

et al., 2006; Toledano et al., 2007].

4. Novel methods for the use of automatic speaker recognition for forensic identification

[Gonzalez-Dominguez et al., 2010a; Ramos et al., 2010, 2008].

Improvements in speaker recognition discrimination.

1. Contributions to the improvement of ATVS-UAM automatic speaker recognition systems

[Gonzalez-Dominguez et al., 2010a,b; Ramos et al., 2010, 2008].

2. Contributions to the improvement of ATVS-UAM automatic speaker recognition systems

in data sparse scenarios [Gonzalez-Dominguez et al., 2010a; Ramos et al., 2010, 2008].

Improvements in spoken language recognition discrimination.

1. Contributions to the improvement of ATVS-UAM automatic language recognition system.

[Gonzalez-Dominguez et al., 2010d, 2009]

2. Contributions to the improvement of ATVS-UAM automatic language recognition system

based on high levels features. [Montero-Asenjo et al., 2006; Toledano et al., 2007]

Advances in forensic speaker recognition.

1. Studies on real forensic databases. [Ramos et al., 2008]

2. Novel methods to apply Factor Analysis in forensic speaker recognition scenarios. [Gonzalez-

Dominguez et al., 2010a]
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Chapter 1: 
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Figure 1.1: Dependence among the different chapters in this Dissertation.
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Chapter 2

Automatic Speaker and Language

Recognition

This chapter provides a holistic overview of automatic SV and SLR systems from the

process of analysing/extracting the information within the speech signal to taking decisions

concerning identity (speaker or language).

2.1. Introduction

A SV or SLR system can be seen as a process divided into two clear and distinct phases

namely, the training phase and the test phase. Each of them are, in turn, composed by a

sequence of independent modules which mainly includes the following three main modules i)

feature extraction, ii) modelling and iii) scoring (computing similarity)/decision.

This chapter analyses this modular based architecture of SV and SLR systems, from the

feature extraction process to the final decisions taken about identity (speaker or language) 1

through the detailed description of the main modules. The most successful approaches in each

stage of the global systems with emphasis to those which nowadays conform the state of the art

in the field, are highlighted.

The remainder of this chapter is organized as follows. First, an introductory analysis of the

levels of information in the speech signal and the global architecture of SV and SLR systems

is presented. Then, most successful acoustic and high level systems are detailed. In the final

part of this chapter the focus is placed on the set of techniques previous to Factor Analysis (FA)

conceived to palliate session variability effects.

1For the sake of clarity and due to the high degree of similarity between SV and SLR systems, this chapter

has been written in terms of SV systems. Nonetheless, in those parts where differences or specificities between

both systems exist, they will be explicitly specified
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2. AUTOMATIC SPEAKER AND LANGUAGE RECOGNITION

2.2. Identity Information in the Speech Signal

A speech signal is the result of a complex process that involves a large number of factors,

which to a greater or lesser extent print a trace into it [Deller et al., 1999; Huang et al., 2001;

Rabiner and Schafer, 1978; Ramos et al., 2009] and are susceptible to be retrieved in order to

formulate hypothesis about identity. Apart from the numerous physical factors implicated, other

factors such as the behavioural factors (i.e socio-economic status, place of birth, etc.), inherent

to the speaker, or the environmental factors (i.e place, acquisition channel, noise sources, etc.)

add specific information into the speech signal. The aim of SV and SLR systems is to take

advantage of the different sources of information available in the speech signal, combining them

in the best possible way [Doddington, 2001; Reynolds et al., 2003].

In the field of SV and SLR all this information is broadly classified into the so-called high-

level (linguistic) and low-level (spectral) characteristics as follows:

Spectral level. The information about the identity is extracted from the spectrum of

the speech signal, analysed in short-time windows. The spectrum of the speech signal is

directly related to the dynamic configuration of the vocal tract, which presents speaker-

dependent specificities.

Higher levels. Several sub-levels can be found here. For instance, at the phonotactic

level, the information about the identity of the speaker is embedded in the particular use

of the phones and syllables and their realizations. At the prosodic level, parameters like

instantaneous energy, intonation, speech rate and unit durations are analysed, which are

known to be speaker-dependent. At the idiolectal level, the information about speaker

identity relies in the particular use of the words and language in general, which not only

depends on the speaker, but in many other sociolinguistic conditions.

Figure 2.1 illustrates the different identity information levels found on the speech signal

besides their main advantages/shortcomings.

2.3. Systems Architecture

As it has been mentioned before, a SV or SLR system can be seen as a two-phase (training

and test) sequential, modular system which is primarily formed by three modules; the feature

extraction, the modelling and the scoring/decision module, as depicted in Figure 2.2.

The feature extraction module is concerned with the extraction from the speech signal of

adequate measurements which emphasize speaker (language) specificities while diminish statisti-

cal redundancies. Those measurements, better known as features, are somehow modelled in the

training phase to produce a mathematical model which represents the given speaker or language.

In the test phase, features extracted from the unknown recording are then compared with the

set of available models in order to reach a similarity measure. Those measures are then used to

produce a final decision about identity.
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Figure 2.1: Identity levels in the speech signal (adapted from [Kinnunen and Li, 2009]).

2.3.1. Feature extraction

Speaker (or language) features are measurements extracted from the speech signal with the

objective of representing the specific information identity (either speaker or language) contained

in it. Features are chosen to meet two fundamental criteria i) emphasize speaker (or language)

specific properties and ii) suppress as much as possible statistical redundancy.

Ideally, they should have the following desirable properties [Kinnunen and Li, 2009; Ramos

et al., 2009]

a) maximize between-speaker/language variability and minimize within-speaker/language vari-

ability.

b) be robust against noise and distortion.

c) occur frequently and naturally in speech.

d) be easy to measure.

e) be hard to impersonate.

f) be robust respect intra-speaker/language variations.

Usually, different measures or observation of a same set of features are taken at different

moments of the speech recording, giving rise to several feature vectors from a same recording;

13
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Figure 2.2: Modular representation of typical training and test phases of a SV or SLR system.

through this Dissertation the set of N feature vectors extracted from a given recording, also

called the observations vectors, will be denoted as O = o1, ...oN , being ot a D-dimensional

vector measured at time t.

2.3.1.1. Short-term spectral features

The analysis at spectral level of the speech signal is based on classic Fourier analysis. How-

ever, an exact definition of Fourier transform cannot be directly applied because speech signal

cannot be considered stationary due to constant changes in the articulatory system within each

speech utterance.

To solve these problems, speech signal is split into a sequence of short segments in such

a way that each one is short enough to be considered pseudo-stationary. The length of each

segment, also called window or frame, ranges between 10 and 40 milliseconds (in such a short-

time period our articulatory system is not able to significantly change). Finally, a feature vector

will be extracted from the short-time spectrum in each window. The whole process, known as

short-term analysis, is depicted in Figure 2.3.

Signal representation or coding from short-term spectrum into a feature vector is one of the

most important steps in a automatic speaker or language recognition system and it continues

being subject of research. Many different techniques have been proposed in the literature and

generally they are based on speech production models or speech perception models. Most

widely-used techniques in the state of the art are described below.

Linear Predictive Coding (LPC) method, introduced in [Makhoul and Wolf, 1973], is
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Figure 2.3: Short-term feature extraction process.

based on the assumption that a speech sample can be approximated by a linearly weighted

summation of a determined number of preceding samples. In time domain, this can be

represented as

s∗ [n] =
p�

k=0

a [k] s [n− k] (2.1)

Here, s∗ [n] is the approximation, or prediction, of the speech signal, and a [k] are the LPC

coefficients calculated to minimize the total square error

E =
�

n

e [n]2 (2.2)

where e [n] is the error between the real signal value s [n] and predicted value s∗ [n], defined

as

e [n] = s [n]− s∗ [n] = s [n]−
p�

k=1

a [k] s [n− k] (2.3)

In the domain of the z-transform, a [k] parameters define an all-pole filter H (z), as defined

in [Huang et al., 2001; Makhoul and Wolf, 1973].

H (z) =
1

1−
�p

k=1 a [k] z
−k

(2.4)
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LPC has proved to be a valid way to compress the spectral envelope in an all-pole model

with just 10 to 16 coefficients [Deller et al., 1999; Huang et al., 2001]. However, LPC

coefficients are strongly correlated among them, which is an undesirable characteristic.

Therefore, cepstrum transform [Deller et al., 1999; Furui, 1981] has been proposed in

order to obtain pseudo-orthogonal cepstral coefficients, yielding Linear Prediction Cepstral

Coefficients (LPCC).

Mel-Frequency Cepstral Coefficients (MFCC) proposed in [Bridle and Brown, 1974]

are the most extensively used parameters at the spectral level in automatic speaker recog-

nition systems. The MFCC method first uses a mel-scale filterbank in order to obtain

some coefficients from the power spectrum of the speech window. The main aim of mel

filtering is to mimic the human hearing behaviour by emphasizing lower frequencies and

penalizing higher frequencies. Thus, a mel filterbank analyses the power spectrum using

a logarithmic scale. First, a transformation is applied according to the following formula:

fm = 2595 ∗ log (1 + f/700) (2.5)

where f is the linear frequency. Second, a filterbank is applied to the amplitude of the

mel-scaled spectrum fm in order to obtain a vector of outputs from each filter.

Figure 2.4 shows a typical mel filterbank in the frequency domain. The centres f [m] of

the filters Hm [k] are uniformly spaced in the mel scale. Using a DFT of the input signal

with N points each filter Hm [k] is given by

Hm [k] =






0 k < f [m− 1]

(k−f [m−1])
(f [m]−f [m−1]) f [m− 1] � k � f [m]

(f [m+1]−k)
(f [m+1]−f [m]) f [m] � k � f [m]

0 k > f [m+ 1]

where 0 < k < N .

Once filtering is carried out, cepstrum transform is applied to the filter outputs in order

to obtain mel frequency cesptrum coefficients.

Perceptual Linear Prediction (PLP) was proposed in [Hermansky et al., 1985]. Here,

speaker features are calculated in a similar way as LPC coefficients, but previous transfor-

mations are carried out in the spectrum of each window aiming at introducing knowledge

about human hearing behaviour. Details can be found in [Hermansky et al., 1985].

Shifted Delta Cepstral(SDC) was introduced in [Torres-Carrasquillo et al., 2002], and

arise as a means of incorporating additional temporal information about the speech into
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Figure 2.4: Bank of classical Mel-filters on the MFCC feature extraction.

the feature vector. In that sense, they are of particular interest in language recognition

where units which embrace temporal information (several frames) have proved to be useful.

SDC are built by stacking delta cepstral across multiple speech frames.

As mentioned above, the main aim of the described methods is to extract a feature vector

for each frame or window. However, in this independent analysis possible useful information

such as co-articulation can be lost. In order to take this kind of information into account,

velocity (∆) and acceleration (∆∆) coefficients are usually obtained from the static window-

based information. This ∆ and ∆∆ coefficients model the speed and acceleration of the variation

of cepstral feature vectors across adjacent windows.

2.3.2. Modelling stage

Once feature vectors are extracted from a given speaker or language, these are used to train

a speaker or language model, which it will be stored in a database to be subject of comparison

with independent test sample sources.

The generated models can be classified attending to different criteria. A common classifica-

tion is to divide them into two broad groups i) non-parametric models and ii) parametric models,

also known as template models or stochastic models. Through template models feature vectors

belonging to training samples and testing samples are somehow directly compared, being their

degree of similarity representing by the distortion encountered between them. Vector quantifica-

tion (VQ) [Soong and Rosenberg, 1987] and Dynamic Time Warping (DTW) [Sakoe, 1978] are

examples of this type of models for text-independent and text dependent recognition, respec-

tively. By using stochastic models each speaker or language is assumed to follow an unknown

but fixed probability density function. The parameters of this probability density function are

then estimated in a training stage, while in the test stage, the degree of similarity is computed

as the likelihood of the test utterance with respect to the model. Gaussian Mixture Models
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(GMM) [Reynolds and Rose, 1995] and Hidden Markov Models (HMM) [Rabiner and Juang,

1986] are examples of this type of modelling for text-independent and text-dependent speaker

recognition, respectively.

Regarding the training paradigm other common classification scheme is to divide models

into i) generative models and ii) discriminative models. Generative models such as GMM or

VQ estimate the feature distribution of each speaker or language without considering the rest

of speaker/languages, while discriminative models are intended to model boundaries between

speaker/languages. Support Vector Machines [Campbell et al., 2006a] and Artificial Neural

Networks [Farrell et al., 1994] are the most popular modelling approach of discriminative models.

2.3.3. Scoring normalization

A common stage in SV and SLR systems is to normalise the similarity measures, scores,

obtained from a given pair of test recording and target model, so as to scores from different

speakers/languages share a similar range. Thus, the misalignment among non-target distribu-

tions for several speakers/language, is diminished and a common/unique threshold can be set

in order to take decisions about identity.

The most common form of this type on normalization in score domain follows the form

ŝ =
s− µimp

σimp

(2.6)

where the new score ŝ is derived by normalizing the output score through the parameters of

a non-target distribution assumed to be normally distributed with mean µimp and standard

deviation σimp. This distribution is generated via an impostor cohort of models or test record-

ings. The basic idea of this approach consists of modifying the non-target scores distributions to

be standard normalized N(O, I), with the main aim of aligning the scores distributions among

different speakers.

According to how the impostor distribution are obtained to estimate µimp and σimp, there

exists different ways to perform scoring normalization. The three most widely extended are

z-norm or zero normalization [Auckenthaler et al., 2000]. In z-norm a cohort of impostor

test utterances is faced versus all the target models in the given task, deriving for each,

the model-specific impostor statistics µimpλ and σimpλ . Then, the corresponding statistics

of the model λ are used to normalize, via Equation 2.6, the set of system scores where the

model λ is involved.

t-norm or test normalization [Auckenthaler et al., 2000]. On contrary z-norm, in t-norm

a cohort of impostor models is utilised to generate the impostor score distribution. Again,

µimpt and σimpt impostor statistics are estimated and then are applied to normalize the

set of scores where the test utterance t is involved.
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zt-norm. z-norm and t-norm can be jointly employed given rise to the zt-norm approach

following the equation

ŝzt−norm(λ, t) =

s(λ,t)−µtznorm

σλznorm

− µttnorm

σttnorm

(2.7)

where z-norm scores are t-normalized. Note that impostor score distributions to compute

impostor t-norm statistics must be previously z-normalized to keep consistency.

2.3.4. Fusion

From the fact that different levels of information are present in the speech signal and specific

systems are built to exploit a determined information level, the fusion of several of those systems

has been shown to increase the performance of global SV and SLR systems [Brümmer et al.,

2007; Lopez-Moreno et al., 2008]. As widely believed, the more uncorrelated information the

more effective results the fusion, but it has been proven that also some improvement can be

obtained by combining similar systems [Brümmer et al., 2007].

The fusion approaches can be carried out at different levels of a SV or SLR system. A common

and easy scheme is to perform fusion at the scoring level, that is, combining scoring coming from

different systems. The simplest form is just combining the scores via a weighted sum, where a

confidence in form of a weight is deposited in each system involved. This approach allows to

combine totally different recognition architectures even though those are based on very different

features or modelling concepts. More sophisticated approaches include to estimate/train those

weights via training data, such as the fusion approach proposed in [Brümmer and du Preez,

2006] where weights are estimated via logistic regression.

Other extended method to combine systems is the back-end approach. The back-end ap-

proach is based on considering outputs coming from different classifier as another random vari-

able to then using a back-end classifier to exploit the information delivered for every single

system. A SVM trained via scores vectors belonging to target and non-target scores is com-

monly used as back-end classifier.

2.3.5. Calibration

In forensic evidence reporting, simple classic scores output from speaker verification systems

are not adequate [Brümmer and du Preez, 2006; Gonzalez-Rodriguez et al., 2007b; Ramos, 2007].

Instead, scores should provide the interpretation of a likelihood ratio (LR) in a forensic sense.

That is, a ratio between prosecution and defence propositions defined as:

θp (prosecution hypothesis). The speech recording recovered in crime scene comes from

the suspect.

θd (defence hypothesis). The speech recording recovered in crime scene does not come

from the suspect
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In the literature, this likelihood ratio is commonly presented as

LR =
P (E | Θp, I)

P (E | Θd, I)
(2.8)

where E denotes the available evidence, which includes a recovered sample from an unknown

origin and a control sample whose origin is known, and I refers to other information relevant

for the case.

By using likelihood ratios a fact finder (judge or jury) is able then to compute posteriors odds,

taking into account other prior information coming from other different evidences by following

P (Θp | E, I)

P (Θd | E, I)
= LR

P (Θp | I)
P (Θd | I) =

P (E | Θp, I)

P (E | Θd, I)

P (Θp | I)
P (Θd | I) (2.9)

A very important fact in this sense, made clear from this formulation, is the role of the scientist,

which must be limited to compute and report the likelihood term without considering prior

odds.

The process of converting scores to proper likelihood ratios is referred as calibration and it is

commonly a difficult task, key in the analysis of speaker recognition systems applied to forensic

scenarios. Among the different proposed methods to calibrate systems, a widely adopted is

a linear transformation of scores as performed in [Brümmer and du Preez, 2006] via logistic

regression (FoCal toolkit implements this type of calibration 1). There, this transformation is

trained on background data to minimize the following cost, the so-called Cllr

Cllr =
1

Nθp

Nθp�

i=1

log2(1 +
1

LRi

) +

Nθd�

j=1

log2(1 +
1

LRj

)(2.10)

where Nθp and Nθd are the number of comparison available of both prosecutor and defence

hypotheses.

The Cllr cost function deep detailed in [Brümmer and du Preez, 2006; Leeuwen and Brümmer,

2007], gives an estimation of the calibration error over all possible priors; giving an scalar

measure of goodness of the total decision system.

2.4. Acoustic Systems

2.4.1. GMM

The state of the art in text-independent speaker recognition has been widely dominated

during the past decade by the Gaussian Mixture Model (GMM) approach working at the short-

term spectral level introduced by Reynolds et al. [2000]. This scheme can be seen as a likelihood

ratio detector between a GMM target model and a speaker-independent GMM model, the so-

called Universal Background Model (UBM). The UBM model is trained with speech (features

1Toolkit for Evaluation, Fusion and Calibration of statistical pattern recognizers.

http://sites.google.com/site/nikobrummer/focal
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a) b) 

Figure 2.5: A GMM of four 3-Dimensional Gaussians (a) and their contours (b).

vectors) belonging to different speakers to represent as much as possible the speaker-independent

distribution of the feature vectors, and it is used as a prior to obtain specific target GMM models

via Maximum a Posteriori Adaptation (MAP). In order to obtain a similarity measure between

test feature vectors and a given target model, a likelihood ratio is established between the

likelihoods ratios obtained versus the target and the UBM model.

2.4.1.1. Definition

A GMM (λ) is a stochastic model composed by a weighted sum of K finite mixture of

D-multivariate Gaussian densities as given by the equation,

p(ot | λ) =
K�

i=1

wkpk(ot) (2.11)

where ot is a D-dimensional vector (i.e feature vector), {w}K
i=1 the mixture weights and pk(ot) is

a shorthand of N(ot | µk,Σk), that is, a D-variate normal distribution, with probability density

function of the form

pk(ot) = N(ot | µk,Σk) = (2π)−
d

2 | Σ− 1
2

k
| exp(−1

2
(ot − µk)

�Σ−1
k

(ot − µk)) (2.12)

Figure 2.5.a shows a 3D GMM formed by four Gaussian and its contours in 2D (Figure 2.5.b).

2.4.1.2. MAP adaptation

Training a GMM model consists of estimating the parameters λ = {wk,µk,Σk}Kk=1 from a

set of training observations. In order to do that a Maximum Likelihood (ML) process imple-

mented via an Expectation-Maximization algorithm EM [Dempster et al., 1977] is commonly
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Figure 2.6: A Maximum a Posteriori Adaptation process representation where a speaker model (right)

is adapted from a UBM model (left).

used [Bishop, 2007]. Previously, a clustering stage via K-Means (KM) [Linde et al., 2003] is

normally performed so as to favour a quick convergence of the EM algorithm.

However, frequently, the available speaker samples from specific speakers are not enough to

robustly generate a GMM target model via clustering and ML steps. To counteract this draw-

back the approach GMM-UBM was proposed in Reynolds et al. [2000]. The underlying idea of

the GMM-UBM framework lies on the fact that once a well-trained speaker-independent model

is generated, this can be utilised as a prior when training specific target models. Mathemati-

cally, this step suppose turn the ML procedure to estimate new target models into a Maximum

Posteriori Adaptation one [Gauvain and Lee, 1994] where the prior is represented by the UBM

model.

Given the enrolment observations, O = o1, ...,oN , and the UBM model, λUBM , the adapted

mean new vectors are derived, as a trade-off between the UBM model means, µk, and the new

data in the form

µ
�
k = αk

1

nk

fk + (1− αk)µk (2.13)

where

αk =
nk

nk + τ
(2.14)

nk =
�

t

Pkt (2.15)

fk =
�

t

Pktot (2.16)

Pkt =
wkpk(ot)

K�
k=1

wkpk(ot)

(2.17)
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being nk and fk the so-called 0th and 1st-order statistics respectively, Pkt the Gaussian occu-

pation probability and τ the relevance MAP factor, which controls the importance of training

samples and the UBM within the adaptation procedure. Note that the defined statistics, nk and

fk, are computed in relation to the UBM model since pk(ot) is defined as a normal distribution

with mean µk and variance Σk as in equation 2.12.

Alike, an update formula for the covariance matrices can be derived. However this has not

proved to significantly outperform the global performance whilst slowing the process. For this

reason, usually the covariance matrix belonging to the UBM model is shared by all the GMM

models. On the other hand, it is common to do the UBM training gender dependent, that is,

to estimate two different UBMs, female and male, as it has shown to be advantageous.

2.4.1.3. Log-Likelihood ratio

In the recognition stage, the final score produced from a test observations set O = o1, ...,oT

and a target model λt is computed as a likelihood ratio between the target model, λt, and the

UBM model, λUBM . Taking logs this takes the form

L(O,λt,λUBM ) =
1

N

T�

t=1

{log p(ot | λt)− log p(ot | λUBM )} (2.18)

Thus, the difference of the target and the background model in generating the observations

O are measured, doing comparable the score ranges of different speakers.

2.4.2. SVM

Support Vector Machines [Cortes and Vapnik, 1995; Perez-cruz and Bousquet, 2004] (SVM)

are a discriminative learning technique based on minimum risk optimization, which aims at

establishing a high-dimensional optimal separation boundary between two classes. Because of

their flexibility and their good performance in a variety of problems, they have been widely used

in the last years, both with spectral [Campbell et al., 2006a] and high level features [Campbell

et al., 2004b; Shriberg et al., 2005].

The SVM approach is based on the idea that features, which are non-linearly separable in its

original space can be linearly separable in a much higher dimension by means of a hyperplane,

Figure 2.7.a. The expansion to this high dimensional space is carried out by a kernel function

K(., .), which is designed to meet the Mercer’s condition [Burges, 1998], and therefore it can be

expressed as an inner product of a mapping function θ in the form:

K(x,y) = �Φ(x)Φ(y)� (2.19)

In order to avoid the need of explicitly performing operations in the high-dimensional space,

the kernel function is selected to allow the inner-product operations in the original and low-

dimensional space without knowing nor caring what Φ(.) looks like, this shortcut is commonly

known as the kernel trick.
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Figure 2.7: Representation of the SVM underlying idea (left) and basic elements of the SVM approach

(right).

Obtaining the maximum margin hyperplane MMH is a quadratic programming problem

which can be solved with classical optimization techniques. The discriminant SVM function can

be expressed as:

f(x) =
k�

i

αitik(x,xi) + d (2.20)

where ti are the ideal output values +1, -1, xi are the support vectors associated to the MMH,

αi their corresponding weights and d the bias term estimated from the optimization process.

Figure 2.7.b depicted the basic elements of the SVM approach.

2.4.3. SVM GMM-supervector

The success of MAP adaptation in conjunction with the fact that in practice only means are

adapted from the UBM, derived in a new form to represent models; the means supervector or

just supervector. The means supervector is formed by stacking the multivariate means vectors

of a GMM Gaussians in a single and large vector as depicted in Figure 2.8.

Due to a supervector synthesises the information about a given speaker or language, it can

be considered as a feature vector and as such is susceptible to be modelled. This fact was

exploited in [Campbell et al., 2006b], where speaker supervectors served as inputs of a SVM

system, resulting in a kernel of the form:

K(Oa,Ob) =
n�

i=1

wiN(µa
i − µ

b
i ; 0, 2Σi) (2.21)

where µ
a
i
and µ

b
i
are the ith mixture component of the mean speaker supervectors estimated

via the observations belonging to utterances a and b respectively.
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!i  = {wi, µi, "i} ! supervector = [µ1, µ2 ]’ 

Figure 2.8: GMM to means supervector representation.

2.5. High-Level Systems

High-level modelling schemes can be generally divided into two steps: i) the tokenization

process and ii) the statistical modelling or discriminant back-end of the extracted tokens. The

nature of the modelled tokens as well as the utilised approach to get a measure of similarity

define the type of the system. Next section sketches the most common statistical modelling

scheme commonly used and discriminative approach based on SVMs, whilst the rest of the

section describes the basis of main prosodic and phonotactic systems.

2.5.1. Statistical modelling

The most common modelling technique for tokens sequences is statistical modelling, where

the probability of a sequence given a language model is used as the basis for scoring. Given a

sequence of M tokens (words, phones, prosodic tokens, data driven units, etc.)

s = (w1, ..., wM )

the probability of occurrence can be decomposed as a product of conditional probabilities

P (w1, ..., wM ) �
M�

i=1

P (wi | w1, ..., wi−1) (2.22)

Usually equation 2.24 is approximated by limiting the context:

P (w1, ..., wm) �
M�

i=1

P (wi | wi−N+1, ..., wi−1) (2.23)
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for some N ≥ 1. Due to reasons of data sparsity N is usually selected in the range of 1

to 4. Estimates of probabilities in n-gram models are commonly based on maximum likelihood

estimates − that is, by counting events in context on some given training text:

P (wi−N+1, ..., wM ) =
C(wi−N+1, ..., wi)

C(wi−N+1, ..., wi−1)
(2.24)

where C(.) is the count of a given word sequence in the training text. For robust estimation,

probability smoothing techniques can be applied.

2.5.2. Phone SVM

Instead of a generative statistical modelling, a discriminative approach to manage extracted

tokens (either prosodic or phonotactic) was proposed by Campbell et al. [2004a]. This approach

is based on using a SVM to separate high-level supervectors, being those created by concatenating

the (uni-, bi-, tri-) grams frequencies into a single vector. As showed in [Campbell et al., 2004a]

those frequencies can be normalized in function of a background set in order to obtain more

reliable results.

2.5.3. Prosodic systems

A prosodic system essentially consists of two main building blocks: the prosodic tokenizer,

which analyses the prosody features, and represents it as a sequence of prosodic labels or tokens

and the N-gram statistical language modelling stage (Section 2.5.1), which models the frequencies

of prosodic tokens and their sequences for each particular speaker.

A typical tokenization process usually consists of two stages. Firstly, for each speech utter-

ance, both temporal trajectories of the prosodic features, (fundamental frequency or pitch and

energy) are extracted. Secondly, both contours are segmented and labelled by means of a slope

quantification process.

The slope quantification process is then performed as follows: first, a finite set of tokens

is defined using level-based quantization of the slopes (e.g fast-rising, slow-rising, fast-falling,

slow-falling) for both energy and pitch contours [Adami et al., 2003]. Thus, the combination of

levels generate different tokens when combined pitch and energy contours are considered.

Second, both contours are segmented using the start and end of voicing and the maximums

and minimums of the contours. These points are detected as the zero-crossings of the contours

derivatives using a frame span (typically ±2). Thus, each segment is converted into a set of

tokens which describe the joint-dynamic variations of slopes. Utterances with different sequences

of tokens contain different prosodic information.

2.5.4. Phonotactic systems

Phonotactic systems use phonetic transcribers to convert speech into a sequence of tokens

where each token is a phone. A typical phonotactic speaker recognition system consists of two
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main building blocks: the phonetic decoders, which transform speech into a sequence of phonetic

labels and the n-gram statistical language modelling stage (Section 2.5.1), which models the

frequencies of phones and phone sequences for each particular speaker/language. The phonetic

decoders can either be taken from a pre-existing speech recognizer or trained ad hoc. Any speech

recognition technology can be used, but usually phonetic decoders are based on HMM and null

grammars. One of the most common technique for SLR is an extension of phonotactic systems

called Parallel Phone Recognition and Language Modelling (PPRLM) [Zissman, 1996]. Basically,

it consists on the fusion of several phonotactic systems as described above, related to phonetic

decoders in several languages, not necessarily related to the target ones [Gonzalez-Rodriguez

et al., 2007a; Montero-Asenjo et al., 2006; Toledano et al., 2007]. Using the transcriptions,

statistical grammars are applied and the scoring process is performed in the same way as for

speaker recognition. Sum fusion is the most commonly applied fusion technique. In order to

train each of the underlying phonetic recognisers, multilingual speech corpus are required, but

they do not need to contain labelled speech in the target language. The only requirement is

to have labelled in a certain number of language (and in the appropriate amount to train a

phonetic recogniser).

From a SV perspective (it would be similar for SLR), once a phonetic decoder is available,

the phonetic decodings of many sentences from many different speakers can be used to train

a Universal Background Phone Model (UBPM) that models all the possible speakers. These

models are then adapted to the characteristics of a particular speaker using the UBPM and

several phonetic decodings of that particular speaker to generate a Phone Model (PMi). This

process is more robust than training the speaker model from scratch because the speech available

to train a speaker model is often limited. The amount of data available to perform this adaptation

as well as the complexity of the N-gram modelling influences the optimal weight of the UBPM in

the adaptation process, which has to be adjusted for each particular decoder. Once the statistical

language models are trained, the procedure to verify a test utterance against a speaker model

PMi is represented in Figure 2.9. The first step is to produce its phonetic decoding, X, in

the same way as the decodings used to train PMi and UBPM. Then, the phonetic decoding

of the test utterance, X, and the statistical models (PMi, UBPM) are used to compute the

likelihoods of the phonetic decoding, X, given the speaker model PMi and the background

model UBPM. The recognition score is the log of the ratio of both likelihoods (Figure 2.9), where

the higher the score the higher the similarity between training and test speech. This process

may be repeated for different phonetic decoders (e.g., different languages or complexities) and

the different recognition scores simply added or fused for better performance.

2.6. A Need for a Session Variability Compensation Approach

It is widely agreed that the main cause of performance degradation in both SV and SLR

systems is due to session variability [Bimbot et al., 2004; Kenny and Dumouchel, 2004b; Kin-

nunen and Li, 2009], defined this as the set of differences between recordings belonging to a
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Figure 2.9: Scheme of a Phonotactic Language Modelling for recognition.

same identity (speaker or language according to the task). Session variability, although often

referred as channel variability, it is caused by numberless factors that go beyond the acquisition

channel such as environmental factors (e.g speech recorded in different places or situations), the

speech style (e.g formal or informal speech, conversational or interview speech) etc. Indeed, as

mentioned before, any variation between two recordings of the same speaker (or language) can

be considered session variability and it strongly hinders the recognition task as this variation is

entangled with the actual discriminative information.

In order to be precise and to disambiguate among the different commonly used terms in the

literature, it is convenient, at this point, to define the possible types of variability that can be

found within a speech signal:

1. inter-session variability. The inter-session variability is the set of differences between

two recordings belonging to a same identity either. It can be caused by a myriad of different

factor such as the channel acquisition, the environment noise, the speech style etc.

2. intra-session variability. The intra-session variability term is used to embrace the set

of differences within a same recording, such as those produced by a change in the vocal

effort of the speaker, a noise produced in some part of a recording etc.

3. inter-speaker (or language) variability The inter-speaker variability refers to the set

of differences between recordings belonging to different identities due just to dissimilarities

among them. As such, it represents the discriminative information exploited by the SV or

SLR systems in order to perform the recognition task.

4. intra-speaker (or language) variability The intra-speaker variability is the set of

differences between one or several recordings belonging to a same identity just due to

changes related to the identity (e.g age variation, phone variation, speech style etc.)
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For the sake of clarity, through this Dissertation we refer to the union of points 1, 2 and 4

under the term of session variability while point 3 will be referred as speaker variability.

2.6.1. Taxonomy of compensation approaches

During the last three decades a broad number of different techniques to palliate the harmful

effects of session variability have appeared. All of them can be classified attending to the

following three criteria:

Domain of Application. Session variability compensation can be performed at different

levels of the whole SV and SLR system. In particular three domain, namely the feature, the

model and the hybrid statistic domain have been largely the focus of the session variability

techniques.

Need of training data. Other interesting aspect and classification criteria lies on the fact

that whether the technique demands or not training data to be somehow trained before its

application. Techniques that do not need training data are known as blind techniques and

they have the main advantage that can be applied in any scenario, no matter if training

data is available. On the other hand trained techniques have the advantage of yielding a

better adaptation to the scenario conditions.

Need of labelled data. Apart from the need of having training data, some techniques

can demand to have available the labels associated to this data. Those labels are then

used to better exploit the specificities of some kind of session variability. This is the case

of some techniques which exploits the type of channel acquisition labels as it will be shown

in next section.

2.6.2. A historic and discrete view

Until the development of techniques based on Factor Analysis (FA), as it will be extensively

discussed in next chapters, the session variability compensation techniques were designed under

two prime principles:

1. Suppress the session variability.

2. Treat the variability as a combination of discrete sources rather than continuous.

Below, the most successful techniques dealing with session variability are listed in chrono-

logical order of appearance.

2.6.2.1. Cepstral Mean Subtraction

Cepstral Mean Subtraction [Furui, 1981], also known as cepstral mean normalization, is one

of the earliest and most widely extended methods employed to ameliorate the effects of inter-

session variability in ASR, SV and SLR systems.
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As it is well-known, a convolutional distortion in the time domain, such as that introduced

by a channel, corresponds to an additive bias component in the cepstral domain. Denoting the

signal y(n) as the convolution of a clean s(n) and a noisy h(n) sources, their cepstral features

are tied by the following relation

y(n) = s(n) ∗ h(n) ⇔ cy = cs + ch (2.25)

Under the assumption that the channel signal h(n) does not significantly vary over the

duration of the utterance, CMS aims to remove the effect of h(n) in the cepstral domain by

removing from each feature vector, {cy}Ni=1, the arithmetic mean of those. Thus, consistent

additive noise in the cepstral domain is eliminated.

2.6.2.2. RASTA

Often, the temporal properties of environmental effects are quite different from the temporal

properties of the speech. The RelAtive SpecTrAl (RASTA) filtering approach [Hermansky and

Morgan, 1994] attempts to exploit these differences in order to produce robust representations

for speech recognition and signal enhancement.

Specifically, RASTA works under the assumption that the rate of change of non-linguistic

components in speech does not match typical rate change of the vocal tract shape, and therefore

highly varying and slowly varying components should be removed.

This process is performed by applying the following band-pass filter on the time trajectories

of the features vectors

H (z) = 0.1z4 ∗ 2 + z−1 − z−3 − 2z−4

1− 0.98z−1
(2.26)

where components under or over the low and high cut-off defined frequencies are removed as

considered non-speech components. RASTA can be seen as an evolved version of CMS where

not only the continuous noise component is removed but also those components whose rate of

change lies outside of that considered for speech.

2.6.2.3. Warping

Feature Warping, [Pelecanos and Sridharan, 2001], aims to eliminate channel distortions by

conditioning and conforming the individual cepstral feature vectors to follow a Gaussian distri-

bution over a window of speech frames. It is supposed here that clean or true cepstral features

follow a determined distribution (Gaussian), which the additive noise and channel distortions

modify.

The aim of Feature Warping is to retrieve this original form by warping cepstral features

to a Gaussian distribution. This process is carried out by locating and reordering the original

cepstral features according to a Gaussian distribution into a sliding window of frames of typically

3 seconds.

30



2.7 Summary

2.6.2.4. Feature Mapping

Feature Mapping, [Reynolds, 2003], extends the Speaker Model Synthesis (SMS) approach

[Teunen et al., 2000] to the feature domain, with the main advantage that once feature vectors

are clean, any recognition structure or modelling approach can be used.

The mapping process can be summarised as follows:

1. A channel independent GMM background model, λci, is trained using data from different

channels.

2. Channel dependent GMM background models, λcd, are then trained by adapting the λci

model from channel dependent data via MAP adaptation.

3. Model parameters differences (mean supervector differences) between each λcd model and

the λci one indicate how the feature space distributions between two spaces are related.

This information is used to mapped feature vectors of each utterance to channel indepen-

dent space.

4. Given a utterance, first the most likely channel dependent model is detected and then all

its feature vectors mapped to the channel independent space following the form

ôt = ot −
k�

i=1

(µcd
i − µ

ci
i ) (2.27)

where µ
cd
i

and µ
ci
i

are the ith component of the mean channel dependent and channel

independent supervector respectively.

2.7. Summary

In this chapter a global vision of SV and SLR systems from the very beginning stage of

information extraction to the decisions concerning identity has been presented. The different

levels of information presented in the speech signal has been highlighted and the most successful

feature extraction approaches which aim to take advantage of all this information detailed.

The SV and SLR systems are sequential, modular-based systems, which are nowadays the

result of the accumulated efforts of numberless researches which with specific contributions on

some parts of the global systems have contributed to yield more and more efficient and accurate

systems day by day. Most success techniques in each stage namely, feature extraction, modelling

and scoring (computing the similarity) has been detailed.

The final part of the chapter has been devoted to present the most successful existing tech-

niques to deal with session variability before Factor Analysis. The inter-session, or simply,

session variability problem is largely considered the prime cause of performance degradation of

both, speaker and language recognition systems and main motivation of this Dissertation. The

techniques presented in this chapter are based on i) suppress session variability and ii) treat
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variability as a combination of discrete sources. It will be work of the next chapter to refute

those principles exploring the new techniques based on Factor Analysis in order to palliate the

session variability problem.
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Chapter 3

A Continuous Approach to

Variability Modelling: The Joint

Factor Analysis Model

This chapter presents and details the grounds of the Joint Factor Analysis modelling

approach applied to SV and SLR.

3.1. Introduction

Despite their relative success, the techniques described in the previous chapter designed

to deal with session variability suffer from one or both of the following major deficiencies: i)

categorize the session conditions and/or ii) suppress the undesired variability according to a

general rule, rather than modelling the specific variability within a given recording.

The former (i) clearly does not fit the true nature of the problem. Even though some careful

and conscientious recordings classification could be performed regarding several global traits,

such as the acquisition channel or type of speech, real session conditions are, from a practical

point of view, difficult to quantify. Feature Mapping or Speaker Model Synthesis fall into this

group. The latter (ii) goes a step further, questioning the manner in which the session variability

issue is addressed. Since each recording is generated under specific and usually non-controllable

circumstances, intuitively, inferring general rules in order to suppress session variability in a

global manner should be less beneficial than considering the variability associated to a given

recording as unique. Techniques such as CMN, Rasta or Feature Warping fall into this group.

These arguments motivated researchers to find a new methodology supported by more ambi-

tious principles, designed to somehow counteract the aforementioned drawbacks. In this context,

the techniques based on Factor Analysis (FA), main focus of this chapter, emerged.

The FA modelling approaches break with the established manner of conceiving the variability
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associated to a speech signal when recognizing speakers or languages by embracing the following

two principles:

Considering variability as a continuous source rather than discrete.

Explicitly modelling both session and inter-speaker/language variability.

Apart from these two pillars, another fundamental idea, formulated initially as a hypothesis,

define the FA based approaches. This hypothesis can be stated as:

Much of the variability associated to a given recording lies within subspaces

of a much lower dimensionality than the original space (i.e, the model space).

That is, it is possible to find both speaker/language and session variability subspaces, so

that they act as priors in order to disclose the specific variability contained in a given recording.

This chapter is intended to give an in-depth vision of the grounds of FA-based approaches

designed to deal with variability into SV and SLR systems. The first part of this chapter

chronologically traces the history of the use of subspaces as a powerful tool to manage variability

from its origins into some related fields, such as face or speech recognition, to its inclusion in SV

by means of FA, focussing on the key papers or research milestones that has led to the current

state-of-the-art SV and SLR systems. The second part is devoted to provide a mathematical

understanding of the FA model from its generic form to its adaptation to be incorporated to SV

and SLR systems.

3.2. From Eigenfaces to Joint Factor Analysis Model

Linked by a common set of problems, it is not surprising that some work performed in one

of the related fields of face, speech, speaker and language recognition have been mirrored or

inspired among them. This is the case of the FA approach applied to SV or SLR, which took

much of its basis lines from the eigenvoice technique previously used in speech recognition, and

which in turn was inspired by the eigenfaces approach in face recognition. The remainder of

this section aims to guide the reader to the use of variability subspaces in SV and SLR from the

previous studies and success in nearby and related areas.

3.2.1. Eigenfaces

The eigenfaces approach, introduced within the automatic face recognition field by Turk and

Pentland [1991], is based on the assumption that an unknown face image may be approximated

by the combination of other set of known face images. Specifically, to represent a face image,

the eigenface approach proposes a linear combination of a few relevant directions extracted from

the analysis of the variance in a background bank of images. Thus, a face image is defined by

the weights associated to these fixed directions.
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This idea, introduced first, into the pattern recognition domain byWatanabe [1965] and, later

on, extended by Kirby and Sirovich [1990], within their work on the characterization of human

faces, is stated as the assumption of low-dimensionality of the face variation: the dimensionality

of the face space, defined as the space of variation of face images with same orientation and scale,

is much smaller than the dimensionality of a single face considered as an arbitrary 2-D image.

Put another way, there is a low-dimensional space that embeds the variation of face images with

same orientation and scale and from which any face image can be approximated.

Although at a first glance could not seem intuitive, the eigenfaces concept links well with

the human manner of recognizing faces. If we take some time to think about how we are able

to perceive and discern faces, we will quickly realize that it is intrinsic to our reasoning when

describing a human face to make references to some components of other faces familiar to us:

”She’s got the same eyes that my friend . . . ”, or ”her nose is similar to that actress”. So, the idea

of reassembling a human face as a set of elemental pieces coming from our own background bank

of previous human faces seems not to be far from our inherent human faces pattern recognition

machinery.

From a pattern recognition machine the approach has evident advantages. First, the face

images are represented in a compact way leading to a major benefit of the computational re-

quirements. Second just a few number of free parameters must be estimated in order to train a

model of each face image, so the requirements of training data is also greatly diminished.

Other interesting relation can be also established within the information theory field. Rep-

resenting an image as a linear combination of the principal face components can be seen as an

efficient manner to encode the image information and therefore does minimize the necessary

number of bits to represent the image whilst avoiding undesired noise.

Regarding the estimation procedure to estimate the variation subspace, that is, finding the

principal elements of variation of a given background dataset, the Principal Component Analysis

approach (PCA, [Pearson, 1901]) utilised in [Turk and Pentland, 1991] is a well-known candidate.

The complete classification process by the eigenfaces approach can be seen then as a two-

encoding based procedure divided into three stages, as depicted in Fig. 3.1. In the development

stage, PCA is applied over a the set of M available background images B, being images repre-

sented as points in a D-dimensional space (usually high dimensional). The top K (D >> K)

eigenvectors of the covariance matrix C = (BBT ), those corresponding to the largest K eigen-

values are then retained yielding the variation subspace A. Then the T training images denoted

by M are projected into this subspace to obtain a proper low-dimensional representation in the

training stage; this projection is denoted by ATM. In order to classify a test image t, several

variants can be followed. The most simple and used in [Turk and Pentland, 1991] is to project

it into the subspace as in the same manner than training images to finally compute a euclidean

distance s of this projection with each of the projected training images; the distance function is

denoted in the figure by d(M,T) while S represents the matrix of distances. Finally, a threshold

Θ for every class will mark the decision of acceptance or reject.

In order to reconstruct projected images from the low to high-dimensional space as it is
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Figure 3.1: Global scheme of a eigenfaces for classification approach.

done for visualization in Fig. 3.1, note that if the projection matrix A is orthogonal (formed by

orthonormal unit vectors), then A
T = A

−1 and therefore reconstruction can be carried out by

a A right multiplication.

3.2.2. Eigenvoices

The work peformed by Turk and Pentland on eigenfaces was soon mirrored into the speech

recognition field under the concept of eigenvoices: the directions that best represent the variation

among different speakers.

The eigenvoice modelling [Kuhn et al., 2000] was first conceived to cope with the issue of

speaker adaptation in speech recognition applications when tiny amount of speaker-specific data

is available (e.g digit or letter recognition). So far, the speaker adaptation process to turn a

speaker independent speech recognition system into a speaker dependent one had been performed

via standard algorithms as maximum a posteriori (MAP, [Gauvain and Lee, 1991]) or maximum

likelihood linear regression (MLLR, [Gales and Woodland, 1996]). However, even though these

methods achieve reasonable performance and do not require large amount of data, they fail when

just very limited data is available.

By confining the models to a low-dimensional subspace obtained previously from a back-

ground set of training data the number of degrees of freedom to be estimated is drastically

diminished, so that even at the presence of scarce amounts of data it is possible to estimate

reasonable models.

Under the same idea, the eigenvoice approach was introduced within the field of SV as a
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replacement of MAP Gaussian Mixture Models adaptation in those cases where a sparse amount

of specific speaker training data was available [Thyes et al., 2000]. The classification process

is similar to that presented for eigenfaces in Figure 3.1, but representing training and testing

recordings rather than face images as high dimensional points by means of their speaker means

supervectors (Section 2.4.3).

A step further on the use of the eigenvoice modelling was investigated in [Lucey and Chen,

2003] and [Kenny et al., 2005a] where a prior probability distribution for the speaker’s super-

vector was considered within the eigenvoice modelling estimation. Those approaches can be met

under the term eigenvoice MAP (EV-MAP), since a maximum posteriori estimation is utilised

instead of maximum likelihood. The prime advantage of the EV-MAP approach is that it re-

duces even more than the eigenvoice approach the dependence on the data when training speaker

models, as the additional prior constrains/drives the posterior distribution.

It is convenient to highlight at this point that although all those approaches are useful

in sparse data scenarios, their success is conditioned to the correct estimation of the speaker

subspace. If this does not properly represent the speaker variability, the adaptation process will

lead the global system to fail.

3.2.3. Eigenchannels

Although the eigenvoice and EV-MAP approaches led to significant improvements in the

speaker recognition field in some scenarios - those where scarce specific training data was avail-

able -, the great step towards a much more accurate technology took place when this framework

was viewed under the perspective of the session variability.

Under the idea of adapting a speaker model to a given channel as a speaker-independent

model is adapted to a given speaker, the eigenchannel MAP (EC-MAP) approach was presented

in [Kenny et al., 2003]. The EC-MAP approach shares exactly the same principles that EV-

MAP, but whereas the latter needs of a low-dimensional speaker space, the former requires a

low-dimensional session subspace.

In the methodology proposed in [Kenny et al., 2003], EC-MAP was designed to deal with the

session variability at recognition time. Once the speaker models are adapted from an speaker-

independent model (e.g UBM) to the target speaker via classical MAP or EV-MAP, then they

are adapted to the specific session effects of each target test utterance. Thus, the target model is

shifted to the specific channel type of the test utterance, avoiding the possible channel mismatch

between training and testing utterances.

The success of this methodology brought forward the convenience of explicitly modelling

session variability in a continuous manner, leading to more sophisticated approaches as the Joint

Factor Analysis (JFA) presented below, which today conform the state of the art in acoustic SV

and SLR systems.
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3.2.4. The Joint Factor Analysis model

3.2.4.1. Introduction

The previous studies presented in the above section fed the idea of explicitly modelling both

the speaker and session variability in a separate and continuous manner under a dual goal. First,

to adequately explain the speaker variability and second, and most important, to deal with the

session variability issue. Specifically, the scientific community in the field began to be interested

in jointly solving the next two questions [Kenny and Dumouchel, 2004b]:

1. How is it possible to adapt a speaker model to the session effects of the enrolment data

without performing speaker adaptation?

2. How is it possible to estimate a speaker model independently on the session effects of the

enrolment data?

By means of EC-MAP the former question had been solved but the latter remained unan-

swered. In this context, Joint Factor Analysis (JFA) 1 emerged in the SV field as a framework or

modelling technique to jointly respond those questions by properly combining MAP, EV-MAP

and EC-MAP approaches under the following hypothesis:

A speaker means supervector is formed by two components, one expresses the specific

speaker information, the other the session distortion related with the recording/training

data

Much (but not all) of the speaker or session variability can be explained by a small number

of hidden variables connected with pre-trained subspaces of the supervector space.

The remainder of this section is devoted to build step by step the Joint Factor Analysis model.

The analysis starts building the speaker component to then adding the session component,

carefully explaining the involved elements of the JFA modelling in each stage. For the sake of

conciseness, maths behind the model has been set aside and they are extensively introduced

later on in this chapter (Sections 3.3, 3.4, 3.5).

3.2.4.2. Definition

Given a classical GMM system with C Gaussian components and F feature dimensions,

where a UBM has been previously trained, it can be seen that, by classical MAP, a speaker-

dependent means model supervector µs (CF × 1) of a new speaker s is derived from the UBM

means supervector µ as

µs = µ+Dzs (3.1)

1We denote by the term Joint Factor Analysis (JFA) the specific modelling strategy designed for SV and SLR

based on Factor Analysis, as it jointly models both speaker and session variability. The term Factor Analysis is

used to generically refer to the classical mathematical model in which all the subspaces techniques presented are

based.
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µs 

µ + Vys + Dzs 

Ux sh
 

µs = µ + Vys + Dzs + Uxsh 
 

  

Figure 3.2: Representation of the speaker supervector decomposed in the speaker and session variability

components.

where the term Dzs represents the shift/offset from the mean µ as a result of the MAP adap-

tation, and it is formed by the diagonal CF ×CF matrix D, and the CF × 1 weights vector zs

which is assumed to be distributed with a standard normal prior (this derivation is detailed in

Section 3.4.2, but this result is enough to follow the reasoning).

By the form in equation 2.13 and assuming the prior of z standard normal distributed, it can

be inferred that, in MAP, speaker-dependent means supervectors are considered to be normally

distributed with mean µ and covariance B = D
2, CF × CF . An analogous analysis can be

performed with EV-MAP, but considering the variance of the distribution to be confined within

a subspace of rank Rs within the supervector space, where Rs << CF . Note that the implicit

assumption formulated in EV-MAP is then that the eigen-analysis of covariance B results on a

few non-zero eigenvalues, exactly Rs. In matrix form

µs = µ+ V ys (3.2)

where V is a low-rank matrix (CDxRs) which explains the speaker variance, in this case B =

V V
T and ys the weights which represent the speaker s through the speaker variability subspace

spanned by V . Note, nevertheless, that by varying ys, the model µs varies across the space

spanned by V ; that is within a Rs-dimensional linear manifold of the supervector space.

JFA integrates both modelling ideas in order to derive the speaker-dependent component of

a mean speaker supervector model. So that

µs = µ+ V ys +Dzs (3.3)

Note that by this form the assumed variance B is now explained by both V and D (B =

V V
T +D

2), and as such, it combines the advantages of MAP and EV-MAP: first, the variability

is supposed to be, to great extent, constrained in the subspace spanned by V ; and second, other
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Term Description Dimensionality

µ Mean of the new models. Usually, the UBM speaker mean supervector. CF × 1

V Speaker Variability Subspace. Low-rank matrix. CF ×Rs

D Besides zs, residual speaker term. Full-rank matrix (diagonal) CF × CF

U Session Variability Subspace. Low-rank matrix. CF ×Rc

ys Speaker Factors Rs × 1

zs Besides D, residual speaker term CF × 1

xh Channel Factors Rc × 1

Table 3.1: JFA model components description, (equation 3.5).

speaker variability out of this manifold is also accounted. The vector ys (R×1) is usually referred

to as speaker factors, since represents the speaker variability within V , and mathematically

responds to the latent factors within a FA modelling as it will be shown later on in the second

part of this Chapter.

Once the speaker-dependent component has been established, the session-dependent com-

ponent of the means speaker supervector is incorporated. By JFA, it is assumed that every

utterance h corresponding to a speaker s produces a distortion in its speaker mean supervector

and this can be modelled via EC-MAP. The supervector space is then modified by and additional

term as

µsh = µs +Uxsh (3.4)

where U is a low rank matrix (CF ×Rc) that plays the same role than V in EV-MAP but rep-

resenting the session variability subspace, and xsh is the analogous term of ys. The components

of xsh are usually called channel factors and unlike the speaker factors, those depend on the

utterance h apart from the speaker s.

Summing up, the Joint Factor Analysis, geometrically represented in Figure 3.2, is formulated

in matrix terms as

µsh = µ+ V ys +Dzs +Uxsh (3.5)

Table 3.1 describes each component of the model.

Thus, given a recording or training material h belonging to the speaker s, the JFA model is

composed by the tuple of speaker-independent hyperparameters Λ = {µ,V ,D,U}, the speaker-
dependent factors ys, zs and the speaker- and utterance-dependent xsh factors. As it will

be shown later on, the hyperparameters are pre-trained in a development stage, and remain

fixed for all speakers and utterances both in training and testing stages. On the other hand,

the set of factors are estimated per each utterance given the speaker-specific data and trained

hyperparameters.
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At this point, it is convenient to highlight some considerations about the JFA model:

The JFA model generalizes MAP, EV-MAP and EC-MAP. In fact, the three models can

be achieved from JFA by suppressing or zeroing terms (e.g EV-MAP can be obtained by

setting to zero U and D).

The factors zs, ys and xsh are considered to be standard normally distributed N(0, I).

There is not an analogous term to Dz on the session variability component. Note that if

there was, the session component would cover the entire supervector space. This would

allow to turn a given speaker into any other just by varying session effects.

3.3. Factor Analysis: The Model

The Joint Factor Analysis approach is based on classical Factor Analysis. The following

sections, second part of this chapter, offer a mathematical understanding of this model from its

original application in a multivariate Gaussian framework to its adaptation to be incorporated

into a mixture of multivariate Gaussian densities, and being applied to SV and SLR systems.

3.3.1. Latent variables models

3.3.1.1. A brief historical review

A Latent Variable Model (LVM) is a statistical model that try to explain a high-dimensional

process in terms of a low-dimensional set of non-observed variables [Spearman, 1904]. The

variables belonging to the original high-dimensional process are called the manifest or observed

variables, and those which explain the underlying low-dimensional structure of the process are

the hidden or latent variables.

The LVMs were first introduced in the field of psychometrics by Spearman [1904] with the

purpose of discovering/modelling underlying correlations between certain mental conditions or

attitudes and the results extracted from several human tests. In this direction, in his work about

the general intelligence factor (g-factor), Spearman used a LVM to evaluate the correlation

between the mental ability of children and a set of variables, which were directly extracted from

cognitive ability tests. Here, the set of variables derived from the tests played the role of the

observed variables, supposed to be somehow connected with the mental ability, the latent factor

of the model.

The success of those first studies besides the attractive idea of simplifying high-dimensional

statistical process by explaining those via low-dimensional structures, went through the scope

of psychometrics and led to wider studies in the statistics field, which derived on great advances

in the multivariate analysis area. Those advances cover among others, the development of the

broadly-used statistical approaches as latent structure analysis [Lazarsfeld and Henry., 1968],

Factor Analysis [Bartholomew, 1987; Bartholomew et al., 2011], and also the consolidation
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of Principal Component Analysis [Pearson, 1901] [Hotelling, 1933], which was not considered

traditionally as a LVM.

A first categorization of the LVMs was established by Bartholomew [Bartholomew, 1987],

according to the nature of the observed and latent variables (continuous or discrete). The

following table sums up this classification:

Observed variables

Continuous Discrete

Latent Variables
Continuous Factor Analysis Latent Trait Analysis

Discrete Latent Profile Analysis Latent Class Analysis

Table 3.2: Classification of Latent Variable Models according to the nature of the observed and latent

variables (continuous or discrete).

In the following sections and, in general throughout this Dissertation, the focus is placed

on the Factor Analysis approach, as both the observed and latent variables (speaker/language

supervectors and the speaker/channel factors) are considered to be continuous.

It is outside the scope of this Dissertation the analysis or development of non-linear latent

variables models as Generative Topographic Mapping GTM or Independent Component Analysis

(ICA) as those are not proved, up to date, to outperform the linear JFA approach to SV and

SLR systems. Nevertheless, interested readers can find good references about those non-linear

latent variable models in [Bishop, 2007; Bishop et al., 1997; Comon, 1994; Hyvärinen and Oja,

2000].

3.3.1.2. A formal definition

Given an unknown distribution function p(x) of D-dimensional variables, x = (x1, ..., xD),

belonging to the data or observed space X, the goal of a LVM is to express p(x) in terms of

Q-dimensional variables, z = (z1, ..., zQ), where Q < D. The space spanned by those hidden or

latent variables, Z, is called the latent space.

The relation between the latent and the observed space is defined by the conditional distri-

bution p(x | z) as a mapping function f : Z → X, which takes the form:

x = f(z) = y(z; Φ) + e (3.6)

where the function y express a combination of the latent variables z in terms of a set of param-

eters Φ and e is a D-dimensional noise variable. Note that geometrically, the space spanned by

function y, as a combination of Q-dimensional variables, forms a manifold of rank Q into the

D-dimensional observed space X, whereas the noise term e allows to escape from this manifold

by covering the whole D-space.
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Figure 3.3: Illustration of a point mapping process from a 2-dimensional latent space to a 3-dimensional

observed space. The prior of the latent variables is assumed to be normally distributed N(O, I) (density

contours in the left side of the figure). The non-linear mapping function generates a manifold in the

observed space where the point is mapped and then modified by a normal distributed noise, also considered

N(O, I) (grey sphere).

In order to complete the model the marginal distribution p(z), prior of the latent variables,

is also defined. The Figure 3.3 illustrates the whole mapping process from latent to observed

variables considering a non-linear mapping function f and normal distributed noise e and prior

p(z).

From the definition of the above mapping scheme, the desired distribution in data space p(x)

is derived by marginalizing over the latent variables:

p(x) =

�

Z
p(x, z)dz =

�

Z
p(x | z)p(z)dz (3.7)

This expression is known as the fundamental equation of latent variables models

[Bartholomew, 1987] and except for specific forms of p(x | z) and p(z) is analytically intractable.

To cope with this problem usually normal distributions are considered as they introduce a well-

known and friendly framework of practical tractability with respect to the required mathematical

manipulation, such as computing equation 3.7 or deriving an EM algorithm to estimate the

parameters of the model.

Apart from the issue of the tractability, other reasons can be argued to settle on normal

distributions. Among them, if the noise distribution p(e) is considered as a sum of a high and

unknown number of independent variables with finite variances, the central limit theorem endorse

also this choice as normal distributed. Also, it has to be taken into account that although the

prior in the latent space plays a crucial role in the model, its explicit distribution form does not.

In fact, by a simple mapping, it can be easily shown that any prior form could be turned into

other before latent variables were translated to the observed space, although the selection of this
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first mapping could difficult the selection of the main function mapping f. In the same line, for

practical issues and, regarding continuous domains, the function y is chosen to be smooth, that

is, it has continuous derivatives up to some desired order over RD.

3.3.2. Factor analysis

3.3.2.1. Definition

From the above section, it can be readily seen that a LVM is well-defined by three elements:

1. The prior distribution in the latent space p(z).

2. The mapping function from the latent to the data or observed space f : Z → X.

3. The noise model in data space p(e).

Factor Analysis is differentiated among the other continuous LVMs by supposing:

Factor Analysis: Model definition.

1. Prior. The prior in latent space is assumed to be standard normally distributed.

p(z) ∼ N(0, I)

2. Mapping. The mapping function is considered to be linear with form

x = f(z) = µ+Lz + �

3. Noise. The noise distribution p(e) is considered to be also normally distributed with

diagonal covariance matrix Ψ as

� ∼ N(0,Ψ)

Table 3.3: Mathematical model definition of Factor Analysis.

According to these hypothesis/assumptions, it can be shown (see Appendix A) that both

posterior distributions in the observed and latent space are also drawn from normal distributions

of the form

p(x | z) ∼ N(µ+Lz,Ψ) (3.8)
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Figure 3.4: Graphical model representation of Factor Analysis.

and

p(z | x) ∼ N(A(x− µ), (I +L
TΨ−1

L)−1) (3.9)

being A defined as

A = L
T (LL

T +Ψ)−1 = (I +L
TΨ−1

L)−1
L

TΨ−1 (3.10)

where the final algebraic manipulation in equation 3.10 pursues to express A in terms of an

inverse matrix in the latent factors domain rather than the observed space for ease of calculation

(see Appendix A).

Thus, by analytically solving equation 3.7, the marginal distribution in the observed space

is also normal (see Appendix A)

p(x) ∼ N(µ,LL
T +Ψ) (3.11)

The graphical model representation of FA is depicted in Figure 3.4.

3.3.2.2. Parameter estimation

Apart from the derivations carried out in the above subsection, the only evidence in form of

tangible data at our disposal is given by the set of N observed variables X = x1, ...,xN , that

we assume independent and identically distributed. Now, once the model has been properly

defined, those data come on the scene to estimate the hyperparameters that define the model

Θ = {L,Ψ} 1.

Note that if we knew the latent factors values zi associated to each observed point xi, the

problem of estimating L and then Ψ, would turn into a straightforward problem, which might be

solved from the defined mapping equation through classical least squares techniques. However,

1Note that the parameter µ is assumed to be set to zero, without loss of generality.
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the latent factors are still hidden and this fact forces us to develop an estimation procedure able

to manage this uncertainty. To this aim, an EM algorithm [Dempster et al., 1977], where the

latent factors play the role of the missing values, is used.

The EM exploits the fact that to maximize the likelihood of the marginal distribution p(x)

given the observed data X is equivalent to maximize the expectation, with respect to the

posterior distribution p(z | x), of the joint distribution p(x, z) likelihood, whose form is known.

In terms of traditional EM as usually stated, the auxiliar function Q(Θ,Θ(t)) to maximize is

then given by

Q(Θ,Θ(t))
.
=

N�

n=1

E
p(zn|xn,Θ(t)) [p(xn, zn | Θ)] (3.12)

which is iteratively maximized in function of the current estimate of the hyperparameters Θ(t)

Θ(t+1) = argmax
Θ

(Q(Θ,Θ(t))) (3.13)

Specifically, given the set of observed variables X and hyperparameters Θ = {L,Ψ} the joint

distribution p(x, z) , also called the complete-data likelihood, LcΘ, is given by the expression

LcΘ =
�

n

p(xn, zn | L,Ψ) =
�

n

p(xn | zn,L,Ψ)p(zn | L,Ψ) (3.14)

By taking natural logs - note that the goal is to maximize - this simplifies to:

logLcΘ = log
��

n

p(xn, zn | L,Ψ)
�
=

�

n

log
�
p(xn | zn,L,Ψ)

�
+
�

n

log
�
p(zn | L,Ψ)

�

(3.15)

but since the distribution of the latent variables zn does not depend on L or Ψ, the second term

can be discarded for the maximization purpose. Thus, the problem reduces to dealing with the

first term. This being

argmax
Θ

(logLcΘ) ≡ argmax
Θ

�

n

log
�
p(xn | zn,L,Ψ)

�
(3.16)

Let L be this simplified likelihood function. The goal is to maximize, as a function of the

hyperparameters, its expectation with respect the posterior p(z | z), Ep(z|x)[L], which by sub-

stituting from the conditional distribution p(x | z) expression, equation 3.8, and some algebra

manipulation (see Appendix A) it can be seen that it takes the following form

Ep(z|x)[L] = C− N

2
ln | Ψ | −1

2

N�

i=1

{xT
i Ψ

−1
xi − 2xT

i Ψ
−1

LE[zi | xi] + tr[LTΨ−1
LE[zizT

i | xi]]}

(3.17)

At this point we are ready to properly use the EM algorithm via its Expectation and Maxi-

mization step
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E-step. Given current estimation of L and Ψ, estimate

E[z | x] = Az (3.18)

E[zzT | x] = I −AL+Axx
T
A

T (3.19)

where A = (I +L
TΨ−1

L)−1
L

TΨ−1 as defined in 3.10

M-step. Estimate new L and Ψ via the following update equations (Appendix A)

∂Ep(z|x)[L]

∂L
= 0 ⇒ L

∗ =

�
N�

i

xiE[zi | xi]
T

��
N�

i

E[zizT
i | xi]

�−1

(3.20)

∂Ep(z|x)[L]

∂Ψ
= 0 ⇒ Ψ∗ =

1

N
diag

�
N�

i

xix
T
i −

�
N�

i

xiE[zi | xi]
T

�
L

T

�
(3.21)

These steps are repeated iteratively until convergence, which will depend on several factors,

such as the number of latent factors chosen, the quantity of available observed data or the proper

initialization of L and Ψ. Regarding the latter point, a well-known appropriate initialization for

the hyperparametes is to set Ψ = I and L as the result of performing PCA over the dataset X

(in order to establish a Q-dimensional, latent factor space, just Q eigenvectors associated to the

biggest eigenvalues should be taken into account). This issue will be addressed when applying

FA for the SV and SLR purposes.

3.4. Factor Analysis on Gaussian Mixture Models

The FA model described in the above sections refers to a single multivariate Gaussian distri-

bution. This section extends the model to mixtures of multivariate Gaussian models (GMMs),

since as it was shown in Chapter 2 (Section 2.4.1), they constitute the base of the state-of-the-art

acoustic systems in both SV and SLR acoustic systems.

This section begins defining the sufficient statistics associated to the generation of the ob-

served data points and a GMM model. Then, the MAP adaptation is analysed from a matrix

perspective to give some insight about its links with the FA framework applied to SV and SLR.

Finally, the focus is placed on how the latent factors of a FA model are estimated within a

GMMs framework.
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3.4.1. Sufficient statistics

Besides the uncertainty caused by the hidden latent factors, the application of the FA model

on GMMs brings also other uncertainty: theGaussian occupation alignment, that is, the mapping

between Gaussian mixtures and observed variables: given a feature vector ot1, there is not a

deterministic way to establish from which Gaussian was generated.

To this aim, the 0th and 1st-order Baum-Welch statistics, hereafter sufficient statistics of the

data respect the GMM model (λGMM ) are considered. Those equations although introduced in

Section 2.4.1.2 are re-written here for the sake of clarity

0th −→ nk =
�

t

Pkt (3.22)

1st −→ fk =
�

t

Pktot (3.23)

where Pkt is the Gaussian Occupation Probability defined for Gaussian k and feature in time t

as

Pkt =
wkpk(ot)

K�
k=1

wkpk(ot)

(3.24)

being

pk(ot) = N(ot | µk,Σk) = (2π)−
d

2 | Σ− 1
2

k
| exp(−1

2
(ot − µk)

�Σ−1
k

(ot − µk)) (3.25)

3.4.2. MAP revisited

In order to highlight the similarities versus the classical MAP adaptation procedure intro-

duced in Chapter 2 (Section 2.4.1.2) and FA modelling, it is convenient to derive and re-write

at this point the MAP means adaptation equation (equation 2.13) in matrix form, in terms of

the UBM mean supervector, µ, as

µs = µ+Dz (3.26)

where the transformation matrix D is a full rank CF × CF diagonal matrix defined as

I = τDTΣ−1
D (3.27)

being I the CF × CF identity matrix and Σ a CF × CF diagonal matrix, whose diagonal is

formed by the supervector of covariances, that is, by stacking the K diagonal covariances of the

UBM model.
1Note that in both SV and SLR, the feature vectors or observations ot play the role of the observed variables

xi used in the formal definition of FA.
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It can be readily seen [Gauvain and Lee, 1994], that given µ and D, the MAP criterion, that

is, maximizing equation 3.26 in function of z, is reduced to solve the system of linear equations

Az = b, where A and b can be expressed in matrix form as

A = I +D
TΣ−1

ND = D
TΣ−1(τI +N)D (3.28)

b = N
TΣ−1

f (3.29)

where N (CF × CF ) is a diagonal matrix built as C blocks defined as Nk = nkI being I the

F × F identity matrix; and f the first order statistic supervector built as the concatenation of

all fk centralized by the UBM mean supervector

fk =
�

t

Pkt(ot − µk) (3.30)

Rewriting now Az = b as:

D
TΣ−1(τI +N)Dz = D

TΣ−1
f (3.31)

and removing both sides term D
TΣ−1 this simplifies to

Dz = (τI +N)−1
f (3.32)

being Dz the offset term in equation 3.26

Again, due to the uncertainty of the Gaussian alignment this process can be carried out via

an EM algorithm where the sufficient statistics are updated in the E-step and equation 3.32 is

applied in the M-step.

The MAP updates equation keep certain similarities respect to the FA modelling, in the

sense that some hidden factors z and a transformation matrix D define the model. However in

MAP adaptation the transformation matrix D is full rank (diagonal) in the observed space and

fixed during the maximization process. Thus D merely acts as a scaling factor of the terms in

z. Note also, that, as the term Dz covers the whole observed space there is no need to include

an error/noise term as in the FA model. But, the most important difference lies on the fact that

MAP adaptation, unlike FA where subspaces drive the final definition of the new models, does

not make use of strong priors (apart from the the UBM model) about the location of speaker

or session variability within the supervector space.

3.4.3. Latent factors and hyperparameters estimation

The formulation to estimate the hyperparameters and latent factors that define the FA model

using GMMs, follows a similar procedure that this presented in section 3.3.2.2. In fact, from the

EM algorithm, just the E-step must be slightly modified by adequately including the sufficient

statistics, as defined in above sections, instead of directly include observed data.

The new equations are now:
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E-Step:

E[z | x] = Ωf (3.33)

E[zzT | x] = I −ΩL+Ωff
T
ΩT (3.34)

where, Ω = (I +L
T
NΣ−1Ψ−1

L)−1
L

TΨ−1

M-step:

∂Ep(z|x)[L]

∂L
= 0 ⇒ L

∗ =

�
N�

i

xiE[zi | xi]
T

��
N�

i

E[zizT
i | xi]

�−1

(3.35)

∂Ep(z|x)[L]

∂Ψ
= 0 ⇒ Ψ∗ =

1

N
diag

�
N�

i

xix
T
i −

�
N�

i

xiE[zi | xi]
T

�
L

T

�
(3.36)

Setting aside the issue of hyperparameters initialization that will be addressed in the following

section, and apart from some simplifications, modifications or alternatives presented in following

chapters, it is worth at this point to identify the SV JFA parameters with their values and

common estimation procedures. This information is shown in Table 3.4.

µsh = µ+ V ys +Dzs +Uxsh.

Term Set/Estimated to/as.

µ Set to UBM speaker means supervector.

V EM, updated via equation 3.35., with ys as latent factors

U EM, updated via equation 3.35., with xsh as latent factors

ys Point estimated via equation 3.33., considering V as subspace

xsh Point estimated via equation 3.33., considering U as subspace

Dzs Estimated via equation 3.32.

Table 3.4: Summary of JFA model parameters estimation.

Note that the terms D and zs has been considered grouped to be classically assigned to the

offset derived of a MAP estimation. In the following chapter, it will be evaluated the importance

of doing a separate estimation as it is done for the other paired terms.

Note also that the covariance Ψ and its update equation 3.36 are not considered in Table

3.4. This responds to the fact that, for the sake of simplicity, the covariance of the JFA model

is considered to be fixed and equal to the UBM covariance.
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3.5. Factor Analysis on Speaker/Language Recognition

3.5.1. Joint versus disjoint estimation

Before starting the hyperparameters estimation procedure, a preliminary decision has to be

taken concerning the order in which they are generated. Whether estimating the speaker V or

session variability U subspaces before the other or at the same time must be carefully decided.

When JFA was introduced a simultaneous optimization of both subspaces was proposed

[Kenny et al., 2005a; Kenny and Dumouchel, 2004b]. This can be achieved via an EM algorithm,

which alternatively maximizes the model respect one of the subspaces while keeping fixed the

other. However this procedure has a major drawback: there is no way to explicitly constraint the

session variability subspace to capture only relevant session information or the speaker variability

to capture just speaker information. In that sense, the EM algorithm is blind and it will fit the

data as best as it can. Further, if for instance, the speaker variability subspace is considered to

have a greater number of degrees of freedom than the session variability subspace, after some

iterations this will likely dominate the maximization procedure to the detriment of the session

variability subspace; as a result the procedure will end with contaminated subspaces.

In order to avoid this fact as well as simplifying the estimation procedure, several variants

of the estimation procedure can be accomplished. Some of this variants are analysed in [Vogt

et al., 2008b], where a hybrid approach between the simultaneous and isolated (training both

separately) estimation of the subspaces is proposed as good trade-off between performance and

computational requirements. In this hybrid approach V is trained separately but considering a

pre-trained U , taking therefore into account the session variability during its estimation.

3.5.2. Initialization of variability subspaces

In order to complete the description of the Joint Factor Analysis approach applied to SV

and SLR systems, it is convenient to give the corresponding details of the initialization of the

variability subspaces. Even though, in theory the ML procedure could account much part of the

work and save the need of a smart initialization, its convergence could be strongly affected by

a dummy election, greatly slowing the estimation process.

As in the case of the eigenfaces/eigenvoices approaches, an analysis of the variation among

means supervectors belonging from different speakers provides a good starting point for the ML

procedure. In order to do this PCA fits with the problem. The type of variance analysed will

mark the difference between each subspace.

3.5.2.1. Session variability subspace

When creating the session variability subspace, the main interest is to retain differences

between utterances belonging or not to same speakers but avoiding, as much as possible, the

components produced by the speaker information.
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Let X = µ1, ...µN a set of mean supervectors belonging to C different speakers (C < N), a

good estimation of the session variability variance is given by the within-class scatter matrix of

X, where the mean of every speaker is subtracted from its corresponding utterances:

Sw =
�

c

�

i∈c
(µi − µc)(µi − µc)

T (3.37)

Therefore, the principal component analysis of Sw will serve us a good starting point as the

session variability subspace estimation.

Nevertheless, two practical issues should take into account when performing the principal

component analysis of Sw:

1. How many directions (principal components) should be kept?.

2. How can we avoid a computationally prohibitive process?.

How big is the subspace that should be estimated? Or how many principal components

should be kept?, are indeed the same question formulated under a different perspective. In

principle, when estimating the subspace we do not know its size. A possible solution would be

to apply a Bayesian approach [Bishop, 2007] into the estimation procedure with respect to the

size of the subspace. Thus, the size will be treated as other unknown parameter and it could be

estimated besides the other hyperparameters. Other alternative, which can be easily embedded

into the ML presented framework, is to simply inspect the values of the eigenvalues associated

to the principal components, discarding those which do not accumulate variance, that is, those

whose associated eigenvalues are zero or nearby zero.

The computational issue involves some algebra manipulation. Handling a within-class scatter

matrix of a large dimension can be computationally prohibitive. For instance, in a typical GMM

framework for SV, at least 1024 Gaussian and 38 dimensions are managed. The corresponding

within-scatter matrix to this system is therefore an enormous matrix of 38912×38912 dimensions

(� 5.6 GB in float/single precision). Performing and eigen-analysis of this large matrix can turn

out in a never-ending task.

Fortunately, the number of supervectors N of the set X that we start considering, uses to

be much smaller than the supervector dimensionality CF . This fact encourages the use of the

following theorem to reduce the size of the problem:

Given a N ×M matrix A that can be decomposed in the form A = ΦΦT , then [Fukunaga,

1990]:

eig(A) = eig(ΦΦT ) = Φeig(ΦTΦ) (3.38)

where the eig(�) operator represents the eigen-analysis function 1. Given that Sw can be easily

decomposed in the form Sw = ΦΦT where Φ is defined as Φ = (µ1−µ, ...,µn−µ), the problem

is reduced to perform the eigen-analysis of a M ×M matrix rather than a CF × CF one.

1The eigenvalues must be rescaled to fit the equality, see [Fukunaga, 1990].
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To give some insight about how this reduction is possible without loss of generality note that

the rank of Sw is at most M as follows of the axioms:

if A is an N ×M matrix ⇒ rank(A) � min(N,M)

rank(AB) � min(rankA, rankB)

However, although the problem has been significantly reduced, that might not be enough,

as typically the number of samples could be also high (� 10k), so that handling a very large

matrix is still needed. To overcome this problem, it is convenient to realize that a complete

eigen-decomposition of the Sw matrix is not necessary. Indeed, the final goal is to yield a

subspace, that is, a low-rank matrix formed by a few columns or principal directions. From

the 10k possible eigenvectors that can be extracted just a few tens/hundreds are enough, as

they accumulate most of the Sw variance. This can be solved by iterative eigen-decomposition

algorithms [Arnoldi, 1951; Lanczos, 1950], where just the required eigenvectors are iteratively

approximated without the need of computing all of them 1. In the exprimental part of this

Dissertation it will be shown how these methods significantly diminished the computational

constraints of the real SV and SLR systems.

3.5.2.2. Speaker variability subspace

When creating the speaker variability subspace, the main interest is to model the differences

between utterances of a wide range of speakers rather than avoiding the distortions produced by

the session variability. In that case, the variance expressed by the between-class scatter matrix

Sb is a good estimation of the speaker variability, as each speaker is represented by the average

of all its utterances. Thus, defining:

Sb =
�

c

(µc − µ)(µc − µ)T (3.39)

Then, the procedure to obtain a first estimation of the speaker variability subspace will be

the same as that described above for the session variability subspace but replacing Sw by Sb.

The same algebra derivations can be used to achieve good computational performance.

Note that, however, in this case, the eigen-decomposition is not as costly as that described

for Sw, as the utterances are grouped by speakers and therefore the dimensions of the resulted

ΦTΦ matrix S × S , where S is the number of speakers, is much smaller.

3.6. Summary

In this chapter a review of the Joint Factor Analysis grounds has been performed, giving a

timeline covering the most important milestones from the use of subspaces to model variability

1An implementation of the Arnoldi’s routines can be found through the ARPACK library, both in Fortran and

C++ [Lehoucq et al., 1997; Sorensen and Gomes, 1997]. Also, the MATLAB function eigs includes the Arnoldi

algorithm by linking with ARPACK.
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in related fields to its apparition as a new modelling manner of handling variability. The basis

of Joint Factor Analysis, to consider the variability as a continuous source and to make use of

priors in form of variability subspaces has been also exposed.

Further, the theory behind the mathematical model Factor Analysis has been extensively

documented, with details of the training of both hyperparameters and latent factors associated.

This theory has been extended to its use in mixture of Gaussian densities to fit with the inclusion

of Joint Factor Analysis into the well known GMM-UBM framework for SV or SLR purposes.
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Chapter 4

Factor Analysis applied to SV and

SLR systems: PART I (algorithmics)

This chapter presents where and how JFA is integrated into SV and SLR, analysing and

discussing its multiple forms to yield robust and efficient acoustic systems.

4.1. Introduction

Systems using FA gained prevalence due to their enhanced ability to deal with complex

sources of speaker/language inter-session variation, being nowadays present in the most success-

ful text-independent SV and SLR systems.

The explosion in its use from the beginnings of 2004 to date has derived in a high degree of

variants in its forms of application. Those variants arose to meet different needs, which could

be categorized in the following four groups:

1. Integrating Factor Analysis into the diverse existing state-of-the-art systems.

The success of FA approaches soon demanded its incorporation to the different existing

state-of-the-art systems. This chapter explores and details this integration into the SV

and SLR focused on the acoustic GMM and SVM systems.

2. Integrating Factor Analysis into different levels/domains of the recognition

scheme (feature, model and statistic domain). As other inter-session variability ap-

proaches, the global framework of FA has been adapted to be applied at different levels

of the recognition process. Specifically, regarding acoustic systems, FA has been applied

in three different levels, namely, the model, feature and statistics domain, understood the

latter as an intermediate level between feature and model domain, where measurements

are the sufficient statistics extracted from the recordings and a reference model.

3. Natural evolution of Factor Analysis approaches to better fit with the speaker

and spoken language recognition tasks. From the beginnings of its application,
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different improved versions of the global FA scheme has been developed to better fit with

the specific problems of speaker or spoken language recognition. In this chapter, those

steps given towards an evolved FA version are described.

4. Achieving a proper trade-off between recognition and computational efficiency.

A major reason stymieing the deployment of a fully-based FA model system is that when

dealing with large size problems, its implementation tends to be prohibitive. To counteract

this deficiency, several simplifications to the JFA procedure have been developed to relax

the computational constraints with low cost in terms of verification rates.

The remainder of this chapter is organized as follows. First, a detailed review of the integra-

tion of FA in both GMM and SVM acoustic systems at the aforementioned three levels/domains

(model, feature and statistics) is presented. Then, the linear scoring approach as an efficient

alternative to classical scoring is described. Finally, all the pieces are assembled to design and

present efficient forms to build JFA acoustic systems for both SV and SLR.

Original contributions of this chapter includes the adaptation of FA in the statistics domain

of a SVM system for SLR as well as the development of competitive and efficient systems in

both SV and SLR presented at NIST speaker and language recognition evaluations (SRE and

LRE) from 2006 to 2010 (SRE06, SRE08, SRE10 and LRE07, LRE09).

4.2. FA: Where and How

4.2.1. FA in the model domain

JFA was initially conceived to be integrated within the well-known GMM-UBM framework

for speaker verification [Reynolds et al., 2000]. The proposed scheme included a FA modelling

of the enrolment target models rather than use MAP adaptation, acting therefore in the model

domain.

4.2.1.1. FA in GMM

A. The Original Recipe

Initial works conducted by Patrick Kenny, [Kenny and Dumouchel, 2004a,b], proposed a

general JFA recipe to yield an integration into a GMM system. That recipe can be synthesized

in five steps as detailed in pseudo-code in Table 4.1.

Note that in this original recipe the hyperparameters V ,D are considered speaker-dependent.

As it will be shown later on during the course of this chapter, this assumption, although well

justified from a theoretical point of view, was soon relaxed in more efficient versions of JFA to

finally remain independent of the speaker models. A major reason for this fact is that in most

of situations the training material for a specific speaker is not enough to actually introduce con-
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Original JFA integration within classical GMM-UBM framework

I Train an Universal Background Model, λubm = {ωk,µk,Σk}Kk=1

1. Odev := observations(devData);

2. λubm := clustering(Odev); % K-Means or Binary Splitting.

3. λ∗
ubm

:= EMML(Odev); % Maximum Likelihood via EM iterations.

II Initialization of Hyperparameters, Λ = {µ,V ,U} (section 3.5.1)

1. µ := µubm

2. for each utterance i Odevi
in dev set Odev:

λi := EMMAP (Odevi
,λ∗

ubm
); % training model via MAP adaptation

X(:, i) := µ
i; % stacking mean supervector in column form

end

3. Sb := betweenScatterMatrix(X); Sw := withinScatterMatrix(X);

4. V := PCA(Sb);

5. U := PCA(Sw);

III Hyperparameters Refinement, Λ = {V ,U ,D} (section 3.4.3)

1. Odev2 := observations(devData2);

2. Λ∗ := maximizeΛ(Odev2,Λ);

IV Train target models, Λs = {Vs,Ds,ys, zs} (section 3.4.3)

1. Otrain := observations(trainData);

2. for each speaker s Otrains
in train set Otrain:

Λs := maximizeΛ(Otrains
,Λ∗);

end

V Testing

1. Otest := observations(testData);

2. for each speaker j with observations Otestj in train set Otest:

for each model λsh defined by Λs:

scoreλsh,j
:=

l(Λs,Otestj
)

l(Λ,Otestj
) ;

end

end

Table 4.1: Original Joint Factor Analysis integration within classical GMM-UBM framework.
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siderable modifications in them, being preferable to account all the discriminating information

into their latent factors associated (ys and zs).

Other interesting point to highlight concerns the scoring approach, which is proposed as a

classical log-likelihood ratio between the target model and the Universal Background Model -

UBM -. The difference with respect to the classical scoring lies in the form of the likelihood

function, where channel factors of the testing utterance are considered and integrated out to

account all their possible values. The likelihood function for a test observations O of a recording

h faced to a model of speaker s with hyperparameters Λs is expressed as

P (O | Λs) =

�
P (O | Λs,xsh)N(xsh | 0, I)dx (4.1)

Hence, the session variability encountered in the testing recording h is taken into account.

To evaluate the final score the EM auxiliary function in equation 3.17, as a lower bound of

the expression 4.1, is used taking into account that some of the terms are cancelled as they

are identical for the target model and the UBM model. A detailed derivation of this scoring

approach can be found in [Kenny et al., 2007].

B. Simplifications

The proposed scheme, detailed in the above section, translates the complete mathematical

background described in the previous Chapter 3 into a SV GMM based system. However,

despite of its promising gains supported by a strong theoretical framework, this approach was

not immediately adopted by the scientific community. A major reason for this was the lack

of a large corpora able to adequately exploit the advantages of FA including strong priors of

speaker and session variability. Also, implementing the recipe step by step demanded a high

cost in terms of computational resources, so the balance between the computational cost and

the system performance was not at that moment as attractive as it is nowadays.

To counteract these drawbacks, soon, several modifications/simplifications were proposed to

cope with these two main difficulties. Those simplifications were first focused on simplifying the

model and second on finding shortcuts in its development, which speed up the process under an

acceptably low loss of performance.

Among the several proposed simplifications found in the literature, it is convenient to rescue

by its posterior relevance, the following ones:

Compute subspaces U and V in a disjoint manner rather than simultaneously

[Kenny et al., 2005b]. As it was previously stated, this simplifications was one of the

first performed. Training U and V subspaces separately allows the use of similar and

more simplified procedures to train them up. Further, session variability information can

be modelled and suppressed, as it will be shown, before training the speaker variability

subspace.
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Consider the hyperparameters V and D independent of the target speaker

model [Vogt and Sridharan, 2008]. Although, theoretically, V and D should depend

on the target speaker, in practical situations there is not enough training data for the

speaker to get a significant improvement by doing this adaptation. Keeping fixed V and

D led to significant improvements in computational terms allowing the use of a fixed set

of hyperparameters irrespective of the speaker treated.

Consider the channel factors to be independent of the target speaker model

[Vair et al., 2006]. By loosening the speaker-dependence constraint the channel factors

can be computed through the sufficient statistics associated to the UBM model and the

session variability subspace. This fact greatly simplify the test verification process, as for

each test utterance just a single estimation of the channel factors is required rather than

one for each target model.

All these fundamental optimizations in conjunction with the advances carried out in the

verification stage, treated in section 4.2, made JFA a viable tool to be efficiently integrated into

SV and SLR systems. Further, as it will be shown in the experimental part of this Dissertation,

thanks to the laudable efforts conducted by different institutions as NIST (National Institute

of Standards and Technology) to acquire larger and more complete databases [NIST, 2010], the

power of FA to deal with speaker and session variability has been largely proved.

C. The Speaker Variability and The Residual Term Dz

For the sake of simplicity and due to the great results achieved just by modelling the session

variability via FA, the speaker variability term, as conceived in the original model, was often

left aside and was, in several works, set as the offset derived of a MAP adaptation. That is,

the JFA original speaker component offset represented by terms V y+Dz was synthesized into

the Dz term. Hence, the speaker subspace disappeared and with it, many of the computational

resources requirements.

However, from a theoretical point of view, it remained clear that an adequate inclusion of a

speaker variability prior could lead to further improvements since the profits of both classical

MAP and eigenvoice MAP could be jointly accounted as it was discussed in the previous chapter.

However, first experiments in that sense did not achieve significant improvements by including

both terms, V y and Dz [Kenny et al., 2008a].

Fortunately, the work conducted by Kenny et al. [2008b] detected the cause of this conflict

between theory and practice, as a non-proper estimation of the speaker component. As stated

in [Kenny et al., 2008b] one of the prime reasons that led to this non-proper estimation of the

hyperparameters D and V in previous studies was the fact that both had been trained in a joint

manner via a maximum likelihood (ML) procedure. Considering D diagonal and V composed

by say 300 eigenvoices, the number of free parameters to estimate in V is 300 times the ones in

D. In this context, it is not surprising that the ML procedure devoted more of its attention to
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estimate V at the expense of D, which elements results to be close to zero.

To palliate this undesired behaviour, in [Kenny et al., 2008b], a disjoint training procedure

was proposed with the aim of properly estimate both terms. In that sense, once initial eigenvoice

models are computed, the term µ+V y can be used to centralize the statistics used to train D.

Thus, the ML procedure aims to modelling the speaker variability not present in the subspace

V resulting in a major benefit in terms of discrimination and therefore revealing the importance

of modelling the speaker variability component Dz under the FA theoretical framework.

4.2.1.2. FA with SVM

There are several ways to incorporate FA into the model domain of a SVM system. One of

the most obvious could be just compensating GMMs means supervector by using the standard

FA framework, and then make use of those compensated models to feed a SVM-SV system as

described in Section 2.4.3. This solution, although easy to perform, has the main drawback that

both training and test utterances must be modelled to get the mean supervector.

On the other hand, in a parallel way to the development of Factor Analysis, a new session

variability technique, coined Nuisance Attribute Projection (NAP) [Solomonoff et al., 2004], was

designed to be integrated into a SVM system. NAP is based on projecting away the non-desired

(session variability) directions/components by including a projection operator P into the kernel

operation as follows

k(x,y) = φ(x) � φ(y) = [Pφ(x)]T [Pφ(y)]

= φ(x)TPφ(y) (4.2)

where φ(·) is an expansion function from the feature space to the high-dimensionality space, and

P is the projection operator defined as P = I −ZZ
T , being Z estimated as:

argmin
Z

=
�

i,j

Wi,j � Pφ(xi)− Pφ(xj) �22 (4.3)

being Wi,j the labels matrix, so that Wi,j = 1 if xi and xj belong to the same speaker and

Wi,j = 0 otherwise. The Z matrix is found to be orthonormal (ZT
Z = I) such as P can be

defined formally as a projection (P = P
2).

The NAP approach bears many similarities to FA, in the sense that both attempts to com-

pensate session variability by establishing a strong prior of the variability represented by a

low-dimensional subspace. In fact, as demonstrated in [Campbell et al., 2006c], by using a lin-

ear kernel where the expansion function transforms each recording (defined by the observations

O) to its means supervector Φ(O) = µ, the session variability subspace computed via NAP is

identical to that computed via FA (Z = U).

The main differences with the complete FA formulation are that in NAP i) a removing process

rather than modelling process is carried out regarding the session variability; and ii) there is not
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an analogous term for modelling speaker variability by including a prior via a low-dimensional

subspace as in FA.

4.2.2. FA in the feature domain

The specific integration of FA within the model domain suffer from two shortcomings. First,

the need to formulate specific forms to take into account the session variability present on the

test utterance, as it is the case in the GMM approach; and second and most important the

lack of flexibility to directly extend the model to other modelling approaches or tasks. These

reasons motivated the search of new approaches to integrate FA within the feature domain. The

underlying idea is clear, once the feature vectors are clean of session variability, whatever kind

of modelling should be benefited without performing additional modifications.

4.2.2.1. FA in GMM

In this direction and applied into a classical GMM-UBM framework, the work conducted

by Vair et al. [2006] presented and elegant form to perform session variability compensation

within the feature domain. The technique strongly inspired in the Feature Mapping approach

[Reynolds, 2003], presented in Chapter 2 (Section 2.6.2.4), proposed a frame-by-frame feature

compensation in the following form

ôt
(h) = o

(h)
t −

�

k

PktUkxh (4.4)

where o(h)
t is the t frame of a utterance h, Pkt is the Gaussian occupation probability for Gaussian

k and frame t, defined as in equation 3.24 and Uk is the submatrix of the session variability

subspace corresponding to Gaussian k (that is, rows from (k − 1) ∗ F + 1 to kF , being F the

feature vector dimension).

Thus, the corresponding session variability to each frame is directly subtracted frame by

frame supported by the prior subspace U being the channel factors x estimated for the utterance

h. To alleviate a bit the costly operation, the sum in k use to be constrained to the five most

likely Gaussian for the frame t (top-5 Gaussian for frame t).

Note, that this compensation it is possible since the channel factors are considered to be

only dependent of the utterance rather than the utterance and the speaker model, otherwise,

the reference model would remain tied to the compensated utterance. In order to avoid this

issue, the UBM is considered as the reference model, to compute sufficient statistics, channel

factors, and also Gaussian occupations probabilities.

4.2.2.2. FA in SVM

As an inherent property/advantage of the feature domain compensation, there is nothing

additionally to do to extend the compensation to other modelling approach. The compensated

features can now fed a SVM system without the need to be modified.
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A very similar approach can be also derived from NAP to be applied at feature domain, by

means of the so-called feature NAP (fNAP) [Campbell et al., 2008], which can be derived by

rewriting equation 4.5 as:

ôt
(h) = o

(h)
t −

�

k

Pktnhk (4.5)

where here, nh is the nuisance means supervector derived from the NAP projection of the mean

supervector associated to the utterance h; and index k refers to the sub-vector corresponding to

Gaussian k.

4.2.3. FA in the statistics domain

A hybrid version between performing the compensation in model and feature domain, is

doing it in the statistics domain, where the term statistic shortly refers to the sufficient statistics

extracted from the data material and a reference model (normally, the UBM).

This approach addresses much of the advantages presented by the model and feature domain

compensation, whilst avoiding their principal drawbacks. As it will be shown, i) it eliminates the

costly frame-by-frame compensation and ii) it allows an easy integration within a non-modified

SVM system. Further, it beautifully links with the linear scoring technique presented later on

in the Section 4.2, leading to accurate and efficient SV and SLR systems.

4.2.3.1. FA in GMM

As it was stated before, it is desirable to apply the compensation in a stage before the model

domain, as this would allow applying the compensation directly to the test features extracted

from data without the need to create a model or finding specific forms to it. The work conducted

by Brümmer et al. [2009], accomplishes the compensation at the statistics domain inspired in

the above presented scheme where session variability compensation was performed in the feature

domain.

This feature domain compensation idea can be reused in the statistics domain in order to

get a session-variability-compensated first-order statistic f c, following the next form

fc = f −NUx (4.6)

where N and f are the zero order and first order centralized statistics in matrix form defined as

in Section 3.4.2 and x the corresponding channel factors estimated for the given statistics and

session variability subspace U .

This approach has the desirable property of avoiding the need of a computationally expensive

frame by frame compensation whilst allowing an easy integration into a SVM system as it

presented in the following section.
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Advantages Disadvantages

Compensation

Feature

1. Extensible to others modelling approaches 1. Frame-by-Frame Compensation

2. Symmetric application on both training 2. Does not include V y and Dz

and testing utterances terms

Domain Statistics

1. Extensible between SVM and GMM models 1. Non-extensible to all others

2. Symmetric application on both training modelling approaches

and testing utterances

3. Avoids frame-by-frame compensation

Model

1. Includes the complete JFA model 1. Dependence on the modelling

2. Avoids frame-by-frame compensation approach

2. Non-symmetric compensation

on models/testing utterances

Table 4.2: General main advantages/disadvantages of applying FA in the different domains of an acous-

tic SV or SLR system.

4.2.3.2. FA in SVM

Amodification to the work in [Campbell et al., 2006b] was introduced in [Gonzalez-Dominguez

et al., 2010d] by employing a session variability compensation scheme within the statistics do-

main, which utilise the channel compensated first-order statistics derived from a GMM system.

Thus, a single MAP adaptation is needed in order to obtain compensated GMM supervectors.

The proposed scheme has fundamental advantages over the past described methods. On the

one hand, although session variability compensation techniques applied to the feature domain

such as feature Nuissance Attribute Projection (fNAP) [Campbell et al., 2008] or feature Latent

Factor Analysis (fLFA)[Castaldo et al., 2007][Campbell et al., 2008] have the prime advantage of

allowing any type of posterior modeling, its application implies a frame-by-frame compensation

over the set of features rather than a single compensation in model or statistics domain. This

becomes a major drawback when large amounts of data must be processed, as in language

recognition. On the other hand, once first-order statistics are channel compensated, no other

FA techniques applied at model domain such as [Matrouf et al., 2007] or NAP [Solomonoff et al.,

2005] are necessary. This turned out in a major saving of computational time in acoustic systems

as well as significant benefits in terms of verification rates.

4.3. The Linear Scoring Approach

There are several scoring techniques associated to FA [Glembek et al., 2009]. Among them,

one which deserves special attention is the linear scoring approach [Brümmer et al., 2009], which

by means of an elegant derivation turns the costly scoring stage into a single dot product without

significant loss of classification performance. The remainder of this section is devoted to derive

the linear scoring approach from the classical GMM scoring method presented in Section 2.4.1.3.
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Classic scoring is presented as a ratio between the likelihood of the dataset O of the target

model for the speaker s, λs, and the UBM model, λubm, as

scoreO,λs =
P (O | λ)

P (O | λubm)
(4.7)

Taking logarithms for practical issues, the score simplifies to

scoreO,λs
= log(P (O | λs))− log(P (O | λubm)) (4.8)

Linear scoring proposes a linear approach of this scoring function based on the first order Taylor’s

series expansion of the first term, log(P (O | λs)) evaluated at the UBM mean supervector point,

as follows (see Appendix B)

log(P (O | λs)) � log(P (O | λubm)) +�P (O | λubm)T [µ](µs − µ) (4.9)

being µs and µ the mean supervectors of λs and λubm respectively and and (µs−µ) the difference

of target model λs and UBM mean supervectors. It can be see also (see Appendix B) that

�P (O | λubm)
k
[µ] =

�

t

Σ−1
k

Pkt(ot − µk) (4.10)

The linear approach carries itself a number of advantages with respect to the classic scoring

method. First of all, the need of computing the term log(P (O | λubm)) for every utterance

with data O is removed since is cancelled. To see that it suffices to substitute equation 4.9 in

equation 4.8

SO,λs
= log(P (O | λubm)) +�log(P (O | λubm)T )[µ](µs − µ)− log(P (O | λubm))

= �log(P (O | λubm)T )[µ](µs − µ) (4.11)

Further, the term (µs−µ) is just the offset in a classical MAP adaptation in which only one

EM iteration is done. Taking advantage of this fact, target speaker models can be expressed in

GMM linear scoring as the offsets in MAP adaptation and therefore avoiding the dependence

of the UBM from this step on. Moreover, it can be shown that the term �log(P (O | λubm)T ),

evaluated at the UBM mean supervector point, corresponds to the first order statistics of the

data O with respect to the UBM, normalized by the covariance matrix Σ (see Appendix B).

Therefore, the scoring function is reduced to a dot product between the MAP offset model and

the first order statistic vector calculated from O with respect to the UBM.

Summarizing the above described, to obtain the score given a dataset of frames O, a target

model and a UBM is simplified to the next steps:

1. Compute 0rd and 1st normalized order stats from O (train and test) with respect to the

UBM model:
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0th −→ nk =
�

t

Pkt (4.12)

1stnorm −→ fk =
�

t

Σ−1
k

Pkt(ot − µk) (4.13)

2. Compute the target model of the speaker s as the offset in MAP adaptation from the

training sufficient statistics:

µs = (τI +N)−1
f (4.14)

3. Compute the score as the dot product of the testing first stats and the target model:

SO,λs
= µ

T
s f (4.15)

The step 2. can be easily substituted by the offset V y + Dz instead of the MAP offset

adaptation integrating thus linear scoring within a FA framework. Also the first-order statistics

belonging to the test utterance can be compensated by means of equation 4.6 to take into account

the session variability of the test utterance.

The figure 4.1 illustrates the linear scoring approximation by representing the likelihood

function and its linear approximation as a scoring function in the GMM means space. The

actual likelihood function is represented by the curve and it produces a score, SO,µs
, for each

par of observations and model with supervector means µ. The line, tangent to the likelihood

in point µ, represents the approximation of the likelihood via linear scoring. Note that as the

target model has been derived by MAP from the UBM or in a similar procedure, both models

should be close into the GMM means space. This fact guarantees that the produced score is a

good estimation of the actual score.

4.4. Toward Efficient and Robust Text-Independent Speaker and

Language Recognition Acoustic Systems

It has been a prime goal in the deployment of this Thesis to yield robust acoustic but

at same time efficient, in computational terms, SV and SLR systems [Gonzalez-Dominguez

et al., 2010b,d, 2009]. The goa of this work has been largely corroborated through different

international evaluations such as those promoted by the National Institute of Standards and
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Figure 4.1: Linear Scoring Representation. The scoring is computed as an approximation of the likeli-

hood function over the point defined by the UBM mean supervector.

Technology (NIST) in both speaker and language recognition evaluations (SRE, LRE) since the

year 2006 (SRE06, SRE08, SRE10, LRE07 and LRE09).

In this section, two efficient and robust GMM-UBM systems based on FA for SV and SLR

are presented. Those compress the state-of-the-art acoustic approach for both disciplines and

are the current base for further research.

4.4.1. An efficient JFA based GMM-UBM systems for SV

The algorithm presented in Table 4.4 summarizes an efficient version of JFA integrated into a

GMM-UBM classical framework, which includes much of the simplifications described in section

4.2. The compensation is carried out in the statistics domain and the scoring is performed via

linear scoring.

Note that the session compensation at the training stage is accounted by compensating

the first-order statistics before computing the speaker component by using equation 4.6, and

a similar scheme is done at the testing stage. For the sake of simplicity a single recording

is considered to be available for every speaker, otherwise a channel factors vector xh for each

utterance and first h should be considered, to compensate first-order statistics vectors for each

pair utterance h and speaker s. Those, once compensated, could be accumulated remaining the

rest of the process the same.

Table 4.3 analyses the computational time of the efficient JFA system presented besides an

analogous system which use SVM with session variability compensated first-order statistics. As

it can be seen, using similar schemes of session variability compensation as well as to incorporate

linear scoring produce great improvements in terms of computational time.
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4.4.2. An efficient JFA based GMM-UBM systems for SLR

A very similar approach to that described above for SV is presented in 4.5 for SLR purposes,

with several modifications. These being:

1. The within scatter matrix refers languages as classes rather than speakers.

2. The speaker variability subspace disappears, as it is considered session variability.

3. Training languages models are computed as average of individual models for utterances

belonging to same language.

An analogous term to the speaker variability subspace, the language variability subspace,

could be also considered into this scheme, however due to often the number of languages to

recognise is much smaller than the number of speakers, the latent factors associated to this

subspace degenerate to vectors of a few dimensions that do not significant contribute to the

recognition performance. Nevertheless, as it was shown in [Castaldo et al., 2009], those vectors

contain discriminant information and could be used for instance as the training features in a

GMM-SVM framework and as long as the task covers more languages, they could gain more

and more importance.

4.5. Summary

This chapter has extensively covered the integration of the theoretical FA framework into

the well-known GMM and SVM systems for SV and SLR. The different forms of FA to fit with

those classification schemes at three different levels, namely, the feature, the model and the

statistics domain have been exposed and detailed. The advantages and disadvantages of each of

those approaches has been individually examined and are summed up in Table 4.2.

A novel contribution based on the integration of FA into a SVM system in the statistics

domain has been also presented. This approach inherits the benefits of the compensation in the

statistics domain, avoiding the costly frame-by-frame compensation process and fully treatment

of all the FA components.

The final part of this chapter was concentrated into developing efficient SV and SLR systems.

In this direction, complete recipes to achieve efficient FA based systems integrated to SV and

SLR have been exposed. Those algorithms are supported by several and novel publications

conducted during the research, which has originated this Dissertation.

67



4. FACTOR ANALYSIS APPLIED TO SV AND SLR SYSTEMS: PART I (ALGORITHMICS)

Step System

JFA SVM-SV

Development

UBM training (2M feature vectors, gender dependent) 4h (4h)

Training Variability Subspace U/V 1h/1h 1h

Feature extraction (per ∼ 265s file)

MFCC 2s (2s)

Training (per ∼ 265s file)

GMM-train 8s (8s)

FA point estimate 0.1s (0.1s)

SVM-train - 120s

Total (train) 10.1s 130.1s

xRT train (CPU/speech) 0.04RT 0.50RT

Testing (per ∼ 265s file)

SV-train - 8s

FA point estimate 0.01 (0.01)

Scoring (frame by frame/ linear scoring) 0.2s/1× 10−4 3.2s

t-norm (100 models) 20s/1× 10−2 320s

Total (test) 22.2s/2.02s 331.2s

xRT test (CPU/speech) 0.08RT/7.5× 10−3RT 1.24RT

Table 4.3: Execution times for acoustic JFA and SVM supervector with session variability compensation

systems. Numbers in brackets means already compute through the other system.
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An efficient version of JFA integrated into classical GMM-UBM for SV

I Train an Universal Background Model, λubm = {ωi,µi,Σi}Ni=1

1. Odev := observations(devData);

2. λubm := clustering(Odev); % K-Means or Binary Splitting.

3. λ∗
ubm

:= EMML(Odev); % Maximum Likelihood via EM iterations.

II Initialization of Hyperparameters, Λ = {µ,V ,U}

1. µ := µubm

2. for each utterance i Odevi in dev set Odev:

λi := EMMAP (Odevi ,λ
∗
ubm

); % training model via MAP adaptation

X(:, i) := µ
i; % stacking mean supervector in column form

end

3. Sb := betweenScatterMatrix(X); Sw := withinScatterMatrix(X);

4. V := PCA(Sb);

5. U := PCA(Sw);

III Hyperparameters Refinement, Λ = {µ,V ,U ,D}

1. Odev2 := observations(devData2);

2. Λ∗ := maximizeΛ(Odev2,Λ);

IV Train speaker target models

1. Otrain := observations(trainData);

2. for each speaker s with train material Otrains in train set Otrain:

[ns,fs] := sufficientStatistics(Otrains ,µubm)

x := pointEstimate(ns,fs,U∗);

f
∗
s := compensate(fs,U∗,x)

ys := pointEstimate(ns,f∗
s ,V

∗);

zs := pointEstimate(ns,f∗
s ,D

∗);

µs := V y +Dz;

end

V Testing

1. Otest := observations(testData);

2. for each utterance j Otestj in train set Otest:

[ns,fs] := sufficientStatistics(Otests ,µ)

x := pointEstimate(ns,fs,U∗);

f∗
s := compensate(fs,U∗,x)

for each model λs:

S0,λs := µs · fh
s ;

end

end

Table 4.4: A robust and efficient acoustic GMM system for speaker verification.

69



4. FACTOR ANALYSIS APPLIED TO SV AND SLR SYSTEMS: PART I (ALGORITHMICS)

An efficient version of JFA integrated into classical GMM-UBM for SLR

I Train an Universal Background Model, λubm = {ωi,µi,Σi}Ni=1

1. Odev := observations(devData);

2. λubm := clustering(Odev); % K-Means or Binary Splitting.

3. λ∗
ubm

:= EMML(Odev); % Maximum Likelihood via EM iterations.

II Initialization of Hyperparameters, Λ = {m,U}

1. µ := µubm

2. for each utterance i Odevi in dev set Odev:

λi := EMMAP (Odevi ,λ
∗
ubm

); % training model via MAP adaptation

X(:, i) := µ
i; % stacking mean supervector in column form

end

3. Sw := withinScatterMatrix(X);

4. U := PCA(Sw);

III Hyperparameters Refinement, Λ = {µ,U}

1. Odev2 := observations(devData2);

2. Λ∗ := maximizeΛ(Odev2,Λ);

IV Train language target models

1. Otrain := observations(trainData);

2. for each language l

for each utterance h Otrainh in train set Otrainl :

[nh,fh] := sufficientStatistics(Otrainh ,µubm)

xh := pointEstimate(nh,fh,U∗);

f
∗
h
:= compensate(fh,U∗,x)

z := pointEstimate(nh,f∗
h
, D∗);

µh := Dz;

end

λl := average(λl,λh);

end

V Testing

1. Otest := observations(testData);

2. for each utterance h Otesth in train set Otest:

[nh,fh] := sufficientStatistics(Otesth ,µ)

xh := pointEstimate(nh,fh,U∗);

f
∗
h
:= compensate(fh,U∗,xh)

for each model l:

Sλl,h := µl · f∗
h
;

end

end

Table 4.5: A robust and efficient acoustic GMM system for spoken language recognition.
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Chapter 5

Experimental Framework

This chapter describes the adopted experimental framework to assess and present the set

of experiments/results contained within this Dissertation.

5.1. Introduction

As in other young fields of scientific research, a common practice at the beginnings of the

SV or SLR research works in the 1970’s decade was to report experimental results using data

expressly captured for the specific set of experiments conducted, being this collection process,

most of the times, carried out at hand [Atal, 1976; Markel and Davis, 1979].

The increasing interest in the area linked to the apparition of several research groups in-

terested in facing similar or same problems, soon demanded common experimental frameworks

(i.e databases and protocols) which allow establishing fair comparison among different groups

technology as well as fostering collaborative research and stimulating intellectual discussions in

the area.

In that sense, a crucial milestone in the development of SV and SLR technologies was the

foundation and organization by the American National Institute of Standards and Technology

(NIST) of the international evaluations series in the area, the speaker and spoken language

recognition evaluation series, NIST SRE’s and NIST LRE’s respectively. The SRE’s and LRE’s

series, starting at 1996 have meant a beneficial feedback cycle which extends to present and

where new challenges supported by new databases are dealt with in a common forum to mayor

benefit of the SV and SLR technology. In particular, NIST evaluations are designed to foster

research progress to ([Doddington et al., 2000]):

1. Exploring promising new ideas in speaker recognition.

2. Developing advanced technology incorporating these ideas.

3. Measuring the performance of this technology.
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In this chapter the databases besides the adopted evaluation protocols for both SV and SLR

used to assess the experiments conducted in this dissertation are described. As well, the baseline

systems used in order to compare described techniques and new algorithms are detailed.

5.2. Databases

This section describes most widely used databases by the scientific community to assess SV

and SLR technology.

5.2.1. Automatic speaker recognition databases

Switchboard 1 [Godfrey and Holliman, 1993; Godfrey et al., 1992]. SWB1 consisted

of conversational speech recorder over landline telephone from both carbon button and

electret telephone handsets. The recordings are around 2.5 minutes, containing american-

english speech of a 543 U.S participants. SWBI was released in 1997

Switchboard 2 [Graff et al., 1998, 2002, 1999]. SWB2 was acquired in three phases

according to the three different areas of U.S.A were it was collected, namely, Mid-Atlantic,

Midwest and southern regions. It is based on landline conversational speech as SWB1,

but a higher degree of variability was captured as participants were encouraged to use a

variety of handsets. The three phases of SWB2 was released in 1998, 1999 and 2002 with

about 657, 679 and 640 different speakers respectively.

Switchboard Cellular [Graff et al., 2001]. SWBCELL contains conversational speech in

American-english recorded over cellular networks, mostly consisted of GSM and CDMA.

SWBCELL was released in two parts in 2001 and 2004 respectively with a total of 254

and 419 speakers respectively. SWBCELL was released in 2001.

Ahumada [Ortega-Garcia et al., 2000]. The Ahumada database was recorded by the

ATVS biometric recognition group. It contains speech in Spanish over telephone and two

types of microphones under controlled conditions. Ahumada was included into the NIST

SRE 2001 evaluation, providing multi-language variation (english, spanish).

Mixer. [Cieri et al., 2006, 2007]

The increasing need of counting with more appropriate data to cope with the new chal-

lenges emerged in SV, required to develop a more ambitious mechanism to collect speech

data. In that context, the Mixer collection database arose to satisfy this demand, with

a main goal of building a very challenging database which includes variability across dif-

ferent aspects such as languages, handsets/channel (different microphones and handsets),

age variation, gender and speech style (i.e conversational telephone and interview speech).

The Mixer database development goes hand in hand with the NIST SRE’s providing the

needed data to evaluate new challenges proposed in those.
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i Mixer 1, 2, 3 [Cieri et al., 2006]. The three first phases of Mixer contains the

conversational telephone speech kernel of the global Mixer database. They contain

more than 1867 speakers, where multi-language data captured in a wide number of

handsets is considered. Also, they are balanced in gender and the age variations is

broad (16 - >50).

ii Mixer 4 [Cieri et al., 2007]. Mixer 4 was focused to cope with multi-channel data. Up

to 14 different microphone were set to simultaneously record incoming calls, bringing

about a broad microphone variability. Mixer 4, with more than 400 participants, has

been used in past SRE’s evaluations since 2005, being one of the main focus in 2006

and 2008.

iii Mixer 5, 6 [Cieri et al., 2007]. Mixer 5 and Mixer 6 followed a dual goal. First to

capture interview data besides conversational telephone speech, and second to collect

speech data where particular low or high vocal effort is done by the participant. Mixer

5, with more than 200 participants, has been used in past 2008 and 2010 evaluations

being one of the main focus in 2010.

Ahumada III [Ramos et al., 2008]. Ahumada III is a forensic speech database in Spanish

collected from real forensic cases. In its current release, the database presents 61 male

speakers recorded using the systems and procedures followed by Spanish Guardia Civil

police force. As a forensic, Ahumada III contains a huge variety conditions in terms of

number of available calls and amount of data.

5.2.2. Automatic language recognition databases

The databases used in this Dissertation concerning SLR are governed by the NIST LRE’s

series. Since 1996 NIST LRE’s series have included data belonging to different languages, mostly

collected by the Linguistic Data Consortium (LDC) 1. Table 5.3 shows all the languages that

have been labelled as target in any of the LRE’s. Among the databases included in this data, it

is worth to highlight the following projects.

CallFriend [Graff, 1996]. The CallFriend project includes a wide variety of different

language databases acquired following a identical protocol by the LDC primarily in support

of the project on Language Identification (LID), sponsored by the U.S. Department of

Defense.

CallHome [Graff, 1996]. As CallFriend, the CallHome project cover a wide variety of

languages recorded over telephone speech. It was collected by the LDC primarily in sup-

port of the project on Large Vocabulary Conversational Speech Recognition (LVCSR),

sponsored by the U.S. Department of Defense.

1Linguistic Data Consortium http://www.ldc.upenn.edu/
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Voice of America [Graff, 2009]. The VOA project arose as a collaboration between

the LDC, the Speech@FIT group (Brno, Czech Republic) and the official external radio

and television broadcasting service of the U.S Government (Voice of America broadcast

news) and therefore it contains broadcast speech. VOA recordings are publicly available

on VOA’s website 1, they contains more than 50 languages, and they were included in the

2009 LRE.

Table 5.1 collects all the languages that have been target languages in one or more NIST

LRE evaluations besides their coverage in terms of millions of native speakers and other side

information, such as the regions were those are spoken.

5.3. Evaluation of Performance

In a speaker, language and, in general, in a verification biometric systems two types of error

can occur, namely false rejection (FR) and false acceptance (FA). The former is produced when a

true identity is rejected by the system whilst the latter happens when a non-valid identity claim

is accepted. Both types of errors depends on the threshold defined in the system, as its value

will mark when an individual will be accepted or rejected. In that sense, the higher threshold

the higher false rejection and lower false acceptance errors, as the system will be more strict

when accepting users (desirable for instance in security systems, bank, personal data, etc.). By

other hand, the lower threshold the lower false rejection and the higher false alarm.

The pair of errors (FA, FR) define the operating-point of the system, that is the FA and FR

errors given the fixed threshold, being the matter of fixing the threshold a trade-off between

the two types of errors. In practice, in order to measure the FA and FR of a system a large

test corpus is used and counts of the number of errors of each type are used. The Figure 5.1

represents the FA and FR error of a determined system with non-target and target distributions

and a given threshold.

In function of this two types of errors, two measures adopted by NIST in the language and

speaker recognition evaluations will be adopted to measure the systems performance.

5.3.1. Detection Error Trade-off curve

The Detection Error Trade-off (DET) curves are a well-known visual form to represent

the systems performance of biometric systems and in general binary classifications systems.

Basically, a DET curve plots the FR error versus FA error, and it can be seen as non-linear

scaled-axes version of ROC curves. This scaled has the main objective of obtaining more linear

systems error curves, allowing a better visual comparison of the performance systems. An

example of a DET curve is depicted in Figure 5.2.

1http://www.voanews.com/english/news/
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Language/Dialect Family Official in / region for dialects ∼ native speakers (mil.)

Amharic Afro-Asiatic Ethiopia 32

Arabic Afro-Asiatic 26 states north-Africa and Middle East 280

Bengali Indo-European Bangladesh, India, Sierra Leone 230

Bosnian Indo-European Bosnian and Herzegovina, Montenegro 4

Chinese(Cantonese) Sino-Tibetan China, Taiwan, Singapore 70

Chinese(Mandarin) Sino-Tibetan China, Taiwan, Singapore 1365

Chinese(Min) Sino-Tibetan China, Taiwan, Singapore 50

Chinese(Wu) Sino-Tibetan China, Taiwan, Singapore 90

Creole(Haitian) Creole Haiti 12

Croatian Indo-European Croatia, Bosnian and Herzegovina 5,5

Dari Indo-European Afghanistan 30

English(American) Indo-European U.S.A 309

English(Indian) Indo-European India 90

Farsi Indo-European Iran, Afghanistan, Tajikistan 70

French Indo-European 20 countries [France, Canada ...] 110

Georgian Kartvelian Georgia 7

German Indo-European 7 countries centre-Europe [German, Austria ...] 97

Hausa Afro-Asiatic 9 countries Africa [Nigeria, Cameroon ...] 25

Hindustani(Hindi) Indo-European India 180

Hindustani(Urdu) Indo-European Pakistan, India 60

Japanese Japonic Japan 130

Korean Korean North Korea, South Korea, Yanbian (china) 78

Pashto Indo-European Afghanistan, Pakistan 60

Portuguese Indo-European Brazil, Angola, Mozambique, Portugal 236

Russian Indo-European 8 countries east-europe [Rusia, Kazakhstan ...] 175

Spanish(Caribbean) Indo-European Dominican Republic, Cuba, Puerto Rico 25

Spanish(non-Caribbean) Indo-European 21 countries [Mexico, Spain ...] 500

Tamil Dravidian India, Sri Lanka, Singapore 66

Thai Tai-Kadai Thailand, Northern Malasya 60

Turkish Altaic Turkey, Ciprus 83

Ukrainian Indo-European Ukraine 47

Vietnamese Austro-Asiatic Vietnam 73

Table 5.1: Information about languages/dialect involved as target languages in LRE series.
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Pdf. of non-target scores 

Pdf. Of target scores Pdf. of non-target scores 
Pdf. Of target scores 

Threshold 
Threshold 

Score Score 

Figure 5.1: Representation of False Reject (FR) and False Acceptance (FA) errors in a biometric

recognition system.

5.3.2. Detection cost

Apart from the DET curve and its inherent EER associated, NIST provides and additional

cost function which measure the system performance establishing a fixed cost to FA and FR

errors as well as a priori probability for target and non-target individuals. This cost is defined

for speaker verification as:

CDet = CFR · PFR|ST
· PT + CFA · PFA|SNT

· PSNT
(5.1)

where CFR and CFA are the associated costs to FR and FA errors respectively; PFR|ST
(the

probability of false reject given a target speaker) measures the system FR; PFA|SNT
(the prob-

ability of false acceptance given a non-target speaker) measures the system FA; and finally, PT

and PNT = 1− PT the prior target and non-target probability.

In NIST speaker evaluations and by extension, in this work, costs and target probability will

be set as follows:

CFA = CFR = 1

PT = 0.001

Regarding SLR an average cost which accumulates all the possible errors considering the

76



5.4 Protocol and Tasks Definition

  0.1   0.2  0.5    1     2     5     10    20    40  

  0.1 

  0.2 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

False Acceptance Probability (in %)

Fa
ls

e 
R

ej
ec

tio
n 

Pr
ob

ab
ili

ty
 (i

n 
%

)

 

 

!"#$%&'()'**+ ,*-'.'(/0(1/12',34 56$'.'7078/89:
!"#$%&'/)'**+ ,*-'.';07<1:2',34 56$'.'707:9/1=

Figure 5.2: Example of DET curve. System 1 and 2 are compared in terms of FR and FA errors.

involved languages is used. This cost, the Cavg, is defined as:

Cavg =
1

NL

�

LT

�
CFR ·PLT

·PFR|LT
+
�

LNT

CFA ·PLNT
·PFA|LT ,LNT

+CFA ·Poos ·PFA|LT ,LO

�
(5.2)

where

NLT
is the number of target languages, NLNT

the number of languages non-target, LO

represents the ”out-of-set” languages, and Poss the prior probability that a language be a out-

of-set language, defined as:

Poss =





0.0 for the closed− set condition

0.2 for the open− set condition

5.4. Protocol and Tasks Definition

In this Dissertation the protocols defined by NIST SRE (2006, 2008) and LRE 2009 have

been used to evaluate the SV and SLR systems respectively.

5.4.1. Automatic speaker recognition task definition

As a SV task, the essence of NIST SRE is to determine whether a specified speaker rep-

resented by a determined amount of training speech, is speaking during a given test segment

of conversational speech. Those trials are conditioned by the nature of the training and test

recordings (duration, speech style) defining so different task conditions.
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Task # Models #Tests #trials

tel-tel SRE’08 1788 2573 57050

tel-tel SRE’08-male 648 895 12922

tel-tel SRE’08-female 1140 1678 24128

10s-10s SRE’08 1789 1526 21951

10s-10s SRE’08-male 648 545 7799

10s-10s SRE’08-female 1141 981 14152

Table 5.2: Composition of development datasets.

5.4.1.1. Task conditions

In order to evaluate the presented systems and algorithms through next chapters, the fol-

lowing task conditions has been used:

A tel-tel SRE’08.

The tel-tel SRE’08 condition includes the telephone part of the core condition of NIST

SRE08 evaluation. It consists of trials were telephone conversational recordings of approx-

imately five minutes total duration ( ∼ 2.5 minutes of effective speech) are involved in

both training and testing. Table 5.2 details the number of models, test recordings and

trials considered in this task.

B 10s-10s SRE’08.

It consists of trials where telephone conversational recordings of approximately 10s are

involved in both training and testing. Details can be found in Table 5.2.

C A simulated challenging ”real-world” scenario (SRE’05, SRE’06).

We simulate by means of this condition an adverse scenario where problems as treated

in chapter 7 (database mismatch and short durations) are simulated. To this aim, data

from the 2005 and 2006 NIST Speaker Recognition Evaluations (NIST SRE) was used

to develop an experimental framework. These datasets were chosen as they cover a wide

range of acoustic (telephone and microphone) and environmental scenarios, allowing for

vigorous testing under mismatched conditions.

Two development datasets, namely dTel and dMic, were differentiated. The dTel consists

of SRE’04 and SRE’05 telephone data supplemented with data belonging to SWBII phase

I and phase II databases. This collection was chosen to provide a broad coverage of

telephone conditions, whilst also providing a high number of different speakers. The dMic

dataset was obtained from the microphone subset of the MIXER corpus and SRE’05 data.

In order to simulate the data scarcity problem, the dMic set was divided into sets with

differing amounts of data, obtaining different degrees of data scarcity. Specifically, three
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Databases # Speakers # Utterances

SWB-II 325 1300

dTel MIXER(SRE’04) 150 994

MIXER(SRE’05-tel) 40 297

dMic MIXER(SRE’05-mic) 45 1260

dMic10 MIXER(SRE’05-mic) 45 450

dMic5 MIXER(SRE’05-mic) 45 225

dMic3 MIXER(SRE’05-mic) 45 135

Table 5.3: Composition of the development dataset C (”real-world” scenario).

restricted sets were built: dMic10, dMic5 and dMic3. These were formed with only 10, 5

and 3 utterances per speaker present in dMic. Table 5.3 shows a breakdown development

dataset compositions.

The SRE’06 data was utilised as the test dataset. Testing was performed using the test

conditions specified in the SRE’06 [NIST, 2006] protocol, and using additional conditions

specified and distributed by participating sites during the SRE’08 1. The test conditions

examined were as follows: 1conv4w-1conv4w, 1conv4w-1mic, 1mic-1conv4w and 1mic-

1mic.

5.4.2. Automatic spoken language recognition task definition

LRE’09 evaluation included, for the first time, data coming from two very different audio

sources. Besides Conversational Telephone Speech, hereafter CTS, used in past evaluations, tele-

phone speech belonging to broadcast news was used for both train and test purposes. Broadcast

data was obtained via an automatic acquisition system from Voice of America news (VOA)

where telephone and non-telephone speech is mixed. Up to 2 terabytes of speech, automatically

labelled in language and type, were distributed to participants. Further, around 80 audited

segments for each target language (of approximately 30 seconds duration each) was provided

too for development purposes.

Both closed and open-set modes were defined as tasks in this evaluation each one tested with

duration segments of 3, 10 and 30 seconds. We refer to closed-set as the task when only target

languages are included in the test trials set, and to open-set when other non-target languages

(unknown to participants) are also included. In this evaluation, 23 target languages were involved

in closed-set as it is showed in Table 5.4 and 40 in open-set. More detailed information can be

found in the LRE’09 evaluation plan [NIST, 2009].

1Additional conditions for auxiliary microphone training and testing were distributed on the SRE’08 Google

Group list. Thanks to Doug Reynolds, David van Leeuwen, Albert Strasheim and Nicholas Scheffer for prepar-

ing and scrutinising these lists. Further details on these conditions can be obtained from the author or at

http://groups.google.com/group/sre2008
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Language Abbreviation Data Type (VOA/CTS)

Amharic amha V OA/−
Arabic arab −/CTS

Bengali beng −/CTS

Bosnian bosn V OA/−
Chinese (Cantonese) cant V OA/−
Chinese (Mandarin) mand V OA/CTS

Creole creo V OA/−
Croatian croa V OA/−
Dari dari V OA/−
English (Indian) inen −/−
English (American) usen V OA/CTS

Farsi fars V OA/CTS

French fren V OA/−
Georgian geor V OA/−
German germ −/CTS

Hausa haus V OA/−
Hindi hind V OA/CTS

Japanese japa −/CTS

Korean kore V OA/CTS

Pashto pash V OA/−
Portuguese port V OA/−
Russian russ V OA/CTS

Spanish span V OA/CTS

Tamil tami −/CTS

Thai thai −/CTS

Turkish turk V OA/−
Ukranian ukra V OA/−
Urdu urdu V OA/−
Vietnamese viet V OA/CTS

Table 5.4: Alphabetical list of languages used as development for LRE’09 evaluation. In bold, LRE’09

target languages.

80



5.5 Summary

In order to face this new challenge, where database mismatch play and important role [Ramos

et al., 2008], an ATVS development dataset was set up, ATVS-Dev09 onwards. This dataset

was built to reproduce in the most accurately possible way, blind evaluation conditions by

using different sets of CTS and VOA data provided by NIST. ATVS-Dev09 covered all target

evaluation languages and test evaluation duration segments (3, 10 and 30 seconds). Table 5.3

shows the 23 evaluation target languages along with ATVS available data type per language.

Specifically, the CTS training material (ATVS-DevTrain09) consisted of the Callfriend database,

the full-conversations of LRE’05 and development data of LRE’07. For Russian data we used

also RuSTeN 1. Telephone broadcast data was obtained from speech segments (minimum length

30s.) extracted from VOA long files using telephone labels provided by NIST.

The test material (ATVS-DevTest09) was obtained from the test part of LRE’07 (for target

languages in both LRE’07 and LRE’09), and from manually labelled data from VOA provided

by NIST. Finally, about 15,000 segments, balanced in segments of 3, 10 and 30 seconds, while

LRE’09 evaluation included about 15.000 segments per duration (∼45,000 segments) and there-

fore about 1 million trials since every segment is tested against every target language.

5.5. Summary

In this chapter the experimental protocol used for the experiments presented in this Dis-

sertation has been detailed. The experimental protocol adopted as well as the databases used

are those well-known proposed by NIST in their two past language and speaker recognition

evaluations (LRE 2009 and SRE2010). This fact favours the replication or comparison of all the

experiments conducted in this Dissertation by other researchers.

1LDC 2006S34 ISBN 1-58563-388-7, www.ldc.upenn.edu

81



5. EXPERIMENTAL FRAMEWORK

82



Chapter 6

Factor Analysis applied to SV and

SLR systems: Part II (experimental)

This chapter presents and analyses the experimental results obtained by applying JFA

in both SV and SLR systems.

6.1. Introduction

In previous Chapters 3 and 4, the theoretical framework of JFA, as well as how this is

integrated within SV and SLR systems was addressed. It is now the purpose of this chapter to

empirically evaluate the performance of JFA when dealing with large tasks of SV and SLR such

as the challenging NIST speaker and language evaluations. Particularly, the speaker recognition

evaluation NIST SRE 2008 (SRE’08) and the language recognition evaluation NIST LRE 2009

(LRE’09), which databases and protocols are defined in previous Chapter 5, have been used to

this aim.

This chapter is clearly differenced in two parts. In the first part, the performance of JFA in SV

is assessed and analysed in the telephone part of SRE’08, by comparing a step-by-step built JFA

system versus a classical GMM-UBM framework. Second part is then devoted to evaluate the

performance of JFA in SLR, in the context of the LRE’09, but also its fusion potential with other

state-of-the-art techniques. Both parts present an exhaustive and detailed analysis supported

by a wide set of experiments, which will lead us to a deep evaluation of the JFA performance as

well as to empirically support one of the main attainments and goals of this Dissertation; to get

robust, accurate and efficient SV and SLR systems. Further, other contributions of this Thesis,

as the use of SVM through FA session variability compensated statistics for SLR as well as the

use of anchor models as a back-end of SLR are evaluated [Gonzalez-Dominguez et al., 2010b,d].
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6.2. Joint Factor Analysis applied in SV Systems

In this section, the results obtained by incorporating JFA modelling within a classical GMM-

UBM acoustic system are presented. Those results, conducted on the male/female telephone

conditions of SRE’08 (Section 5.4.1), will provide us a clear and quantitative idea of the benefits

of using JFA in order to palliate the session variability problem as well as the strengths of using

a more proper modelling scheme for speaker variability as it is proposed in JFA.

Rather than presenting a direct comparison with/without using JFA, the objective of this

section is to perform a step-by-step analysis, where different elements of the JFA model are

sequentially included. Thus, a proper analysis of the importance of each element within the

global JFA modelling scheme is evaluated. To this aim, through this section speakers models will

be conducted from the classical MAP adaptation to the full JFA modelling by enabling/disabling

elements of the JFA modelling equation; µhs = µ+ V ys +Dzs +Uxhs.

1. MAP adaptation (V = U = 0). The classical GMM-UBM framework where MAP

adaptation is used to derive speaker models from a UBM, is set as the baseline system of

this analysis. Here, the speaker component of new speaker models is defined by classical

MAP adaptation terms, µ + Dzs, whilst no special care is taken regarding the session

component.

2. MAP adaptation with session variability compensation (V = 0). MAP adaptation

is, in this case, still adopted to derive speaker models, but session variability compensation

is applied in the statitics domain for both training and test recordings. This compensation

is accomplished previously to perform MAP adaptation.

3. Eigenvoice adaptation with session variability compensation (D = 0). We evalu-

ate through this system the inclusion of eigenvoice adaptation rather than MAP adaptation

once training and testing recordings have been session compensated.

4. JFA modelling. The full JFA model, which combine eigenvoice and MAP adaptation

is then evaluated to represent speaker models is evaluated in this step. Again, session

variability compensation is previously performed in the statistic domain.

5. JFA modelling with D trained on data. Finally, the JFA modelling where residual

matrix D is estimated on training data rather explicitly derived from MAP adaptation is

evaluated.

Whenever necessary, we will shortly refers to the above systems as: MAP, MAP-SVC, EV-

SVC, JFA, and JFA-D respectively.
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Property Value

#Gaussian 1024

Features 38 MFCC (19 + ∆)

UBM training KMeans + 5 ML iterations

MAP relevance factor 16.0

Scoring Linear Scoring

Scoring Normalization t-norm, z-norm, zt-norm

Table 6.1: UBM data distribution and main properties used in the GMM-UBM baseline system config-

uration.

6.2.1. GMM-UBM with standard MAP adaptation [MAP]

The system used as baseline is a GMM-UBM system with linear scoring as that explained

in Section 4.3. 1024 multivariate Gaussian of 38 dimensions were used to model MFCC features

(19 coefficients + ∆) extracted by using a sliding Hamming window of 20ms and a 50% of

overlapping. MEL filters were scaled between 300 and 3000Hz to focus as much as possible to

speech voice.

Two gender dependent UBM models were trained via 5 iterations of ML preceded by a

K-Means clustering stage, using a total of 6 millions vectors (per gender) extracted from the

different databases described in Section 5.2.1 up to Mixer 5 1.

Regarding session variability compensation, blind classical techniques, CMN, RASTA and

Feature Warping were sequentially applied, being the sliding warping window set to 3s. T-norm,

z-norm and zt-norm (Section 2.3.3) were applied in order to produce normalized scores being

both the t-norm and z-norm cohorts composed over about 250 recordings extracted from Mixer

4 database (SRE’06 evaluation data). Table 6.1 collects the main configuration properties of

this system.

6.2.2. MAP adaptation with session variability compensation [MAP-SVC]

As an initial step to evaluate the behaviour of FA dealing with the session variability problem,

a first set of experiments was conducted by compensating first order statistics of both training

and test recordings. This compensation was carried out by suppressing from the first order

statistics the session variability component, Ux, estimated via Factor Analysis as is detailed in

Section 4.2.3.1.

To accomplish such compensation, two gender-dependent session variability subspaces of 50

eigenchannels trained via PCA namely, U PCA 50-female and U PCA 50-male, were used as a

starting point (the analysis of the optimum number of eigenchannels and the benefits of using a

ML procedure to refine the initial subspaces is carried out later on in this section). Regarding

1In terms of NIST evaluations, the background dataset was composed by data belonging up to SRE’06

(included); SRE’08 data was used as evaluation data.
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Figure 6.1: Results on SRE’08 tel-tel conditions for a GMM-UBM system with/without session vari-

ability compensation applied to first order statistics, in both training and test recordings. a) pooled scores.

b) separate male and female scores.

the training data composition used to estimate those initial session variability subspaces, a total

number of 553 female and 468 male speakers respectively, with an average of 8 recordings per

each were used. As a constraint, those speakers were selected to have a minimum of 3 different

recordings in a bid of actually capture as much session variability as possible. The common

speakers from SRE’06 and SRE’08 evaluations were carefully excluded in order to avoid over-

fitting scenarios.

The success of this first approach to palliate the session variability issue can be observed

in Figure 6.1.a, where obtained results are directly compared to those achieved by the baseline

system. A global improvement of 38% is obtained after zt-normalization is applied (35% over

raw scores). Separating by gender gains of around 38% and 45% for male and female respectively

are achieved as depicted in Figure 6.1.b. Table 6.2 collects EERs and costs for this first set of

experiments.
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Equal Error Rate (EER in %)

System Raw Tnorm Znorm Ztnorm

MAP-both 12.44/0.059 12.03/0.052 11.66/0.052 11.29/0.049

MAP-SVC-both 8.18/0.042 7.44/0.038 7.49/0.041 7.00/0.037

MAP-female 13.09/0.064 12.86/0.056 12.65/0.056 12.17/0.053

MAP-SVC-female 8.93/0.044 8.30/0.041 8.29/0.043 7.59/0.041

MAP-male 11.07/0.050 10.68/0.042 9.80/0.044 9.82/0.039

MAP-SVC-male 6.79/0.038 6.01/0.030 5.99/0.031 5.33/0.027

Table 6.2: Results on SRE’08 tel-tel conditions for a GMM-UBM system with/without session variability

compensation.

6.2.2.1. Effect of varying the number of eigenchannels.

Experiments above were conducted with an initial session variability subspace of 50 eigen-

channels. We explore here the effect of varying the eigenchannels considered in both male and

female conditions.

Figure 6.2.a shows the EER evolution from 0 eigenchannels (non-compensated system) to 300

eigenchannels for both genders. As it can be seen a minimum can be established in both genders

at around 50 eigenchannels; point from which the EER tends to slightly increase. A major reason

for this behaviour can be attributed to the fact that once main session-variability directions have

been captured, additional directions considered could account some speaker information. The

important point is then to find out this inflection point where the change in tendency occurs.

At the eigen-analysis stage this fact can be detected by inspecting the eigenvalues associated to

each eigenchannel/direction. Usually, those should present a scenario as depicted in Figure 6.2.b,

where the elbow in the curve gives an insight of the appropriate number of eigenchannels. The

higher associated eigenvalue the higher confidence to that directions represents session variability

(eigenchannels with zero or nearby zero associated eigenvalue should be discarded).

6.2.2.2. Effect of ML refinement in training the session variability subspace.

The effect of using a ML procedure via a EM algorithm to refine the initial session variability

subspaces is evaluated in this section. Experiments ranging from 0 (PCA) to 10 EM iterations

are showed for both gender in Figure 6.3.a, where scores are zt-normalized.

Even though a slight improvement with respect to the PCA initialization is achieved in both

cases after the first iteration, further EM iterations do not yield higher performance. In order

to analyse in depth this behaviour, we conducted a similar experiment on the female part, but

adding SRE’08 data (different from the evaluation data) within the session variability subspace

estimation. A comparison between those experiments are depicted in Figure 6.3.b.

In this case the ML refinement shows to be quite more effective (10% of improvement from

1 to 10 EM iterations versus a 3% without using SRE’08 data). This fact leads to a dual
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Figure 6.2: a) Evolution of the Equal Error Rate for a session variability compensated system in function

of the eigenchannels considered. b) Eigenvalues associated to the eigenchannels estimated for a session

variability subspace sorted in descending order.

interpretation. First it warns about the need of having at disposal data as similar as possible to

the test/target data in order to maximize the FA performance (this point will be largely treated

in Chapter 7); but, second, it is also a call to caution, as a fine data adjustment supported by

lower EERs in the ML procedure could lead to develop over-fitting systems, which likely fail in

other target scenarios/conditions.

6.2.3. Eigenvoice adaptation with session variability compensation [EV-SVC]

We modify in this section the speaker variability component by substituting the MAP offset,

Dz, by the eigenvoice adaptation term, V y, in order to evaluate the eigenvoice approach after

session variability compensation has been carried out.

As the same manner that performed for the session variability subspace, two initial gender-

dependent speaker variability subspaces trained via PCA were obtained. In this case a total
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Figure 6.3: Effect of EM iterations on the ML refinement of the session variability subspace. a)

comparison of male and female results in funcion of the EM iterations. b) comparison of the effect of the

EM iterations in the female part by using or not data very similar to test data.

number of 611 female and 580 male speakers with an average of 8 recordings per speaker,

and a minimum of 2, were included to train both subspaces respectively; all those recordings

were previously session-variability compensated using the initial session-variability subspaces

U PCA 50-female and U PCA 50-male respectively.

A comparison of results obtained on both female and male conditions for this system consid-

ering from 50 to 300 eigenvoices, those obtained by the baseline system and the baseline system

with session variability compensation are collected in Tables 6.3 and 6.4 respectively.

We analyse those results below by analysing the following important elements which modify

the global behaviour of this system.
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Figure 6.4: a) Effect of varying the number of eigenvoices in the EV-SVC system. b) Effect of the size

of scoring normalization cohort in both the MAP-SVC and the EV-SVC system.

6.2.3.1. Effect of varying the number of eigenvoices.

As it can be inferred from Tables 6.3 and 6.4, the number of considered eigenvoices largely

varies the obtained results, yielding a convergence at around 300 eigenvectors. Improvements

of 17.5% and 30% from 50 to 300 eigenvectors for female and male conditions are achieved

respectively. This effect, better visualized in Figure 6.4.a where the EER evolution is depicted in

function of the eigenvoices number, it is consistent with the fact that, by means of this approach,

all the speaker variability is considered to be confined in the speaker variability subspace. Thus,

the smaller subspace considered, the larger speaker variability is susceptible to be outside of the

subspace and therefore neglected.

A more interesting point is that notwithstanding results converge at some number of eigen-

vectors (300), achieving an acceptable performance, those do not yield the performance obtained

by the baseline system with session variability compensation where classical MAP was used to

represent speaker models. This fact highlights that even taking into account a considerable num-
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ber of eigenvoices, there is some residual speaker information that we are not able to capture

as it is not confined in the estimated subspace. On contrary, it is also worth noting that by a

moderate loss of performance the speaker variability associated of a new speaker model can be

represented by a 300-vector, y instead of a 38912-dimensional one, z, as it is the case in MAP

adaptation.

Regarding the difference between the number of eigenvoices needed to reach convergence

respect to the number of eigenchannels (300 versus 50), it seems clear that we are able to better

capture speaker variability rather than session variability. However, this fact should not lead

us to conclude that, at general, there exits more variability associated to the speaker than that

associated to the session variations, since here the training data used plays an important role. In

this case where just telephone data is considered, and being this recorded under same conditions

and acquisition protocol, session variation could not be so high as in other different scenarios,

such as those usually present for instance in forensic speaker recognition (this point is discussed

in Chapter 7).

6.2.3.2. Effect of Scoring Normalization.

As it can be appreciated also in presented results, the effect of scoring normalization has

a larger impact in the eigenvoice approach than that produced when compensating session

variability. A major reason for this fact lies on that whereas session variability compensation is

identically applied in training and test utterances, here just models are shifted by the V y term,

resulting on a irregular misalignment which depends on the data used for training the model.

Fortunately, this misalignment can be largely diminished by an appropriate combination

of z- and t-norm scoring normalization. Figure 6.4.b shows the EER evolution of the female

condition for the eigenvoice-based and MAP-based session variability compensated systems, with

respect the size of the t/z-norm cohorts. Results shows that while a relative improvement of

16% is reached by using cohorts of 500 elements in the MAP scheme, same cohorts get a 24%

of improvement when eigenvoice adaptation is utilised.

6.2.4. JFA modelling

Once, the session and speaker component has been separately evaluated, we compose the

global JFA model in this section. Here, the speaker variability is jointly modelled by the classical

MAP adaptation and the component provides by the eigenvoice approach µ+Dzs+V ys. As in

the other approaches evaluated, the session variability compensation is applied in both training

and test recordings in the statistics domain.

Tables 6.5 and 6.6 collects the results obtained with the JFA system besides above detailed

systems for male and female conditions. Expectedly, the combination of elements outperforms

the best results achieved so far in above sections. The fact of considering the prior represented

by the speaker variability subspace but also allowing the speaker variability to lie outside of it,

gets to join the advantages provided for both approaches. Improvements of 4% and 4.5% respect
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Equal Error Rate (EER in %)

System (female) Raw Tnorm Znorm Ztnorm

MAP 13.09/0.064 12.86/0.056 12.65/0.056 12.17/0.053

MAP-SVC 8.93/0.044 8.30/0.041 8.29/0.043 7.59/0.041

EV-SVC 50 14.27/0.069 12.15/0.059 12.35/0.060 9.77/0.046

EV-SVC 100 11.84/0.060 10.35/0.050 10.37/0.050 8.86/0.041

EV-SVC 150 11.05/0.056 9.88/0.046 9.81/0.047 8.50/0.040

EV-SVC 200 10.82/0.054 9.52/0.045 9.36/0.047 8.22/0.040

EV-SVC 250 10.66/0.053 9.29/0.045 9.25/0.046 7.94/0.040

EV-SVC 300 10.41/0.052 9.24/0.044 9.21/0.045 8.07/0.039

Table 6.3: Results on SRE’08 female tel-tel condition for MAP, MAP-SVC and EV-SVC systems.

The number of eigenvoices considered in the EV-SVC system ranges from 50 to 300. A number of 50

eigenchannels was considered regarding the session variability subspace.

Equal Error Rate (EER in %)

System (male) Raw Tnorm Znorm Ztnorm

MAP 11.07/0.050 10.68/0.042 9.80/0.044 9.82/0.039

MAP-SVC 6.79/0.038 6.01/0.030 5.99/0.031 5.33/0.027

EV-SVC 50 13.56/0.071 10.76/0.052 11.07/0.053 8.58/0.040

EV-SVC 100 10.76/0.060 8.89/0.043 8.87/0.045 7.10/0.032

EV-SVC 150 9.66/0.056 8.11/0.038 8.19/0.041 6.32/0.030

EV-SVC 200 9.35/0.053 7.67/0.036 7.88/0.038 6.17/0.030

EV-SVC 250 8.96/0.051 7.48/0.036 7.57/0.038 6.01/0.029

EV-SVC 300 8.81/0.049 7.33/0.034 7.48/0.037 6.01/0.028

Table 6.4: Results on SRE’08 male tel-tel condition for MAP, MAP-SVC and EV-SVC systems. The

number of eigenvoices considered in the EV-SVC system ranges from 50 to 300. A number of 50 eigen-

channels was considered regarding the session variability subspace.

to the MAP-SVC system; and a 40%, 48% respect to the MAP systems, are achieved for the

female and male conditions respectively.

6.2.5. JFA modelling with D trained on data

Finally, in order to complete the analysis, a final step consisting of training on data the

residual matrix D as described in Section 4.2.1.1 was performed. To this aim a separate set

of 105 and 91 speakers involving a total of 325 and 273 recordings from Mixer 4, were used to

estimate diagonal D female and male matrices respectively.

As it can be seen in Figure 6.5 the effect of training D matrix on data slightly improve the

results obtained by JFA, although there is not a significant difference over using the term Dz
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Equal Error Rate (EER in %)

System (female) Raw Tnorm Znorm Ztnorm

MAP 13.09/0.064 12.86/0.056 12.65/0.056 12.17/0.053

MAP-SVC 8.93/0.044 8.30/0.041 8.29/0.043 7.59/0.041

EV-SVC 10.41/0.052 9.24/0.044 9.21/0.045 8.07/0.039

JFA 9.03/0.044 8.22/0.040 8.18/0.041 7.29/0.039

Table 6.5: Results on SRE’08 tel-tel (female) condition for the four evaluated systems, MAP, MAP-

SVC, EV-SVC and JFA.

Equal Error Rate (EER in %)

System (male) Raw Tnorm Znorm Ztnorm

Baseline-male 11.07/0.050 10.68/0.042 9.80/0.044 9.82/0.039

MAP-SVC 6.79/0.038 6.01/0.030 5.99/0.031 5.33/0.027

EV-SVC 8.81/0.049 7.33/0.034 7.48/0.037 6.01/0.028

JFA 7.25/0.041 6.26/0.030 6.01/0.031 5.09/0.025

Table 6.6: Results on SRE’08 tel-tel (male) condition for the four evaluated systems, MAP, MAP-SVC,

EV-SVC and JFA.

Figure 6.5: Results on SRE’08 tel-tel conditions for all the systems considered namely, MAP, MAP-

SVC, EV-MAP, JFA and JFA with D matrix trained on data. a) male condition, b) female condition

derived from MAP. Note in that sense, that as explained in Section 4.2.1.1, the actual key of

using to get a well estimated D lies on training this in a separate way of V , as in a ML process

the higher number of free parameters of V could overshadow D as pointed out in Section 4.2.1.1.
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6.3. Joint Factor Analysis applied in SLR Systems

Once proved its outstanding performance when dealing with session variability in SV, JFA is

evaluated, in this section, in the context of SLR. However, unlike the above section, this analysis

will not stop at the evaluation of FA in the proposed acoustic systems, but it is going beyond

to show how well FA can be incorporated as a part of a global SLR system where multiple and

very different systems are combined.

To this aim, the ATVS SLR system presented at the last NIST Language Recognition evalu-

ation (NIST LRE 2009) [Gonzalez-Dominguez et al., 2010d] will serve as an excellent example in

order to i) evaluate the performance and potential of fusion of JFA-based systems, and ii) estab-

lish a fair comparison of JFA acoustic systems and high-level systems in challenging conditions

of variability and duration.

6.3.1. ATVS SLR submitted to NIST LRE 2009

The ATVS SLR includes most of the development and contributions in the field of SLR

collected in this Dissertation and it achieved an excellent 2nd rank position in the challenging

open-set 30s condition (core condition) of the NIST LRE 2009 evaluation. It consisted of four

different combinations of acoustic and phonotactic subsystems. Those being:

ATVS4 is a phonotactic-only system, fusion of the 10 PhoneSVM systems (Section 2.5.2).

ATVS3 is a fast and reliable GMM system with linear scoring and session variability

compensation applied in the statistic domain as that denoted in the SV section as MAP-

SVC (Section 6.2). We refer here this system as Factor Analysis GMM Linear Scoring

(FA-GMM-LS) to become evident the type of modelling (GMM) and the use of FA. This

system is designed to optimize the computational time but with a high level of recognition

performance.

ATVS2 consisted of a fusion via an anchor-model back-end [Gonzalez-Dominguez et al.,

2010d] of all the ATVS’s acoustic (FA-GMM and SVM-FA-SV) and phonotactic (PhoneSVM)

systems, as shown in Figure 6.6.

ATVS1 (primary) is a fusion of ATVS2 with primary system from other participant

(TNO, leaded by prof. David Van Leeuwen), where the latter consisted of a fusion of six

acoustic systems: three GMM-SVM and three FA-GMM-LS.

6.3.2. Configuration of spectral systems

A parameterization consisting of 7 MFCCC with CMN-Rasta-Warping concatenated to 7-1-

3-7 SDC-MFCCs was used for spectral systems.

According to the data type, two UBMs namely UBMCTS and UBMV OA with 1024 Gaussian

were trained. Data from CallFriend, LRE’05 and train part of LRE’07 was used for training
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6.3 Joint Factor Analysis applied in SLR Systems

Figure 6.6: Fusion scheme for ATVS2 submitted system.

UBMCTS , while the training of UBMV OA was composed by VOA development data provided

by NIST. Distribution per hours of this training is as follows. A total of 38.5 hours was used

in UBMCTS training, including about 2.75 hours per 14 available languages. For UBMV OA a

total number of 31.2 hours balanced on 1.42 hour per 22 languages was used (IndianEnglish was

not included due to data scarcity for this language).

Further, two different FA-GMM-LS systems were developed by using above UBMs. Two

session variability subspaces matrices were trained from CTS and VOA data respectively, UCTS

and UV OA. We found this approach to outperform the approach where mixed data (CTS,VOA)

is processed to train a unique session variability subspace. In this work, session variability

subspaces were trained via EM algorithm after a PCA initialization as described in Chapter 3

and only top-50 eigenchannels were taken into account turns out in a CF × 50 (C components

and F dimensions) dimension matrix. In order to train the session variability subspaces, a large

amount of data was used. UCTS was trained with a total number of 350 hours by using 600

segments of about 150 seconds per the 14 languages available; while UV OA was trained with 550

hours, using 600 segments of about 150 seconds as well but of the 22 languages available. Data

distribution for training UBMs and session variability subspaces is summarized in Table 6.7.

Compensated statistics via Factor Analysis by using UCTS and UV OA as described in 4.2.3.1

and 4.2.3.2 were used on the SVM-SV system.

6.3.3. Configuration of high-level systems

The phonotactic ATVS system was a fusion of 10 different Phone-SVM subsystems (Ph1 to

Ph10) as described in Section 2.5.2. Ph1 to Ph7 use phonetic tokenizers developed by ATVS and
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Prior model Databases #Languages #Hours/language Total

UBMCTS CallFriend, LRE05, T rainLRE07 14 2.75 38.5

UCTS CallFriend, LRE05, T rainLRE07 14 25 350

UBMV OA V OA 22 1.42 31.2

UV OA V OA 14 25 550

Table 6.7: Distribution of data used for training Universal Background Models and Session Variability

Subspaces.

Ph8 to Ph10 use phonetic tokenizers trained with Hungarian, Czech and Russian data respec-

tively 1. The ATVS phonetic tokenizers are based on Hidden Markov Models (HMMs), trained

with HTK [Young et al., 2006] and later transformed to be used by the SPHINX [Lee et al., 1990]

speech recognition engine for faster recognition. The phonetic HMMs are three-state left-to-right

models with no skips, and the output pdf of each state is modeled as a weighted mixture of 20

Gaussians. The acoustic processing is based on 13 Mel Frequency Cepstral Coefficients (MFCCs)

(including C0) and velocities and accelerations for a total of 39 components, computing a feature

vector each 10 ms and performing Cepstral Mean Normalization (CMN). The languages of the

phonetic decoders from Ph1 to Ph6 and the corresponding corpora used for training are English

(with the corpus with ELDA catalogue number S0011), German (S0051), French (S0185), Ara-

bic (S0183 + S0184), Basque (S0152) and Russian (S0099)2. Ph7 uses a phonetic decoder in

Spanish trained on Albayzin spanish speech database [Moreno et al., 1993] downsampled to 8

kHz, which contains about 4 hours of high-quality phonetically labelled speech. Once the speech

segment has been transformed into a sequence of recognized phonetic tokens (with any of the

phonetic decoders), this sequence is used to estimate count-based 1-grams, 2-grams and 3-grams,

pruned with a probability threshold, resulting in about 40,000 n-grams. These are rearranged

as a feature vector, which is taken as the input of an SVM that classifies the test segment as

corresponding (or not) to one language. PhoneSVMs are combined in different ways to obtain

different front-end systems. Each PhX system consisted of 22 VOA and 14 CTS models trained

separately. Channel dependent t-norm is the last stage of those phonotactic front-ends.

6.3.4. Fusion and calibration

Input vectors to the fusion systems anchor model based back-end have dimension 216 (36

ATVS models -14CTS+22VOA- x 6 component systems) while primary is 438 as scores from

the TNO site are added. Back-end t-norm was design as channel-independent (VOA+CTS),

while calibration was duration-dependent. Anchor model training was 90/10 bootstrapped while

calibration training was bootstrapped with 80/20 using available training data. A channel

independent t-norm (models from VOA and CTS) stage was applied for scoring normalization.

1These have been developed and made available for research purposes by the Speech Processing Group at

Faculty of Information Technology, Brno University of Technology.
2www.elda.org.
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Figure 6.7: Effect of session variability compensation on SVM-SV and FA-GMM-LS systems. Results

on ATVS-Dev09 using VOA models and UV OA.

Equal Error Rate (EER in %)

ATVS-Dev09 LRE’09

03s 10s 30s 03s 10s 30s

ATV S1 16.50 6.48 1.56 17.97 7.87 3.71

ATV S2 16.17 7.25 2.02 17.92 8.39 4.26

ATV S3 20.37 10.30 3.25 21.93 10.65 5.67

ATV S4 18.80 9.41 3.73 20.87 10.81 6.55

Table 6.8: ATVS submitted systems performance (meanCavg x 100) on development and evaluation

datasets.

LRE’09 considered three different nominal durations for the test segments: 3, 10 and 30

seconds of speech. The same individual subsystems were used to perform language recognition

tests for the different durations. However, calibration was trained specifically for the estimated

different durations. As the calibration was applied after the back-end, a single score for each test

segment was used, and scores from all the speech types (VOA, CTS) were pooled for training.

Thus, all the available scores for each duration from each target language were used to train

logistic regression, and the linear transformation obtained was used to calibrate the scores from

testing data.
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Figure 6.8: Pooled DETs per ATVS submitted systems on development (ATVS-Dev09) and evaluation

(LRE’09) per all target test segment durations (3, 10 and 30 seconds).

6.3.5. Performance of JFA-based spectral systems

The need of proper session variability compensation is showed in Figure 6.7 where both

spectral systems, FA-GMM-LS and SVM-SV are assesed with and without compensation via

factor analysis on ATVSDev09. Results shows that channel compensation via FA is crucial in

GMM modelling performance, getting an improvement of about 82% in meanCavg terms. Also,

system SVM-SV take advantage of this compensation but to a lesser extent (4%). This effect

appears due to differences in SVM and GMM modelling. In GMM, target languages models,

trained with huge amount of data, are far shifted with respect UBM reference model after even

a single MAP adaptation. This mean shifting includes not only information belonging to the

language but session variability found in the training database which it is mainly independent

of the languages. This leads to models that are growing strongly affected by session variability

effects. On the contrary, the SVM exhibits a higher robustness to this problem due to its ability

to estimate an hyperplane separating target single utterances models against all non-target

ones. However, once session variability compensation is applied, both GMM and SVM-SV

system, as well as the fusion of both clearly outperforms the performance achieved without

session variability compensation via FA.

6.3.6. Performance of global system

The performance of ATVS submitted systems is summarized in Figure 6.8 for development

(ATVSDev09) and evaluation (LRE’09) tests. Here, the discrimination per each system (ATVS1-

4) and test segment duration (3, 10 and 30 seconds) is showed in a pooled DET curve. Several

global observations can be immediately extracted. Firstly, the good behaviour of the anchor
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6.4 Summary

models fusion scheme introduced is justified as being ATVS1 (fusion of systems) the system

with lower error rates. The effect of test segment duration in system performance is also high-

lighted and it affects in a similar manner to both, acoustic and high level systems. Further, a

slight degradation in the evaluation results with respect to development ones is showed. This

degradation performance, common to all participants, is usually due to the database mismatch

(this problem is discussed in Chapter 7) among the development and testing databases, and is a

common effect in LRE’s. Table 6.8 summarizes this information in terms of meanCavg (mean of

Cavg per language) per system, evaluation dataset and test segment durations. It is also worth

pointing out that acoustic systems outperform phonotactic ones except for short durations, and

this with a much smaller computational complexity, but fusion of both kind of systems improve

results, which encourages the use of multilevel approaches for language recognition.

In more detail, Figure 6.9 compares systems performance per target language. Again, results

are presented on both, development and evaluation, but only for 30s test segment duration.

Analysis shows the varying degrees of recognition difficulty among the different target languages.

In the same way, Figure 6.10 presents in detail the effect of test segment duration per language

for our primary system (ATVS1).

6.4. Summary

This chapter empirically supports FA as an effective and efficient tool to deal with the session

variability problem. In the first part, a wide set of experiments conducted on the telephone part

of the challenging NIST SRE’08 evaluation have largely proven that its application to explicitly

modelling both speaker and session variability lead to a major benefit of systems perform.

Specifically, an outstanding global improvement of 40% and 48% for female and male conditions

is achieved respect a non-compensated classical GMM-UBM system.

Those results have been affirmed in the second part of this chapter, where FA has been used to

deal with the session variability problem in the context of the NIST LRE’09. In this case, FA has

been proven to be a critical part in the development of robust and accurate SLR systems; getting

improvements up to 82% over a baseline GMM system without session variability compensation,

as well as enhancing the acoustic SVM-SV system via the original contribution presented in this

Dissertation. Further, it has been also demonstrated that the use of FA does not hinder the

additional gains obtained by fusing very different systems such as the acoustic and high-level

systems presented; showing an excellent behaviour in the fusion strategy.

Equal error rates (EERs) and associated costs (DCF) to all the experiments presented

through this chapter are included in Appendix C. Also, results on SLR detailed per language

are included in that appendix.
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Figure 6.9: Comparision of ATVS submitted systems on both, development (ATVS-Dev09) and evalu-

ation (LRE’09) datasets for 30 seconds test duration segments.
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Figure 6.10: ATVS primary system performance on both, development (ATVS-Dev09) and evaluation

(LRE’09) datasets (3, 10 and 30s).
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Chapter 7

Factor Analysis in challenging SV

and SLR scenarios

This chapter explores the use of FA approaches applied to palliate major challenges in

the deployment of real SV and SLR systems in the framework of forensic speaker recognition.

7.1. Introduction

Apart from the session variability problem, two major issues can be identified to significantly

degrade SV and SLR systems hindering their deployment in real applications. These are, i) the

short durations, that is, to have at disposal small amounts of speech in either the training or

the test phase and ii) the database mismatch, understood this as the variation in the conditions

between the dataset used for training and fitting a system (referred to as background or devel-

opment database) and the data used in real-world operational conditions (known as evaluation

or operational database). The latter might be considered as a session variability problem taken

to the extreme. But, the fact that each database is usually subject to very different types of

session variations, turns the database mismatch problem into an enormous complication for the

FA techniques. A major reason that lies on the variability subspaces could not faithfully repre-

sent the real session variability encountered in the test/operational data if the training material

is far from this in terms of session variations.

These two problems frequently occur in forensic speaker recognition [Gonzalez-Rodriguez

et al., 2007b; Ramos, 2007], mainly because the limitation in the availability of real-casework

databases for system tuning, and also because the conditions of the speech in real-world forensic

recording are extremely variable.

The purpose of this chapter is to explore several forms based on Factor Analysis intended

to palliate as much as possible these two major issues framed into adverse scenarios as those

encountered in forensics tasks. On the one hand, it will be emphasized that FA may be a double-

edge sword if a depth understanding of the faced problem and the FA theory is neglected. For
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instance, a non adequate estimation of the variability subspaces could lead the system to fail.

Original contributions of this chapter includes advances in the following lines:

1. Collecting public real-casework databases [Ramos et al., 2008]

2. Exploring new ways to deal with the database mismatch problem via Factor Analysis

[Gonzalez-Dominguez et al., 2010a]

7.2. Facing the database mismatch problem via FA

From a statistical point of view, in FA, the variability subspaces (U , V ) act as a strong prior,

since the target data variability, both session and speaker, is supposed to be mostly constrained

within them. As a consequence, an important issue in the successful application of the FA

model is appropriate training of the subspace transform matrices. Ideally, these matrices should

accurately represent the types of inter- and intra-speaker variations expected within and between

recording sessions. For this purpose, a suitable dataset that accurately represents the conditions

of the target domain is essential.

Unfortunately, this requirement for suitable data cannot be satisfied in all situations. Foren-

sic speaker recognition is an area that gives us a wide range of examples of this situation where

database mismatch problem is regularly present. This fact is mainly due to two factors. Firstly,

despite the efforts made to collect new databases [Ramos et al., 2008], the available data is

still very limited. Secondly, real world forensic recordings tend to be extremely variable, mak-

ing a case-by-case treatment necessary in most situations. In those cases where only a limited

amount of data is available, the estimation procedure described above leads to poorly estimated

variability subspaces since the real variability in target domain is not sufficiently represented.

The work in [Gonzalez-Dominguez et al., 2010a] considers the problem of data availability for

training the FA subspaces, and the appropriate estimation of these subspaces, under the idea of

dealing with the limited data problem by exploiting data from a data-rich domain in the session

subspace estimation procedure. This approach pursues a dual goal. First, to obtain a more

robust estimation procedure by adding large amounts of data. Secondly, to incorporate certain

’session’ variability characteristics not present in the limited available target domain data but

that could appear in the target domain. The three techniques explored in [Gonzalez-Dominguez

et al., 2010a] for combining information from a data-rich domain and limited target domain data

are presented in the remainder of this section.

7.2.1. Joining Matrices

A simple way to combine different session variability subspaces is to join session variability

subspaces estimated on different datasets. This process is carried out by simply stacking the

session variability directions estimated in each one of them in a bigger subspace. This approach

has the major advantage that subspaces can be treated and trained independently. From a prac-

tical point of view, this property is highly desirable because it allows us to keep a well-trained
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reference subspace trained on accumulated data that can be refined by simply appending new

session variability information from new domains. On the other hand, it has several shortcom-

ings. Firstly, it is necessary to restrict the size of each contributing subspace, loosing potentially

useful directions of variability, in order to keep the overall size of the joined subspace relatively

small as stipulated by the principles of FA. Second no particular emphasis is placed on the target

domain data because all the directions play an equal role in the new subspace. Finally, even the

main directions of session variability will tend to be poorly estimated for the target domain if

there is severely limited data as the subspaces are estimated independently.

7.2.2. Pooled Sufficient Statistics

As an alternative to stacking two independently trained subspaces, the subspace estimation

can also be supplemented with the data-rich telephone set simply by estimating a completely new

session subspace. This time, estimation is performed by pooling all data. An obvious advantage

of this method is that the estimation is performed using a substantial amount of data, making

it potentially more robust. Unfortunately, there is no means of preventing the supplementary

set dominating the estimation and having the biggest effect on the directions of variability.

7.2.3. Scaling Statistics

Based on the fact that we are usually most interested in the session variability present

in a specific domain (the closest to the target domain conditions), it is reasonable to think

that somehow these data should become more important in the subspace estimation procedure.

Moreover, we should be able to get some advantage by using all the data available together

rather than separately. The approach presented here is based on giving a specific weight to

each dataset in the training session variability subspace with a dual purpose. First, allow the

estimation procedure to learn from a broader set of data leading us to more robust subspace

estimation, and second to highlight the type of data which is considered most important. This

second point is especially necessary when not enough data of this type is available and the

variability presented could be overshadowed by the other types. Specifically, first order statistics

supervector extracted from each utterance is scaled by a previous fixed weight depending on the

dataset to which it belongs. Thus, the matrix of first order statistics for training utterances F ,

input in the EM procedure for training the variability subspace take the following form:

F = [αFtgt; (1− α)Fbckg] (7.1)

where Fbkg and Ftgt are the matrices whose columns are the first order statistics of utter-

ances belonging background data similar to target data and other background data available

respectively. More generally, this could be extend to:

F = [α1F1; α2F2; ...; αNFN ] (7.2)

with
�

N

i
αi = 1 and N different background sets.
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Equal Error Rate (EER in %)

1conv4w/ 1conv4w/ 1mic/ 1mic/

U Training 1conv4w 1mic 1conv4w 1mic

U = 0 5.97 8.20 7.81 11.03

dTel 3.49 4.31 3.95 6.79

dMic 5.80 5.19 5.30 6.64

dMic10 5.99 5.69 5.50 7.51

dMic5 5.93 6.06 5.72 8.07

dMic3 5.99 6.13 5.72 8.33

Table 7.1: Performance under restricted MIC data conditions in U training.

Equal Error Rate (EER in %)

1conv4w/ 1conv4w/ 1mic/ 1mic/

U Training 1conv4w 1mic 1conv4w 1mic

dMic | dTel 3.41 3.63 3.12 5.14

dMic10 | dTel 3.55 3.72 3.32 5.43

dMic5 | dTel 3.55 4.15 3.63 5.74

dMic3 | dTel 3.55 4.31 3.54 6.03

Table 7.2: Performance using the joint matrices subspaces estimation approach.

7.2.4. Results

As a starting point of this study, the effect of using restricted datasets in order to estimate a

session variability subspace was analysed. For this purpose, a baseline JFA without eigenvoices as

that presented in 6.2.2 was evaluated using the differing restricted microphone datasets described

in Section 5.4.1.1 as training data for the low-rank session matrix U . The results in Table 7.1

summarise the performance statistics of these restricted subspace training data experiments.

Studying these results, it can be seen that when microphone data scarcity is simulated in the

development stage (i.e. the amount of training data for U is reduced), system performance is

degraded significantly. It is clear from these results alone that data availability for training the

channel subspace has a large impact on overall performance.

For comparison purposes, results for a baseline system that does not include session compen-

sation (U = 0) were also included in Table 7.1. It is obvious from the results that incorporating

session compensation leads to significant improvements in performance across all train/test con-

ditions. Interestingly, even when the data used to estimate the session subspace is mismatched

to the conditions (channel type) of the evaluation trials, the inclusion of session compensation

always results in an improvement. A session matrix estimated using purely telephone data re-

duces the error rates in the 1mic-1mic condition. Similarly, a session matrix estimated using
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7.2 Facing the database mismatch problem via FA

Equal Error Rate (EER in %)

1conv4w/ 1conv4w/ 1mic/ 1mic/

U Training 1conv4w 1mic 1conv4w 1mic

dMic+ dTel 3.73 3.54 3.43 4.97

dMic10 + dTel 3.61 3.72 3.43 5.47

dMic5 + dTel 3.42 3.88 3.66 5.78

dMic3 + dTel 3.49 4.12 3.76 6.19

Table 7.3: Performance under restricted microphone data conditions when statistics are pooled with

devTel.

Equal Error Rate (EER in %)

1conv4w/ 1conv4w/ 1mic/ 1mic/

Scaling (α) 1conv4w 1mic 1conv4w 1mic

− 3.49 4.12 3.76 6.19

0.6 3.46 4.15 3.74 5.95

0.7 3.55 4.15 3.67 5.82

0.8 3.80 4.49 3.32 5.82

0.9 4.30 4.64 3.78 6.50

Table 7.4: Performance using scaled statistics during ML estimation. Results using 3 mic utterances

per speaker.

microphone data for telephone based trials provides some benefits over no session compensation

at all. Expectedly, the best performance is achieved when the session subspace is trained using

appropriate data (eg. dMic used for 1mic-1mic).

Experiments were then performed to examine whether the data rich sources - in this case

the telephone data - could be used alongside the restricted data in the estimation of the session

variability subspace U , in order to improve the estimation and in turn, the overall perfor-

mance. The first approach considered for this task was the joint subspace approach as outlined

in Section 7.2.1. A new session variability subspace was generated simply by stacking two in-

dependently trained session subspaces, one estimated using the dTel set and the other using

the target domain data dMic. For this combination strategy, the top 50 and 20 eigenchannels

from UdTel and UdMic, respectively, were used to create a 70 eigenchannel joint subspace 1. The

performance using both the full and restricted datasets are presented in Table 7.2.

Comparing the results in Table 7.2 with those in Table 7.1, it can be seen that supplementing

the subspace training data with telephone data has a positive effect across nearly all evaluated

tasks. While this effect seems obvious in those conditions where telephone data is involved, it

1An analysis of the eigenvalues for the microphone data showed a very rapid decline in values in comparison

to the telephone data. For this reason, a reduced number (20) of dimensions were retained.
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Figure 7.1: Performance of the several proposed methods for the diverse conditions considered, 1conv4w-

1conv4w, 1conv4w-1mic, 1mic-1conv4w and 1mic-1mic.

is worth noting that even in the case condition 1mic-1mic, including telephone data alongside

the available microphone data in the subspace development stage is clearly beneficial. This

suggests that it is possible to account for some session variability even in very apparently different

acoustic subspaces. The biggest gains from supplementing the target domain microphone data

with telephone data were observed when the target domain (microphone) data was restricted.

For the most restricted training scenario dMic3, a relative improvement of 28% resulted for the

1mic-1mic condition when dMic3 was supplemented using dTel.

As outlined in Section 7.2.2, a new subspace can also be estimated by pooling the statistics

from both the data-rich set and target domain set. Results using this pooling method are pre-

sented in Table 7.3. An interesting point to highlight here is the case where the full microphone

dataset dMic is available for subspace estimation. In this case, an improvement in performance

over the joint matrix technique is observed for the case condition 1mic-1mic. When less target

domain (microphone) data is available for the subspace estimation, we see that the effective-

ness of the session compensation is reduced when pooled statistics rather than stacked matrices

are used. This suggests that for the pooled approach, the subspace estimation is being over-

whelmed by the larger quantity of telephone data, and is not able to best utilise the available

(but restricted) target domain data.

Finally, the method proposed in Section 7.2.3, where more emphasis is placed on data from

the target domain by performing a scaling of the statistics during subspace estimation, was

evaluated. Results in Table 7.3 show the performance using various scaling weights, α. For
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No U: EER−DET = 11.0335; DCF−opt = 0.071212
dTel: EER−DET = 6.7871; DCF−opt = 0.048031
dMic3: EER−DET = 8.3201; DCF−opt = 0.054732
joint: EER−DET = 6.0314; DCF−opt = 0.041874
pooled: EER−DET = 6.1897; DCF−opt = 0.043325
scaled: EER−DET = 5.8227; DCF−opt = 0.041259

Figure 7.2: DET curves of the several proposed methods for the diverse conditions considered, 1conv4w-

1conv4w, 1conv4w-1mic, 1mic-1conv4w and 1mic-1mic.

these experiments, the closest simulation of real forensic applications, where only 3 utterances

per speaker in dMic was made available for subspace estimation was studied (dMic3). It can be

seen from these results, that in general, placing a larger weighting on the dMic3 statistics results

in an improvement in performance over straight pooling (unweighted). For the case condition

1mic-1mic, a scaled statistics estimation results in a 6% relative improvement in EER over the

straight pooling.

Figure 7.1 shows a final comparison of the considered estimation strategies for the session

subspace, evaluated on the 1mic-1mic condition with only a limited amount of target domain

data available (dMic3). This chart clearly demonstrates the benefit of session compensation, but

also the problems associated with a direct estimation of the subspace on a small dataset. Better

results are achieved when subspace estimation is performed using the data-rich dTel rather

than dMic3 alone. Importantly though, benefits result from supplementing the dMic3 with

other data. Each of the strategies for combining the two sets in estimation give improvements

over either alone. The joint estimation approach using stacked subspaces achieves a better result

than a straight pooling of the data, however, this trend can be reversed by introducing a simple

scaling of the statistics during estimation. By weighting the target domain data more heavily

during estimation, the best performance out of the considered approaches is achieved.
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Figure 7.3: Representation of the Equal Error Rate in the telephone part of SRE08 in function of the

training and test recordings duration.

7.3. Facing the short duration problem via FA

As expected, one of the major degrading variability factors concerning the SV or SLR systems

is the length of the speech utterances involved in enrolment and testing processes [Pelecanos

et al., 2004]. However, although performance with extremely short utterances are of interest for

the scientific community [Perez-Gomez et al., 2010; Vogt et al., 2008b], nowadays a scant amount

of research has been conducted for compensating the effects of speech duration variability. This

is mainly due to the configuration of tasks in NIST SRE, where the length of the enrolment and

testing utterances present small variation in a single condition. Nevertheless, there is a wide

range of scenarios where the length of the utterance involved in the recognition process may

vary, e.g. forensic applications. Figure 7.3 depicted this effect in the telephone part of SRE’08,

where the EER is presented in function of the length of both training and test recordings, which

were artificially reduced from 150s to 10s.

A detailed study of the behaviour of FA when dealing with short durations was conducted in

Vogt et al. [2008b]. Expectedly, experiments demonstrated that, as utterance lengths for both

training and test utterances was reduced, the effectiveness of JFA was also diminished; but more

interesting, it was observed that the inclusion of the session variability compensation term Ux,

when dealing with very short utterances (� 20s) led to a significant degradation performance.

Further experiments conducted in [Vogt et al., 2008a] demonstrated that a match duration

between the testing recordings and the development recordings, used to estimate U , partially

fixed this gap of performance (even in the case of development recordings were reduced to match

testing recordings). Further experiments in the area identified as one of the major factors of those
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7.3 Facing the short duration problem via FA

Phonetic Class Phone

Vowel A: E e: i i: O o o: u u: y y: :2 2

Occlusive B b: d d d : g k k: p t t: t1 t1:

Fricative f h h1 S S: s s: v x Z z z:

Affricate dz tS tS ts ts

Nasal F J J: m m: N n n:

Aproximant j j:

Lateral l l:

Table 7.5: Broad phonetic decomposition.

effects the phonetic content within a recording. In typical 150s NIST conversational recordings

a reasonable coverage of the phonetic variability is found, and discarded when estimating the

session variability subspace. However this is not the case when dealing with short utterances,

and the phonetic content could largely vary among different recordings. To counteract this

effect in [Scheffer et al., 2009] the session variability was proposed to be disentangled into inter-

session variability and intra-session variability, by estimating two different session variability

subspaces considering the variations between sessions and those produced within same sessions

respectively. However, although results slightly improved the match recording estimation, this

strategy requires and additional computational cost, as well as the need of further development

material.

We extend here those results conducted in [Scheffer et al., 2009] by carefully analysing the

impact of the phonetic-class composition within the training material used for estimating the

speaker variability subspace V rather than the session one. To this aim, first a set of broad

phonetic classes will be defined to second be included/excluded into the speaker variability

subspace training material.

7.3.1. Broad phonetic classes defined

As the base phone recognizer for phone conditioning the Hungarian phone recognizer made

available by Brno University of Technology (BUT) was used. One of the reasons for choosing

this particular language among those available for this recognizer is that the phone set is very

large, including 56 different phones. This makes it easier to make phone conditioning language-

independent as the phone set covers most, if not all, possible broad phonetic classes.

Table 7.5 presents these 56 phones1 classified into 7 broad phonetic classes defined according

to the manner of articulation. Also, we evaluate some joining classes as presented in Table 7.6

were considered.

1Phones are represented in SAMPA (Speech Assessment Methods Phonetic Alphabet) notation.

109
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Phonetic Class Phone

AproxLateral j j: l l:

A: E e: i i: O o o: u u: y y: :2 2 F J J:

Voiced m m: N n n: j j: l l: B b: d d d : g

k k: p t t: t1 t1: f h h1 S S:

Unvoiced s s: v x Z z z:

Table 7.6: Broad phonetic classes originated by joining other phonetic classes.

7.3.2. Effect of phonetic composition in the speaker variability subspace

This section presents a detailed study based on the use of the different phonetic classes

described above in order to train the speaker variability subspace.

The study is focused on training a robust eigenvoice subspace (V ) given excerpts belonging

to a single phonetic class or a combination of them, while the session variability matrix U is

kept constant. In that sense a ”Pure-eigenvoice” model is used rather than a ”Classical MAP

+ eigenvoices”

Unlike [Scheffer et al., 2009] where a number of four phonetic classes were considered, a

total number of eight phonetic classes have been analyzed and different combination via the

concatenation method described in [Scheffer et al., 2009] has been analysed. This ”concate-

nation” method outperformed other proposed method in previous studies, including [Scheffer

et al., 2009].

Tables 7.7 and 7.10 present the results obtained using each single phonetic classes and dif-

ferent combinations of them when dealing with the 10s-10s task defined in Section 5.4.1.1. As

it can be observed, best performance is reached by using all the speech or just using vowels. On

the other hand, affricate phones show to be achieve the worst performance.

Those results motivated different compositions of the speaker variability subspace from dif-

ferent number of eigenvoices trained with different excepts belonging to the proposed phonetic

classes. Specifically, five speaker variability subspaces as showed in Table 7.9. Results from

those matrices are collected in Table 7.10.

The following conclusions can be extracted from the above results:

Vowel is the most discriminant single phonetic class in order to train the eigenvoice sub-

space while affricate is the least discriminant.

Similar results can be obtained using just the vowels phonetic class instead all the speech

(see Table 7.7 vs Table 7.10).

Using 200 eigenvectors outperforms in general the use of a smaller number of eigenvoices

(100, 150)

Removing the affricate phonetic class when composing the eigenvoice subspace shows a

slight improvement with respect to include it.
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7.4 Summary

Equal Error Rate (EER in %)

#Eigenvoices Vowel Occlusive Fricative Affricate Nasal

100 23.77/0.088 27.70/0.093 26.60/0.093 33.03/0.098 26.46/0.092

150 23.03/0.087 26.88/0.093 26.74/0.092 32.92/0.097 26.91/0.092

200 22.75/0.086 26.74/0.092 26.58/0.092 32.62/0.098 27.42/0.091

Table 7.7: Results on 10s-10s SRE’08 conditions by estimating the speaker variability subspace con-

strained to different phonetic classes.

Equal Error Rate (EER in %)

#Eigenvoices All Aproximant/Lateral Voiced Unvoiced

100 22.89/0.085 26.46/0.092 23.43/0.086 25.78/0.092

150 22.65/0.085 26.02/0.092 22.92/0.086 25.49/0.091

200 22.24/0.084 25.49/0.091 22.75/0.085 25.69/0.091

Table 7.8: Results on 10s-10s SRE’08 condition by estimating the speaker variability subspace con-

strained to different phonetic classes.

None of the results achieved either using phone classes alone or in combination improve

the results attained in the baseline system (using all speech). However the use of vowels

reach very close results without the need of considering all the speech.

7.4. Summary

This chapter has addressed main issues associated to the deployment of SV and SLR systems

in real-world applications as forensic speaker recognition, namely the database mismatch and

the short durations problems; their negative impact in terms of system performance and how

can be FA strategies modified in order to mitigate that degradation performance.

The successful application of FA techniques is highly dependent on the proper estimation of

session variability as represented by the variability subspaces. The problem of applying FA in

situations where a scant amount of data similar to the expected operating conditions is available,

has been largely analysed.

A range of experiments using the microphone condition of the well-known NIST SRE 2006

database and protocol were initially conducted exploring the effect of reducing the quantity

of available development data. These experiments clearly demonstrated the importance of a

well-estimated session variability subspace as using poorly matched telephone data or heavily

restricting the available microphone development data resulted in significantly increased error

rates. In these situations, current estimation procedures lead to poorly estimated subspaces and

consequently far from optimal FA performance.
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Phonetic Class V1 V2 V3 V4 V5

Affricate 35 0 0 0 0

Aprox/Lateral 35 40 35 35 0

Fricative 35 40 50 35 0

Nasal 35 40 35 35 0

Occlusive 35 40 50 35 0

Unvoiced 0 0 0 0 100

Voiced 0 0 0 0 100

Vowel 35 40 50 70 0

Total 210 200 200 210 200

Table 7.9: Eigenvoices used to compose five different speaker variability subspaces.

System Equal Error Rate (EER in %)

V1 23.16/0.085

V2 23.44/0.085

V3 23.03/0.086

V4 22.61/0.084

V5 22.62/0.084

Table 7.10: Results on 10s-10s SRE’08 condition for five different phonetic-class composition of the

speaker variability subspace.

To deal with this problem, several methods were explored to combine different variability

information obtained from different sources of data, including joining subspace matrices, and

pooling estimation statistics. These techniques are based on the idea that variability present

in different databases can be exploited in order to provide more robust subspace estimates.

Experiments with these methods show that a suitable method of combining information from

both the target domain and a data-rich development domain can be very useful in the restricted

data scenarios, particularly if emphasis can be placed on the limited available target domain

data.

On the other hand, a wide analysis of the phonetic class composition of the training material

used for estimating the speaker variability subspace has been conducted. The phonetic content

variability of short-durations has been identified as one of the main hurdles in the development

of adequate FA systems. In that sense, it has been demonstrated that similar results in short

durations can been obtained by taken into account only vowels that those obtained with all the

phonetic content.
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Chapter 8

Conclusions and Future Work

This chapter has addressed the problem of session variability in automatic speaker and lan-

guage recognition, their negative impact in systems performance, and how this can be mitigated

via new methods based on Factor Analysis. After a detailed vision of the state-of-the-art com-

position in both speaker and language recognition fields, a study of Factor Analysis modelling

in the context of Latent Variables Models has been conducted, deep analysing the principles

and mathematical grounds which sustain it. Diverse forms to build and incorporating Factor

Analysis in state-of-the-art acoustic systems has been then explored and detailed with the main

goal of yielding robust but also efficient speaker and language recognition systems. A wide

set of experiments in both speaker and language challenging tasks has been conducted to give

empirical support to the use of Factor Analysis dealing with the session variability problem. Be-

sides, two primes challenges in the deployment of ”real-world” speaker and language recognition

systems, namely the database mismatch and the short durations problems, has been analysed,

deep exploring possible counteracts based on Factor Analysis. Inherent in the different chapters,

contributions of this thesis has been detailed and properly evaluated.

8.1. Conclusions

Chapter 1 introduced the basics of automatic speaker and language recognition systems

framed into the biometric systems family, identified the problem of session variability as one

the main cause of system performance degradation and exposed then the motivation of this

Dissertation. The research contributions originated from this Thesis were also enunciated in

this first chapter.

The most relevant works which conformed the state-of-the-art in speaker and language recog-

nition field, previously to the incorporation of Factor Analysis methods to palliate the session

variability problem, is summarized in Chapter 2. A review of the different modules which

compose a speaker or language recognition system, from the speech signal to the final taken

decisions about identity, as well as the most successful approaches in the literature associated to

each of those modules were described. Also most successful techniques to counteract the session
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variability problem before the appearance of FA were described in this chapter.

Chapter 3 deeply analysed the mathematical grounds of the Factor Analysis model in the

context of Latent Variable Models, as well as its extension from a single Gaussian, as use to be

referred in the literature, to a mixture of Gaussians as it is incorporated in speaker and language

acoustic recognition systems. In this chapter also a chronological review of the use of subspaces

in order to represent variability in related fields, such as face or speech recognition, to its use

in speaker and language recognition was conducted; analysing in this manner, common links

among different techniques which arose in related fields as well as identifying the specificities of

the speaker and language tasks.

Chapter 4 detailed how can be Factor Analysis integrated into the the well-known GMM

and SVM acoustic systems, detailing different strategies to incorporate Factor Analysis at three

different levels in the architecture of those kind of systems, namely the feature, the model

and the statistics domain. A special effort was focused on yielding robust but also efficient

systems, rescuing for the literature efficient ways and possible simplifications incorporated to

the original Factor Analysis model that which an acceptable loss of performance, achieve very

efficient recognition systems. In that sense, this chapter ends detailing efficient recipes to build

speaker and language recognition systems based on Factor Analysis in both speaker and language

recognition task. Those algorithms are supported by several and novel contributions conducted

during the research which has originated this Dissertation.

The databases and experimental protocols used later on in Chapters 6 and 7 are described

in Chapter 5. The protocols adopted in this Dissertation are those established by NIST in the

speaker and language recognition evaluation series. This fact ensures that any of the experiments

presented through this Thesis can be either fairly compared with other proposed techniques or

replicated by other researches to a major benefit of the area. Specifically, the tel-tel and 10s-10s

condition extracted from SRE’08 were used to evaluate the Factor Analysis and proposed meth-

ods in speaker verification, and the challenging LRE’09 was utilised to assess the performance of

language recognition systems presented. Also, a simulated adverse speaker recognition scenario

was simulated from data belonging to SRE’05 and SRE’06.

The experimental part of this Dissertation started in Chapter 6, where a wide set of experi-

ments were conducted to evidence Factor Analysis as an effective and efficient tool to deal with

the session variability problem. Experiments conducted on the telephone part of the challeng-

ing NIST SRE’08 evaluation largely proved that the Factor Analysis application to explicitly

modelling both speaker and session variability lead to a major benefit of systems perform.

Specifically, an outstanding global improvement of 40% and 48% for female and male conditions

was achieved respect a non-compensated classical GMM-UBM system. Those great results were

then confirmed in the context of language recognition, in the LRE’09 evaluation, where FA was

proved to be critical in the development of accurate acoustic language recognition systems. In

that sense, improvements up to a 82% were achieved over a baseline GMM system without

session variability compensation. Also the global and complete ATVS Biometric Recognition

group system presented to the LRE’09 evaluation and which obtained an excellent 2nd rank in
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the core 30s open-set condition, was detailed; evaluating in this manner most of the strategies

presented in Chapters 2 and 4, and showing how all the identities levels within the speech signal

can be jointly exploited to reach high performance recognition results.

Chapter 7 addressed main issues associated to the deployment of SV and SLR systems in

”real-world” applications as forensic speaker recognition, namely the database mismatch and

the short durations problems; their negative impact in terms of system performance and how

can be FA strategies modified in order to mitigate that degradation performance. Several novel

contributions to deal with the database mismatch were evaluated and a deep study of the

phonetic content of recording used to estimate the speaker variability subspace in the context

of the short durations problems was conducted.

In summary, the main conclusions that can be extracted and have been highlighted through

in this Thesis are:

The session variability problem is one of the main causes of system performance degrada-

tion in both automatic speaker and language recognition systems.

The session variability should be treated as continuous rather than in a discrete way, since

it is the result of the conjunction of a numberless of sources which cannot be properly

quantified.

Most of the session and speaker/language variability associated to a given recording can be

explained by a reduced number of variability directions and corresponding weights. Those

variability subspaces can be previously estimated from large amount of data and be used

as strong priors in the modelling of speaker/language or session variability. This process

fits with the theory of Latent Variable models, specifically with Factor Analysis modelling.

The use of a complex mathematical framework as Factor Analysis is not incompatible with

the development of efficient systems. FA can be incorporated in an properly manner in

speaker and language recognition, leading to robust and very efficient systems.

Factor Analysis should not be used as either a closed formula or as a black box to deal

with session variability. A deep understanding of this modelling strategy as well as the

target data (data in operational conditions) nature is needed in order to achieve significant

results. A non-adequate use of FA could lead the global system to fail.

The database mismatch and the short durations problem still being a challenge for speaker

and language recognition systems, and although FA can be useful to deal with them, further

research is needed to adequate its use in those scenarios.

Main contributions and results are:

The compilation of the mathematical grounds of Factor Analysis, from its original formu-

lation to its use in speaker and language recognition systems.
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The efforts made in achieving robust but also efficient Factor Analysis based acoustic

systems for both speaker and language recognition

The novel methods explored and proposed to incorporate Factor Analysis into speaker and

language recognition systems.

The study of the main problems in the deployment of speaker and language recognition sys-

tems in ”real-world” scenarios and the novel methods proposed to mitigate their negative

impact in performance by using Factor Analysis.

8.2. Future Work

A number of research lines arise from the work conducted in this Thesis. Among then,

following ones are highlighted:

Exploring new forms of Factor Analysis applied to palliate the session variability problem

and modelling speaker variability. Although JFA has demonstrated to be very effective

the, new improved versions could achieve better performance results. Recent strategies as

Total Variability [Dehak et al., 2011] o Probabilistic Linear Discriminant Analysis [Kenny,

2010] are an example of those evolved FA methods.

Including a full-Bayesian treatment on Factor Analysis methods. Although, it has been

noted that speaker and channel factors (latent variables) has been well modelled rather

than make use of a point estimate, other model parameters such as the variability subspaces

are estimated via a Maximum Likelihood procedure. This fact could lead to problems as

the over-fitting and may be solved via a full Bayesian treatment of all the model parameters

involved in FA [Bishop, 2007]. Recent work in that sense is accomplished in the field of

speaker recognition in [Villalba and Brummer, 2011].

Exploring new forms to palliate the short durations problem via Factor Analysis. Although

the problem of short durations is still being a challenge in the field, a scant amount

of research has been conducted in the area [Perez-Gomez et al., 2010], specially when

durations of the recordings vary from one trial to the next, as usual occurs in tasks as

forensic speaker recognition. Recent studies as this conducted in [Mandasari et al., 2011]

endorse this research line.

Exploring new forms to palliate the database mismatch problem via Factor Analysis. Iden-

tified as one of the main challenges when dealing with ”real-world” systems [Ramos et al.,

2008], the database mismatch problem is an open research line where Factor Analysis has

not been completely exploited. Initial works have already been conducted in [Gonzalez-

Dominguez et al., 2010a; Senoussaoui et al., 2010].

Studying the application of those session variability compensation schemes to other biomet-

ric recognition traits such as fingerprint or signature verification. The session variability
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is not a specific problem of speaker and language recognition but in general affects to

any biometric trait, as the results of different aspects of their acquisition processes. For

instance, the use of different sensors in the capture of fingerprints or signatures includes

different session variations that could be faced via Factor Analysis.

Considering the application of Factor Analysis in automatic speech recognition systems.

In the line of the above point, the speech recognizers are strongly affected by a number of

variability sources (note that in this case even the inter-speaker variability is considered

as a nuisance source). Pioneer experiments in the area have been already conducted in

[Burget et al., 2010; Povey et al., 2010].

Exploring discriminative approaches based on Factor Analysis. Discriminative approaches

as SVM has been proved to be very effective in both speaker and language recognition.

The idea of derive a discriminative FA model rather than the generative presented in this

Thesis is an open line in the development of Factor Analysis based systems. Initial research

in this line endorses this future line [Glembek et al., 2011].

Combining traditional and automatic speaker/language recognition approaches. It is

widely agreed upon the scientific community [Gonzalez-Rodriguez et al., 2007b] that com-

bining automatic and classical speaker/language recognition approaches [Kunzel, 1994;

Rose, 2006] should lead to a major benefit of the recognition systems. Pioneer studies in

this field has showed excellent results [de Castro et al., 2009; Gonzalez-Rodriguez, 2011].
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Appendix A

Factor Analysis

Note for the following proofs, that by definition of the FA model

E[z] = 0 (A.1)

Cov(z) = E[zzT ] = I (A.2)

E[�] = 0 (A.3)

Cov(�) = E[��T ] = Ψ (A.4)

and also that as z and � are considered independent

Cov(�, z) = E[�zT ] = 0 (A.5)

Proof of p(x | z) ∼ N(µ+Lz,Ψ) (equation 3.8)

E[x | z] = E[µ+Lz + � | z]

= E[µ | z] + E[Lz | z] + E[� | z]

= E[µ] +LE[z | z] + E[�]

= µ+Lz + 0 = µ+Lz (A.6)

so that:
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A. FACTOR ANALYSIS

Cov(x) = E[(x−Lz − µ)(x−Lzµ)T ]

= E[�� | z]

= Ψ (A.7)

�
Proof of A = L

T (LL
T +Ψ)−1 = (I +L

TΨ−1
L)−1

L
TΨ−1 (equation 3.10)

A = L
T (LL

T +Ψ)−1

= L
T [Ψ−1 −Ψ−1

L(I +L
TΨ−1

L)−1
L

TΨ−1]

= L
TΨ−1 −L

TΨ−1
L(I +L

TΨ−1
L)−1

L
TΨ−1

= [I −L
TΨ−1

L(I +L
TΨ−1

L)−1]LTΨ−1

= [I + (I +L
TΨ−1

L)−1 − (I +L
TΨ−1

L)(I +L
TΨ−1

L)−1]LTΨ−1

= [I + (I +L
TΨ−1

L)−1 − I]LTΨ−1

= (I +L
TΨ−1

L)−1
L

TΨ−1

where we have used the Binomial Inverse Matrix Theorem [Strang, 2003]

(A+UBV )−1 = A
−1 −A

−1
UB(B +BV A

−1
UB)−1

BV A
−1 (A.8)

�
Proof of p(x) ∼ N(µ,LL

T +Ψ) (equation 3.11)

E[x] = E[µ+Lz + �]

= µ+LE[z] + E[�]

= µ

Cov(x) = E[xxT ] = E[(µ+Lz + �)(µ+Lz + �)T ] = E[µµT ] + µE[zT ]LT + µE[�T ]

+ LE[z]µT +LE[zzT ]LT +LE[z]�T + E[�]µT + E[�zT ]LT + E[��T ]

= LE[zzT ]L+ E[��T ]

= LL
T +Ψ

�
Proof of p(z | x) ∼ N(A(x− µ), (I +L

TΨ−1
L)−1) (equation 3.9).
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p(z | x) =
p(x, z)

p(x)

=
(2π)−(d+q)/2 | Λ |−1/2 exp(−1/2yTΛ−1

y)

(2π)−(d+q)/2 | C |−1/2 exp(−1/2yTC−1y)

∝ exp(−1

2
(yTΛ−1

y − x
T
C

−1
x)) (A.9)

being y =

�
x

z

�
, C = Cov(x) = LL

T +Ψ and Λ = Cov(x, z) derived as

Cov(x, z) = Cov(y) = E[
�

x

z

�
[xT

z
T ]]

= E
�

xx
T
xz

T

zx
T
zz

T

�

=

�
LL

T +Ψ L

L
T

I

�
= Λ (A.10)

given that

Λ−1 =

�
Λ−1,11 Λ−1,12

Λ−1,21 Λ−1,22

�

=

�
(Λ11 −Λ12Λ

−1
22 Λ21)−1 Λ−1

11 Λ12(Λ21Λ
−1
11 Λ12 −Λ22)−1

(Λ21Λ
−1
11 Λ12 −Λ22)−1Λ21Λ

−1
11 (Λ22 −Λ21Λ

−1
11 Λ12)−1

�

Consider now the term inside the exponent in equation A.9

y
TΛ−1

y − x
T
C

−1
x =

�
x
T
z
T

�
Λ−1

�
x
T

z

�
− x

T
C

−1
x

= x
TΛ−1,11

x+ x
TΛ−1,12 + z

TΛ−1,21
x+ z

TΛ−1,22
z − x

T
C

−1
x

= x
T (Λ−1,11 −C

−1)x+ 2xΛ−1,12z + z
TΛ−1,22

z (A.11)

Analysing the term

Λ−1,11 −C
−1 = (Λ11 −Λ12Λ

−1
22 Λ21)

−1 (A.12)

= Λ−1
11 +Λ−1

11 Λ12(Λ22 −Λ21Λ
−1
11 Λ12)Λ21Λ

−1
11 −Λ−1

11

= Λ−1
11 Λ12(Λ22 −Λ21Λ

−1
11 Λ12)Λ21Λ

−1
11

= βΛ−1,22β (A.13)
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A. FACTOR ANALYSIS

being β

β = Λ21Λ
−1
11 = L

T (LL
T +Ψ)−1 (A.14)

Substituting equation A.13 in A.11 then

y
TΛ−1

y − x
T
C

−1
x = x

TβTΛ−1,22βx+ 2xTΛ−1,12
z + z

TΛ−1,22
z

= (z − βT
x)TΛ−1,22(z − βT

x) + 2xTβTΛ−1,22
z + 2xTΛ−1,12

z

= (z − βx)TΛ−1,22(z − βx) + 2xT (βTΛ−1,22 +Λ−1,12)z (A.15)

Noting that

βTΛ−1,22 +Λ−1,12 = Λ−1
11 Λ12(Λ22 −Λ21Λ

−1
11 Λ12)

−1

+ Λ−1
11 Λ12(Λ21 −Λ−1

11 Λ12 −Λ22)
−1

= 0 (A.16)

Hence

y
TΛ−1

y − x
T
C

−1
x = (z − βx)TΛ−1,22(z − βx) (A.17)

then

p(z | x) ∝ exp(−1

2
(z − βx)TΛ−1,22(z − βx)) (A.18)

and finally

E[z | x] = βx = (I +L
TΨ−1

L)−1
L

TΨ−1
x = Ax (A.19)

(note that µ has been considered 0 without loss of generality).

Regarding the covariance term

Cov(z | x) = (Λ−1,22)−1

= (Λ22 −Λ21Λ
−1
11 Λ12)

−1

= Λ−1
22 −Λ−1

22 Λ21(−Λ11 +Λ12Λ
−1
22 Λ21)

−1Λ12Λ
−1
22

= I −L
T (−Ψ−LL

T +LL
T )−1

L

= I +L
TΨ−1

L (A.20)

and therefore

Cov(z | x) = (I +L
TΨ−1

L)−1 (A.21)
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�

Derivation of complete-data log-likelihood form, equation 3.14

L =
N�

i=1

log
1

(2π)d/2 | Ψ |1/2
exp{−1

2
(xi −Lzi)

TΨ−1(xi −Lzi)}

= −Nd

2
log(2π)− N

2
log | Ψ | −1

2

n�

i

(xT
i Ψ

−1
xi − 2xT

i Ψ
−1

Lzi + ziL
TΨ−1

Lzi) (A.22)

= −Nd

2
log(2π)− N

2
log | Ψ | −1

2

n�

i

(xT
i Ψ

−1
xi − 2xT

i Ψ
−1

Lzi + tr[LTΨ−1
Lzizi])

where the equality z
T
Lz = tr[Lzz

T ] has been used in the last step.

�

Derivation of M-step equation 3.35

∂Ep(z|x)[L]

∂L
=

∂
�
C − N

2 ln | Ψ | −1
2

�
N

i=1{xT
i
Ψ−1

xi − 2xT
i
Ψ−1

LE[zi | xi] + tr[LTΨ−1
LE[zizT

i
| xi]]}

�

∂L

= −1

2

N�

i=1

{−2Ψ−1
xiE[zi | xi] + 2Ψ−1

LE[zizT
i | xi]]} (A.23)

where relations ∂ATXB

∂X = ATB and ∂tr[XTAXB]
∂X = AXB +ATXBT have been used.

Hence, setting equation A.23 to zero

∂Ep(z|x)[L]

∂L
= 0 ⇒ L

∗ =

�
N�

i

xiE[zi | xi]
T

��
N�

i

E[zizT
i | xi]

�−1

(A.24)

�

Derivation of M-step equation 3.36
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A. FACTOR ANALYSIS

∂Ep(z|x)[L]

∂Ψ
=

∂
�
C − N

2 ln | Ψ | −1
2

�
N

i=1{xT
i
Ψ−1

xi − 2xT
i
Ψ−1

LE[zi | xi] + tr[LTΨ−1
LE[zizT

i
| xi]]}

�

∂Ψ

=
N

2
Ψ− 1

2

N�

i=1

{xix
T
i − 2xiE[zi | xi]L

T +LE[zizT
i | xi]L

T }

=
N

2
Ψ− 1

2

N�

i=1

xix
T
i +

�
N�

i=1

xiE[zi | xi]
T

�
L

T − 1

2
L

�
N�

i=1

E[zizT
i | xi]

�
L

T (A.25)

where relations ∂ATXB

∂X = ATB and ∂log|X|
∂X =

�
X−1

�T
have been used.

Hence, setting equation A.25 to zero

Ψ =
1

N

�
N�

i=1

xix
T
i − 2

�
N�

i=1

xiE[zi | xi]
T

�
+L

�
N�

i=1

E[zizT
i | xi]

�
L

T

�
(A.26)

and replacing L by its update equation given in A.24, we obtain

Ψ =
1

N
diag

�
N�

i=1

xix
T
i −

�
N�

i=1

xiE[zi | xi]
T

�
L

�
(A.27)

�
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Appendix B

Linear Scoring

The Taylor series of a real or complex function f(x) that is infinitely differentiable in a

neighborhood of a real or complex number a is defined as

∞�

n=0

f (n)(a)

n!
(x− a)n (B.1)

where f (n)(a) denotes the nth derivative of f(x) evaluated at the point a; and n defines the

order of the Taylor series, or in other words, the sum terms used.

Let O = o1, ...,ot be a set of test observations and λs a GMM model for a given speaker s,

with mean supervector µs; by Linear Scoring the likelihood P (O | λs) is approximated via a 1st

Taylor series evaluated at the UBM model mean supervector point, µ, as

P (O | λs) ∼ f0(λubm)

0!
(µs − µ)0 +

f1(λubm)

1!
(µs − µ)1

=
f0(λubm)

��✒
1

0!
✘✘✘✘✘✘✿1
(µs − µ)0 +

f1(λubm)

1!
(µ− µ)1

= f0(λubm) + f1(λubm)(µs − µ)

= P (O | λubm) +�P (O | λs)[µ](µs − µ) (B.2)

where the second term, the gradient of the likelihood versus the target model, λs, evaluated at

the UBM mean supervector, µs, can be developed as
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� log (P (O | λs))[µ] = �
T�

t=1

log(P (ot | λs))[µ]

= �
T�

t=1

log

�
K�

k=1

wkpk(ot)

�

=
T�

t=1

1
K�
k=1

wkpk(ot)

�
K�

k=1

wkpk(ot)

=
T�

t=1

1
K�
k=1

wkpk(ot)

K�

k=1

wk�pk(ot)

=
T�

t=1

1
K�
k=1

wkpk(ot)

K�

k=1

wkpk(ot)(ot − µk)Σ
−1
k

(B.3)

taken into account that the Gaussian occupation probability is defined as

Pkt =
wkpk(ot)

K�
k=1

wkpk(ot)

(B.4)

it can be readily seen that B.3 reduces to the first order normalized statistics defined as

1stnorm −→ fk =
�

t

Σ−1
k

Pkt(ot − µk) (B.5)

Under this analysis, classical scoring defined as the log-likelihood ratio can be computed as

scoreO,λs
= log(P (O | λs))− log(P (O | λubm))

= P (O | λubm) +�P (O | λs)[µ](µs − µ)− log(P (O | λubm))

= �P (O | λs)[µ](µs − µ)

= f(µs − µ)

(B.6)

126



Appendix C

Extended Results

Extended results for both speaker and language recognition systems presented in Chapter

6 are included in this Appendix. Particularly, complete data-table results for different config-

urations of the JFA SV systems used besides a by-language decomposition of SLR results are

presented.
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C. EXTENDED RESULTS

((a)) U : PCA

#Eigs Raw Tnorm Znorm Ztnorm

0 13.09/0.064 12.86/0.056 12.65/0.056 12.17/0.053

50 8.93/0.044 8.30/0.041 8.29/0.043 7.59/0.041

100 8.85/0.045 8.26/0.043 8.45/0.044 7.87/0.042

150 9.01/0.045 8.38/0.043 8.46/0.044 7.91/0.042

200 8.89/0.044 8.34/0.042 8.48/0.044 7.95/0.042

250 9.01/0.045 8.46/0.043 8.62/0.044 7.99/0.043

300 8.97/0.044 8.35/0.042 8.52/0.044 8.04/0.043

((b)) U : PCA+ 1EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 13.09/0.064 12.86/0.056 12.65/0.056 12.17/0.053

50 8.89/0.044 8.14/0.040 8.23/0.043 7.40/0.040

100 8.51/0.044 7.91/0.042 8.21/0.043 7.56/0.041

150 8.62/0.044 8.07/0.042 8.20/0.043 7.67/0.041

200 8.66/0.044 8.00/0.042 8.22/0.043 7.56/0.042

250 8.62/0.044 8.11/0.042 8.30/0.043 7.59/0.042

300 8.52/0.044 7.99/0.042 8.26/0.043 7.53/0.042

((c)) U : PCA+ 5EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 13.09/0.064 12.86/0.056 12.65/0.056 12.17/0.053

50 9.09/0.044 8.19/0.041 8.30/0.044 7.44/0.041

100 8.51/0.045 8.10/0.042 8.11/0.044 7.56/0.041

150 8.62/0.044 8.11/0.042 8.11/0.043 7.59/0.041

200 8.66/0.044 8.06/0.042 8.16/0.043 7.51/0.041

250 8.43/0.044 8.07/0.042 8.24/0.043 7.48/0.042

300 8.34/0.043 7.99/0.041 8.25/0.043 7.48/0.042

((d)) U : PCA+ 10EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 13.09/0.064 12.86/0.056 12.65/0.056 12.17/0.053

50 9.13/0.044 8.22/0.041 8.22/0.044 7.44/0.041

100 8.46/0.045 8.05/0.042 8.08/0.044 7.63/0.042

150 8.70/0.044 8.11/0.042 8.12/0.043 7.52/0.041

200 8.60/0.044 8.10/0.042 8.16/0.043 7.53/0.042

250 8.36/0.044 8.11/0.042 8.26/0.043 7.55/0.042

300 8.30/0.043 7.99/0.041 8.20/0.042 7.49/0.042

Table C.1: System: MAP-SVC. Results on SRE’08 female tel-tel condition by using different ML

iterations on training the session variability subspace U as well as different number of eigenchannels.
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((a)) V : PCA

#Eigs Raw Tnorm Znorm Ztnorm

0 8.93/0.044 8.30/0.041 8.29/0.043 7.59/0.041

50 14.27/0.069 12.15/0.059 12.35/0.060 9.77/0.046

100 11.84/0.060 10.35/0.050 10.37/0.050 8.86/0.041

150 11.05/0.056 9.88/0.046 9.81/0.047 8.50/0.040

200 10.82/0.054 9.52/0.045 9.36/0.047 8.22/0.040

250 10.66/0.053 9.29/0.045 9.25/0.046 7.94/0.040

300 10.41/0.052 9.24/0.044 9.21/0.045 8.07/0.039

((b)) V : PCA+ 1EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 8.93/0.044 8.30/0.041 8.29/0.043 7.59/0.041

50 15.10/0.070 13.05/0.061 12.34/0.060 10.19/0.047

100 12.35/0.060 10.96/0.052 10.35/0.049 9.01/0.042

150 11.40/0.056 10.17/0.049 9.80/0.047 8.62/0.041

200 11.09/0.054 9.95/0.047 9.64/0.046 8.51/0.041

250 10.91/0.053 9.83/0.046 9.55/0.046 8.54/0.040

300 10.86/0.053 9.72/0.046 9.46/0.046 8.46/0.040

((c)) V : PCA+ 5EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 8.93/0.044 8.30/0.041 8.29/0.043 7.59/0.041

50 15.28/0.070 13.18/0.062 12.39/0.060 10.27/0.047

100 12.45/0.060 11.14/0.051 10.31/0.050 9.09/0.042

150 11.42/0.056 10.11/0.049 9.72/0.048 8.81/0.041

200 10.97/0.054 9.95/0.047 9.64/0.046 8.62/0.040

250 10.82/0.054 9.83/0.047 9.48/0.045 8.54/0.041

300 10.78/0.052 9.72/0.045 9.40/0.045 8.40/0.041

((d)) V : PCA+ 10EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 8.93/0.044 8.30/0.041 8.29/0.043 7.59/0.041

50 15.18/0.070 13.37/0.062 12.51/0.060 10.26/0.048

100 12.35/0.060 11.01/0.052 10.46/0.050 9.01/0.042

150 11.33/0.056 10.20/0.049 9.73/0.048 8.70/0.041

200 10.89/0.055 9.98/0.047 9.64/0.046 8.54/0.040

250 10.78/0.054 9.84/0.046 9.52/0.046 8.46/0.040

300 10.70/0.052 9.68/0.045 9.38/0.045 8.42/0.040

Table C.2: System: EV-SVC. Results on SRE’08 female tel-tel condition by using different ML iterations

on training the speaker variability subspace V as well as different number of eigenvoices. U is fixed over

all the experiments and was trained via PCA keeping 50 eigenchannels.
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C. EXTENDED RESULTS

((a)) V : PCA

#Eigs Raw Tnorm Znorm Ztnorm

0 8.93/0.044 8.30/0.041 8.29/0.043 7.59/0.041

50 9.40/0.045 8.43/0.041 8.37/0.041 7.40/0.040

100 9.06/0.044 8.32/0.040 8.22/0.041 7.42/0.039

150 9.04/0.044 8.26/0.040 8.18/0.041 7.40/0.039

200 9.01/0.044 8.19/0.040 8.22/0.041 7.32/0.039

250 9.05/0.045 8.22/0.040 8.30/0.041 7.29/0.039

300 9.03/0.044 8.22/0.040 8.18/0.041 7.29/0.039

((b)) V : PCA+ 1EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 8.93/0.044 8.30/0.041 8.29/0.043 7.59/0.041

50 9.74/0.046 8.79/0.042 8.58/0.041 7.56/0.040

100 9.32/0.045 8.50/0.041 8.25/0.042 7.47/0.039

150 9.29/0.044 8.50/0.041 8.32/0.042 7.52/0.039

200 9.23/0.044 8.51/0.041 8.41/0.042 7.65/0.039

250 9.24/0.045 8.42/0.041 8.38/0.042 7.67/0.039

300 9.24/0.045 8.42/0.041 8.36/0.042 7.52/0.039

((c)) V : PCA+ 5EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 8.93/0.044 8.30/0.041 8.29/0.043 7.59/0.041

50 9.83/0.046 8.84/0.041 8.59/0.042 7.61/0.040

100 9.36/0.045 8.50/0.041 8.30/0.042 7.48/0.039

150 9.40/0.045 8.50/0.041 8.42/0.042 7.59/0.039

200 9.25/0.045 8.62/0.041 8.46/0.042 7.72/0.039

250 9.29/0.045 8.49/0.041 8.41/0.042 7.74/0.039

300 9.25/0.045 8.53/0.041 8.48/0.042 7.70/0.039

((d)) V : PCA+ 10EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 8.93/0.044 8.30/0.041 8.29/0.043 7.59/0.041

50 9.81/0.046 8.86/0.042 8.66/0.042 7.64/0.039

100 9.40/0.045 8.46/0.041 8.34/0.042 7.47/0.039

150 9.32/0.045 8.50/0.041 8.42/0.042 7.67/0.039

200 9.23/0.045 8.59/0.041 8.54/0.042 7.75/0.039

250 9.24/0.045 8.58/0.041 8.46/0.042 7.67/0.039

300 9.25/0.045 8.62/0.041 8.53/0.042 7.68/0.039

Table C.3: System: JFA. Results on SRE’08 female tel-tel condition by using different ML iterations

on training the speaker variability subspace V as well as different number of eigenvoices. U is fixed over

all the experiments and was trained via PCA keeping 50 eigenchannels.
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((a)) V : PCA

#Eigs Raw Tnorm Znorm Ztnorm

0 8.93/0.044 8.30/0.041 8.29/0.043 7.59/0.041

50 9.36/0.045 8.42/0.040 8.40/0.040 7.35/0.039

100 9.12/0.044 8.30/0.040 8.22/0.040 7.27/0.038

150 9.21/0.044 8.22/0.040 8.25/0.041 7.24/0.038

200 9.17/0.044 8.19/0.040 8.21/0.041 7.26/0.038

250 9.17/0.044 8.22/0.040 8.22/0.040 7.26/0.038

300 9.29/0.044 8.19/0.040 8.22/0.041 7.37/0.038

((b)) V : PCA+ 1EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 8.93/0.044 8.30/0.041 8.29/0.043 7.59/0.041

50 9.69/0.046 8.73/0.041 8.38/0.041 7.46/0.039

100 9.45/0.045 8.42/0.041 8.26/0.041 7.28/0.039

150 9.36/0.045 8.48/0.041 8.24/0.041 7.32/0.039

200 9.36/0.045 8.55/0.041 8.29/0.041 7.35/0.038

250 9.39/0.045 8.53/0.041 8.38/0.041 7.43/0.039

300 9.36/0.045 8.50/0.041 8.28/0.041 7.59/0.039

((c)) V : PCA+ 5EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 8.93/0.044 8.30/0.041 8.29/0.043 7.59/0.041

50 9.72/0.046 8.76/0.041 8.70/0.041 7.76/0.039

100 9.52/0.045 8.45/0.041 8.38/0.041 7.57/0.039

150 9.32/0.045 8.54/0.041 8.38/0.041 7.67/0.038

200 9.29/0.045 8.57/0.041 8.38/0.041 7.52/0.038

250 9.29/0.045 8.59/0.041 8.45/0.042 7.59/0.038

300 9.32/0.045 8.66/0.041 8.40/0.042 7.59/0.039

((d)) V : PCA+ 10EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 8.93/0.044 8.30/0.041 8.29/0.043 7.59/0.041

50 9.75/0.046 8.73/0.041 8.73/0.041 7.67/0.040

100 9.51/0.045 8.53/0.041 8.38/0.041 7.49/0.039

150 9.29/0.045 8.58/0.041 8.43/0.041 7.60/0.039

200 9.25/0.045 8.58/0.041 8.46/0.041 7.59/0.038

250 9.17/0.045 8.62/0.041 8.39/0.041 7.66/0.038

300 9.21/0.045 8.26/0.040 8.24/0.040 7.54/0.036

Table C.4: System: JFA D trained on data. Results on SRE’08 female tel-tel condition by using different

ML iterations on training the speaker variability subspace V as well as different number of eigenvoices.

U is fixed over all the experiments and was trained via PCA keeping 50 eigenchannels.
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C. EXTENDED RESULTS

((a)) U : PCA

#Eigs Raw Tnorm Znorm Ztnorm

0 11.07/0.050 10.68/0.042 9.80/0.044 9.82/0.039

50 6.79/0.038 6.01/0.030 5.99/0.031 5.33/0.027

100 6.32/0.035 5.89/0.030 5.93/0.031 5.46/0.029

150 6.25/0.034 5.93/0.030 5.85/0.031 5.53/0.029

200 6.50/0.034 6.08/0.030 6.17/0.032 5.63/0.029

250 6.32/0.034 6.12/0.030 6.17/0.032 5.62/0.030

300 6.36/0.035 6.28/0.030 6.08/0.032 5.70/0.029

((b)) U : PCA+ 1EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 11.07/0.050 10.68/0.042 9.80/0.044 9.82/0.039

50 6.71/0.038 5.93/0.030 6.00/0.032 5.23/0.027

100 6.25/0.035 5.93/0.029 6.01/0.031 5.27/0.029

150 6.13/0.034 5.77/0.030 5.93/0.031 5.21/0.029

200 6.40/0.034 5.75/0.030 6.17/0.031 5.44/0.029

250 6.46/0.034 5.85/0.030 6.26/0.031 5.62/0.029

300 6.17/0.034 5.90/0.029 6.20/0.031 5.62/0.029

((c)) U : PCA+ 5EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 11.07/0.050 10.68/0.042 9.80/0.044 9.82/0.039

50 6.92/0.039 6.01/0.030 5.94/0.032 5.31/0.027

100 6.36/0.035 5.90/0.030 5.93/0.032 5.31/0.028

150 6.33/0.034 5.70/0.030 6.03/0.031 5.31/0.029

200 6.32/0.033 5.77/0.030 6.17/0.031 5.47/0.028

250 6.35/0.033 6.00/0.030 6.24/0.031 5.69/0.029

300 6.25/0.033 5.85/0.029 6.21/0.031 5.62/0.028

((d)) U : PCA+ 10EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 11.07/0.050 10.68/0.042 9.80/0.044 9.82/0.039

50 6.92/0.039 6.01/0.030 5.94/0.032 5.31/0.027

100 6.36/0.035 5.90/0.030 5.93/0.032 5.31/0.028

150 6.30/0.034 5.70/0.030 6.02/0.031 5.39/0.029

200 6.34/0.033 5.88/0.030 6.21/0.031 5.54/0.029

250 6.47/0.033 6.01/0.030 6.08/0.031 5.70/0.029

300 6.13/0.033 5.84/0.029 6.18/0.031 5.70/0.028

Table C.5: System: MAP-SVC. Results on SRE’08 male tel-tel condition by using different ML itera-

tions on training the session variability subspace U as well as different number of eigenchannels.
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((a)) V : PCA

#Eigs Raw Tnorm Znorm Ztnorm

0 6.79/0.038 6.01/0.030 5.99/0.031 5.33/0.027

50 13.56/0.071 10.76/0.052 11.07/0.053 8.58/0.040

100 10.76/0.060 8.89/0.043 8.87/0.045 7.10/0.032

150 9.66/0.056 8.11/0.038 8.19/0.041 6.32/0.030

200 9.35/0.053 7.67/0.036 7.88/0.038 6.17/0.030

250 8.96/0.051 7.48/0.036 7.57/0.038 6.01/0.029

300 8.81/0.049 7.33/0.034 7.48/0.037 6.01/0.028

((b)) V : PCA+ 1EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 6.79/0.038 6.01/0.030 5.99/0.031 5.33/0.027

50 14.45/0.074 12.08/0.055 11.15/0.055 9.05/0.041

100 11.26/0.062 10.04/0.044 9.13/0.046 7.33/0.034

150 10.53/0.058 9.28/0.041 8.11/0.042 7.01/0.032

200 9.98/0.055 8.50/0.039 7.88/0.039 6.79/0.031

250 9.81/0.052 8.50/0.037 7.73/0.038 6.48/0.030

300 9.51/0.051 8.27/0.036 7.48/0.037 6.56/0.030

((c)) V : PCA+ 5EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 6.79/0.038 6.01/0.030 5.99/0.031 5.33/0.027

50 14.55/0.073 12.25/0.056 11.22/0.056 9.13/0.041

100 11.38/0.062 10.29/0.045 9.28/0.046 7.42/0.035

150 10.45/0.058 9.44/0.041 8.27/0.042 7.13/0.032

200 10.13/0.054 8.84/0.039 8.05/0.039 6.94/0.031

250 9.84/0.052 8.58/0.037 7.80/0.038 6.63/0.030

300 9.59/0.050 8.42/0.036 7.57/0.038 6.48/0.030

((d)) V : PCA+ 10EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 6.79/0.038 6.01/0.030 5.99/0.031 5.33/0.027

50 14.50/0.073 12.16/0.057 11.27/0.056 9.13/0.041

100 11.45/0.063 10.30/0.045 9.20/0.046 7.31/0.035

150 10.41/0.057 9.36/0.041 8.42/0.042 7.16/0.031

200 10.13/0.054 8.81/0.038 7.88/0.039 7.04/0.031

250 9.77/0.052 8.44/0.037 7.80/0.038 6.56/0.029

300 9.44/0.050 8.42/0.035 7.41/0.038 6.63/0.030

Table C.6: System: EV-SVC. Results on SRE’08 male tel-tel condition by using different ML iterations

on training the speaker variability subspace V as well as different number of eigenvoices. U is fixed over

all the experiments and was trained via PCA keeping 50 eigenchannels.
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((a)) V : PCA

#Eigs Raw Tnorm Znorm Ztnorm

0 6.79/0.038 6.01/0.030 5.99/0.031 5.33/0.027

50 8.27/0.044 6.44/0.032 6.19/0.033 5.16/0.026

100 7.93/0.043 6.23/0.031 6.32/0.032 5.08/0.025

150 7.65/0.042 6.25/0.030 6.15/0.032 5.16/0.025

200 7.36/0.042 6.16/0.030 6.08/0.031 5.02/0.025

250 7.28/0.041 6.25/0.030 6.08/0.031 5.08/0.025

300 7.25/0.041 6.26/0.030 6.01/0.031 5.09/0.025

((b)) V : PCA+ 1EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 6.79/0.038 6.01/0.030 5.99/0.031 5.33/0.027

50 8.58/0.046 7.33/0.034 6.48/0.034 5.39/0.027

100 8.34/0.044 7.02/0.033 6.17/0.034 5.31/0.027

150 7.96/0.043 6.94/0.032 6.08/0.034 5.44/0.026

200 7.88/0.043 6.87/0.031 6.06/0.033 5.39/0.026

250 7.96/0.042 6.87/0.031 6.13/0.032 5.39/0.027

300 7.73/0.041 6.79/0.031 6.07/0.032 5.39/0.026

((c)) V : PCA+ 5EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 6.79/0.038 6.01/0.030 5.99/0.031 5.33/0.027

50 8.42/0.046 7.28/0.034 6.52/0.034 5.31/0.027

100 8.42/0.044 7.02/0.033 6.22/0.034 5.47/0.027

150 8.19/0.043 6.98/0.032 6.24/0.034 5.39/0.026

200 7.96/0.042 6.85/0.031 6.17/0.033 5.59/0.027

250 7.85/0.042 6.93/0.031 6.17/0.033 5.62/0.027

300 7.85/0.041 6.79/0.031 6.17/0.033 5.62/0.026

((d)) V : PCA+ 10EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 6.79/0.038 6.01/0.030 5.99/0.031 5.33/0.027

50 8.47/0.046 7.32/0.034 6.48/0.034 5.34/0.027

100 8.34/0.044 7.07/0.033 6.29/0.034 5.39/0.027

150 8.23/0.043 6.92/0.032 6.25/0.034 5.47/0.026

200 7.85/0.042 6.94/0.032 6.17/0.033 5.47/0.027

250 7.73/0.041 6.79/0.031 6.25/0.033 5.57/0.026

300 7.85/0.041 6.79/0.031 6.21/0.033 5.62/0.026

Table C.7: System: JFA. Results on SRE’08 male tel-tel condition by using different ML iterations on

training the speaker variability subspace V as well as different number of eigenvoices. U is fixed over all

the experiments and was trained via PCA keeping 50 eigenchannels.
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((a)) V : PCA

#Eigs Raw Tnorm Znorm Ztnorm

0 6.79/0.038 6.01/0.030 5.99/0.031 5.33/0.027

50 7.57/0.043 6.25/0.029 6.01/0.033 5.23/0.026

100 7.61/0.043 6.32/0.030 6.08/0.033 5.20/0.026

150 7.60/0.042 6.40/0.030 6.14/0.032 5.31/0.026

200 7.48/0.042 6.48/0.030 6.01/0.032 5.31/0.026

250 7.33/0.042 6.36/0.030 5.96/0.031 5.23/0.025

300 7.18/0.041 6.08/0.029 5.86/0.032 5.47/0.026

((b)) V : PCA+ 1EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 6.79/0.038 6.01/0.030 5.99/0.031 5.33/0.027

50 14.45/0.074 12.08/0.055 11.15/0.055 9.05/0.041

100 11.26/0.062 10.04/0.044 9.13/0.046 7.33/0.034

150 10.53/0.058 9.28/0.041 8.11/0.042 7.01/0.032

200 9.98/0.055 8.50/0.039 7.88/0.039 6.79/0.031

250 9.81/0.052 8.50/0.037 7.73/0.038 6.48/0.030

300 9.51/0.051 8.27/0.036 7.48/0.037 6.56/0.030

((c)) V : PCA+ 5EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 6.79/0.038 6.01/0.030 5.99/0.031 5.33/0.027

50 8.63/0.048 7.73/0.034 6.49/0.036 5.31/0.027

100 8.36/0.046 7.35/0.032 6.29/0.035 5.47/0.027

150 8.19/0.044 7.02/0.032 6.36/0.034 5.62/0.027

200 8.03/0.044 6.96/0.032 6.25/0.033 5.51/0.027

250 7.93/0.043 6.93/0.031 6.25/0.033 5.69/0.027

300 7.82/0.042 6.94/0.031 6.25/0.033 5.54/0.027

((d)) V : PCA+ 10EMiteration

#Eigs Raw Tnorm Znorm Ztnorm

0 6.79/0.038 6.01/0.030 5.99/0.031 5.33/0.027

50 8.54/0.048 7.41/0.033 6.56/0.035 5.39/0.026

100 8.34/0.045 7.25/0.032 6.20/0.035 5.47/0.026

150 8.04/0.044 7.02/0.031 6.28/0.035 5.47/0.026

200 7.79/0.044 6.78/0.031 6.01/0.033 5.47/0.025

250 7.80/0.043 6.81/0.031 6.17/0.033 5.54/0.026

300 7.33/0.041 6.25/0.030 5.93/0.031 5.31/0.025

Table C.8: System: JFA D trained on data. Results on SRE’08 male tel-tel condition by using different

ML iterations on training the speaker variability subspace V as well as different number of eigenvoices.

U is fixed over all the experiments and was trained via PCA keeping 50 eigenchannels.
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C. EXTENDED RESULTS

Equal Error Rate (EER in %)

ATVS4 ATVS3 ATVS2 ATVS1

03s 10s 30s 03s 10s 30s 03s 10s 30s 03s 10s 30s

amha 11.53 3.72 1.12 11.41 2.36 0.47 7.40 1.64 0.40 7.51 0.89 0.07

bosn 12.02 5.23 2.17 10.84 3.62 1.28 7.56 2.19 1.30 7.93 2.58 1.32

cant 17.00 8.72 2.84 17.62 10.08 2.09 15.14 6.21 1.20 14.80 5.68 1.14

creo 15.68 5.54 2.48 20.21 4.84 2.16 13.29 2.68 1.97 12.97 2.79 1.26

croa 17.50 8.61 5.83 12.80 4.99 1.21 11.27 5.46 1.60 11.82 4.24 0.63

dari 16.68 9.12 4.20 19.35 7.37 2.74 15.70 6.31 2.22 16.69 5.36 1.48

fars 23.69 10.59 3.47 25.63 12.79 2.17 21.15 8.32 1.67 21.35 6.31 0.71

fren 26.20 14.71 6.83 27.07 16.77 7.67 22.74 11.39 4.32 23.79 9.78 1.81

geor 16.77 7.38 3.14 20.44 5.08 1.18 13.14 2.89 0.45 12.05 1.00 0.05

haus 13.94 4.54 1.96 17.77 5.27 1.17 11.81 2.09 0.71 10.32 1.18 0.04

hind 30.58 19.11 8.31 30.96 19.66 8.59 29.48 15.64 5.42 29.13 15.63 5.75

inen 23.08 12.71 4.49 36.16 26.20 11.71 24.42 12.63 3.18 24.29 10.92 2.13

kore 20.31 12.01 4.33 17.30 12.81 3.79 16.21 9.83 1.95 16.04 9.29 2.10

mand 21.93 11.52 1.81 21.24 11.68 1.43 19.13 9.34 0.60 19.64 8.16 0.66

pash 18.30 8.24 3.83 21.76 8.52 2.83 15.92 5.97 1.64 15.08 4.45 0.85

port 11.45 4.11 0.88 14.41 4.24 1.16 10.05 2.73 0.25 11.92 2.39 0.30

ruse 22.23 10.72 3.28 24.93 14.92 3.53 20.07 10.49 2.35 21.59 9.84 2.10

span 19.64 10.40 1.62 25.46 15.74 2.10 17.62 9.60 0.68 17.74 9.53 0.83

turk 15.58 3.66 1.69 13.13 2.72 0.38 8.83 0.88 0.15 10.17 0.70 0.02

ukra 8.65 2.23 0.80 10.23 2.65 0.73 6.96 0.83 0.36 8.24 0.89 0.31

urdu 30.08 20.27 11.93 27.92 19.11 9.08 27.75 19.21 8.03 27.82 18.13 8.45

usen 21.21 11.65 4.53 20.55 11.85 3.57 19.58 10.20 3.18 19.59 10.35 1.57

viet 18.30 11.59 4.33 21.35 13.57 3.71 16.77 10.27 2.71 18.95 8.94 2.22

Table C.9: LRE’09 ATVS submitted systems performance (meanCavg x 100) on development dataset.
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Equal Error Rate (EER in %)

ATVS4 ATVS3 ATVS2 ATVS1

03s 10s 30s 03s 10s 30s 03s 10s 30s 03s 10s 30s

amha 19.53 7.83 3.07 17.06 5.57 1.43 14.24 4.38 1.02 14.63 3.40 0.75

bosn 29.64 18.53 13.07 24.56 13.31 6.56 23.28 13.04 6.82 21.36 12.31 6.03

cant 16.12 7.48 4.24 19.39 10.05 5.69 13.42 5.58 2.76 11.80 4.32 2.91

creo 18.97 8.52 4.54 21.49 7.83 2.86 16.88 6.49 2.62 16.86 5.66 1.48

croa 24.58 15.81 10.88 19.72 10.50 6.21 20.37 12.01 6.77 20.99 11.89 6.21

dari 22.15 10.22 6.32 24.05 11.41 6.45 19.65 9.41 6.58 21.54 11.43 6.18

fars 18.66 6.82 3.70 21.05 8.31 3.67 15.38 5.74 1.91 17.21 6.54 2.15

fren 20.29 10.31 5.27 22.09 9.47 3.22 19.02 8.48 3.07 20.37 7.31 1.82

geor 17.99 8.96 4.87 18.58 6.70 2.24 13.05 5.57 1.66 14.24 4.21 1.03

haus 18.76 8.57 5.69 17.74 5.83 2.34 15.17 5.48 1.94 15.58 3.61 0.89

hind 23.32 10.42 7.54 25.73 13.19 8.20 21.40 9.19 5.65 21.21 8.65 6.00

inen 24.43 9.92 6.15 33.78 23.00 15.30 23.89 8.81 5.40 20.99 7.35 3.61

kore 16.81 6.22 3.17 17.84 6.08 2.66 13.42 3.73 1.27 12.54 3.27 1.09

mand 16.40 5.92 3.00 17.14 6.01 2.89 12.49 3.59 1.67 12.41 3.52 1.39

pash 22.87 12.15 5.23 24.91 11.82 5.12 21.03 9.91 3.75 20.95 9.84 3.28

port 17.34 7.53 1.86 18.10 6.70 1.49 14.68 5.10 1.31 14.93 4.88 0.73

ruse 19.44 6.69 2.82 19.74 7.85 5.18 16.32 3.96 2.01 16.06 4.62 1.61

span 16.37 6.43 3.39 15.71 4.80 0.79 11.34 3.72 0.57 12.92 3.12 0.62

turk 22.95 10.77 4.44 21.72 8.57 2.02 17.62 5.62 1.02 16.52 4.45 0.45

ukra 22.73 13.43 8.89 24.25 13.86 5.81 19.58 10.00 4.90 20.76 11.64 4.64

urdu 26.19 14.93 8.51 25.39 12.20 7.25 22.52 11.43 6.23 24.48 10.49 6.09

usen 16.64 7.95 6.31 18.00 7.59 5.11 14.04 5.32 4.08 15.89 5.85 4.00

viet 13.21 5.63 3.47 20.06 9.29 4.52 12.48 4.00 2.23 11.14 4.09 1.33

Table C.10: LRE’09 ATVS submitted systems performance (meanCavg x 100) on evaluation dataset.
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N. Brümmer, L. Burget, J. Cernocky, O. Glembek, F. Grezl, M. Karafiat, D. A. van Leeuwen, P. Matejka,

P. Scwartz, and A. Strasheim. Fusion of Heterogeneous Speaker Recognition Systems in the STBU Submission

for the NIST Speaker Recognition Evaluation 2006. IEEE Transactions on Audio, Speech and Signal Processing,

15(7):2072–2084, 2007. 19
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