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Abstract

We recently introduced the negentropy increment, a validity index for crisp
clustering that quantifies the average normality of the clustering partitions
using the negentropy. This index can satisfactorily deal with clusters with
heterogeneous orientations, scales and densities. One of the main advantages
of the index is the simplicity of its calculation, which only requires the com-
putation of the log-determinants of the covariance matrices and the prior
probabilities of each cluster. The negentropy increment provides validation
results which are in general better than those from other classic cluster valid-
ity indices. However, when the number of data points in a partition region is
small, the quality in the estimation of the log-determinant of the covariance
matrix can be very poor. This affects the proper quantification of the index
and therefore the quality of the clustering, so additional requirements such
as limitations on the minimum number of points in each region are needed.
Although this kind of constraints can provide good results, they need to be
adjusted depending on parameters such as the dimension of the data space.
In this article we investigate how the estimation of the negentropy increment
of a clustering partition is affected by the presence of regions with small
number of points. We find that the error in this estimation depends on the
number of points in each region, but not on the scale or orientation of their
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distribution, and show how to correct this error in order to obtain an unbi-
ased estimator of the negentropy increment. We also quantify the amount of
uncertainty in the estimation. As we show, both for 2D synthetic problems
and multidimensional real benchmark problems, these results can be used to
validate clustering partitions with a substantial improvement.

Key words: Crisp clustering, Cluster validation, Negentropy increment.

1. Introduction

The goal of cluster analysis [12] is the automatic partition of a data set
into a finite number of natural structures, or clusters, so that the elements
inside a cluster are similar while those belonging to different clusters are
not. Clustering algorithms are usually divided into crisp and fuzzy. In crisp
clustering, each data point is uniquely assigned to a single cluster. On the
contrary, fuzzy clustering allows each point to belong to any of the clusters
with a certain degree of membership. A common problem of both approaches
is the lack of a general framework to measure the validity of the outcomes of a
particular clustering method, and in particular to assess the correct number
of clusters. This is the subject of cluster validation [15], whose objective is
to provide a quality measure, or validity index, that allows to evaluate the
results obtained by a clustering algorithm.

Many cluster validity indices have been proposed in the literature both for
crisp and fuzzy clustering, including geometric [8, 2, 11, 24, 4], probabilistic
[5, 3, 14], graph theoretic [25], and visual [16, 10] approaches. The concept
of cluster validation is also related to the determination of the number of
components in mixture models [13, 26, 22, 27].

In recent work [18, 19] we proposed a new validity index for crisp cluster-
ing that is based on the normality of the clusters. The normal or Gaussian
distribution maximizes the entropy for a fixed covariance matrix [7]. This
means that a normally distributed cluster has the lowest possible structure,
and so it should not be further partitioned into additional substructures.
This principle suggests to select the partition for which the clusters are on
average more Gaussian. The normality of a probability distribution can be
measured by means of the negentropy, which is defined as the difference be-
tween the entropy of the distribution and the entropy of a Gaussian with
the same covariance matrix. The negentropy is a frequently used measure of
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distance to normality [6], and has been widely used to measure normality in
the context of projection pursuit and independent component analysis [17].

The lower the negentropy of the cluster, the more Gaussian it is. So, ac-
cording to the previous principle, cluster validation should be accomplished
by selecting the partition whose clusters have on average lower negentropy.
The most involved technical issue regarding the use of the negentropy to
measure the normality of a partition is related to the computation of the
differential entropy of the clusters. However it can be shown that, by sub-
tracting the negentropy of the initial data distribution (no partition), one
obtains a validity index that: (i) measures the increment in normality that
is gained with the partition; and (ii) avoids the explicit computation of any
differential entropies. This index is called the negentropy increment [18, 19]
associated to the partition.

The negentropy increment provides good results as a validity index for
crisp clustering partitions when compared to other indices in the literature.
In [18] it was evaluated on a set of randomly generated problems in 2D, and it
showed a good performance with respect to the assessment of the number of
clusters. It has also been tested on a more extensive set of problems, including
real benchmark databases, where in general it provides better results than
other validity indices, both with respect to the assessment of the number
of clusters and to the similarity amongst the real clusters and the selected
partitions [19]. Although this index can satisfactorily manage clusters with
heterogeneous orientations, scales and densities, the correct evaluation of
the negentropy increment is difficult in cases where some of the partition
regions have only a few number of points. In such situations the negentropy
increment tends to be underestimated, which leads to the selection of low
quality partitions that overestimate the number of clusters. Although this
effect can be alleviated by limiting the minimum number of points in each
region, the adjustment of this number must be done ad hoc and depends on
parameters such as the dimension of the data space.

In this article we present an extension of our previous work [18, 19] that
addresses this problem. We investigate how the estimation of the negentropy
increment of a clustering partition is affected by the presence of regions with
only a few points. We show that the error in this estimation depends only
on the number of points in each region, but not on the scale or orientation of
their distribution. We introduce a correction term that eliminates the bias
in the estimator of the negentropy increment, and quantify the amount of
uncertainty in the estimation. Then we show how this can be used to validate
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clustering partitions with substantial improvement.
The rest of the article is organized as follows. In section 2 we describe

the negentropy increment of a clustering partition. In section 3 we give an
overview of our previous results regarding the use of the negentropy increment
as a cluster validity index. In section 4 we analyze how the presence of
partition regions with low number of points affects the evaluation of the
index. Section 5 introduces the correction term that eliminates the bias in
the estimator of the negentropy increment. Section 6 describes the algorithm
used to optimize the corrected estimator, and in section 7 we present the
results on simulated and real datasets. Finally, in section 8 we present the
conclusions.

2. The negentropy increment of a partition

The negentropy of a continuous random variable x is defined as:

J(x) = Ĥ(x)−H(x) (1)

whereH(x) is the differential entropy of x and Ĥ(x) is the differential entropy
of a normal distribution with the same covariance matrix as x. Due to the
maximum entropy property of the normal distribution [7], the negentropy is
always equal to or greater than 0, with equality holding if and only if x is
normally distributed.

Let P = {Ω1,Ω2, ...,Ωk} be a crisp partition of the space into a set of
k non overlapping regions, and let us consider the average negentropy of x
across regions, J̄(x):

J̄(x) =
k

∑

i=1

piJi(x) (2)

where pi is the probability of x falling into the region Ωi, and Ji(x) is the
negentropy of x in the region Ωi. J̄(x) is a measure of the average distance
to normality of the distribution of x in each region. Note that any constant
can be added to J̄(x) so, instead of equation 2, it is possible to consider the
index:

∆J = J̄(x)− J0(x) (3)

where J0(x) is the negentropy of x when no partition is performed, which is
a constant for each problem. This index is called the negentropy increment
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of the partition [18, 19], and it measures the change in negentropy due to
performing a partition on the space.

The main advantage of computing the difference of negentropies in equa-
tion 3 is that, after some manipulations, the differential entropies cancel out
and the negentropy increment can be written in a very simple manner [19]:

∆J =
1

2

k
∑

i=1

pi log |Σi| −
1

2
log |Σ0| −

k
∑

i=1

pi log pi (4)

where Σ0 is the covariance matrix of x and Σi is the covariance matrix of x
restricted to the region Ωi. Note that in order to evaluate this final expression
we only need to compute the probabilities pi and the log-determinants of the
covariance matrices in each region.

3. The negentropy increment as a cluster validity index

The negentropy increment can be applied as a general tool to validate
the outcome of a crisp clustering algorithm, and also to compare solutions
provided by different algorithms for a single problem when normality is a
desired property of the clusters. Given two different partitions of the data,
the one with lower ∆J will have clusters that are on average more Gaussian,
and so will be preferred. In practical terms, the negentropy increment of the
partition P = {Ω1,Ω2, ...,Ωk} is estimated by:

∆JB(P ) =
1

2

k
∑

i=1

p̃i log |Σ̃i| −
1

2
log |Σ̃0| −

k
∑

i=1

p̃i log p̃i (5)

where Σ̃i are the estimated covariance matrices:

Σ̃i =
1

Ni − 1

∑

x∈Ωi

(x− µ̃i) · (x− µ̃i)
T (6)

and p̃i = Ni/N . Here Ni is the number of data points in Ωi, N is the total
number of points in the problem, and µ̃i is the sample mean for the region
Ωi, µ̃i =

1
Ni

∑

x∈Ωi
x. As we will see, the expression in equation 5 is a biased

estimator of ∆J . For the moment, let us illustrate how the quantity ∆JB
can be used as a cluster validity index.

We will consider the set of problems used in [18]. Each problem consists
of n clusters, 1 ≤ n ≤ 5, with each cluster containing 200 points randomly
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extracted from a bivariate normal distribution whose means and covariance
matrices are also randomly selected. There are 100 such data sets for each
n, which makes a total of 500 different clustering problems. Figure 1 (left)
shows some of the data sets for n = 3, n = 4 and n = 5. Using a genetic
algorithm (GA) to search for the partition that minimizes ∆JB, one obtains
the results shown in figure 1 (right).1 Only partitions into a set of convex
non-overlapping regions which are delimited by linear separators and contain
at least 20 points each are allowed.

Figure 1: Left. Some examples of the problems used to test ∆JB for cluster
validation. The number of clusters in each problem is n = 3 (top row), n = 4
(middle row), and n = 5 (bottom row). Right. Partitions that minimize
∆JB for each problem on the left. Partitions marked with a tick find the
correct number of clusters. Partitions marked with a cross fail to do it. The
minimum number of points in each partition region is restricted to 20.

1We use the PGAPack genetic algorithm library [20] with the default mutation and
crossover operators. The population size is set to 500 individuals, each one representing
a different partition into a set of k nonoverlapping regions. The algorithm is run for 250
iterations, and the best partition at the end is used as the solution for a particular run. We
consider k values ranging from 2 to 9. We perform 20 different runs for each k, and select
the solution that provides the best index value. Full details about this implementation
can be found in [19].
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Comparing the regions in the selected partitions to the real clusters in
each problem, we observe that the ∆JB index is able to detect the underlying
clusters with a high accuracy most of the times. To quantify this observation,
we show in figure 2 (left) a plot of the number of partition regions versus the
actual number of clusters. Each point in the plot is an average over the 100
problems with the same number of clusters. Note that the correct number of
clusters is very close to the average estimation, being in all the cases within
one standard deviation. Also note a slight overestimation on the number of
clusters as n increases.

In references [18, 19] the ∆JB index was compared to other validity indices
in the literature, showing a good performance with respect to the assessment
of the number of clusters. However, as we discuss in the next section, if
we drop the constraint of having at least 20 data points in each region, the
previous results degrade significantly due to the presence of partition regions
with a small number of points, which introduce a strong bias in the evaluation
of ∆JB.

4. The effect of partition regions with low number of points on the

estimation of ∆J

In figure 2 (right) we plot the number of partition regions versus the
actual number of clusters when there are no restrictions on the minimum
number of points in the regions. As before, each point in the plot is an
average over 100 problems with the same n. Now the ∆JB index systemati-
cally overestimates the number of clusters in about 2 units. If we draw the
partitions that minimize ∆JB, we observe that the overall structure of the
problems is detected, but some additional regions with very few points are
also present (see some selected partitions in figure 3). It seems that, as far
as the main clustering structure is captured, the presence of even a single
region with less than 5 points is able to further decrease the value of ∆JB,
leading to partitions that overestimate the number of clusters.

In order to understand this problem, we analyzed the size of all the regions
in the selected partitions after the minimization of ∆JB. In figure 4 (left)
we plot a histogram of this size for the partitions with the correct number of
regions. We observe that there is only one main peak centered around 200,
which is the number of points we generated for each cluster. As expected,
the mean size of the regions coincides with the actual size of the clusters.
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Figure 2: Average number of regions, k, versus actual number of clusters,
n, in the data set. Left. The minimum number of points in each partition
region is restricted to 20. Right. No constraint in the number of points per
region is imposed. The line k = n is shown in both plots as a reference.

Figure 3: Some examples of the partitions found by minimization of ∆JB
when there are no restrictions on the regions’ size. In all the cases there are
regions containing very few data points.

On the other hand, if we perform the same analysis for the partitions
which do not correctly estimate the number of clusters, we obtain a histogram
which presents two clearly separated peaks (figure 4 right). The first one is,
as before, centered around 200 and corresponds to regions that correctly fit
a single cluster. However there is now a second peak very close to 0, which
indicates the presence of regions with only a few data points. This shows
that the minimization of ∆JB has a strong tendency to select partitions that
include regions with low number of points. This effect can be alleviated
by imposing ad hoc restrictions on the minimum number of points in each
region, as we showed before. A different alternative consists of correcting the
bias in the estimation of ∆J . The rest of the article follows this direction.
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Figure 4: Histograms of regions’ size for the partitions found by minimization
of ∆JB. Left. Partitions that correctly estimate the number of clusters.
Right. Partitions which find a wrong number of regions. Note that the total
number of incorrect estimations is much higher than the number of correct
ones.

5. Correction to ∆JB

In this section we show that the estimation of ∆J given by equation 5 is
biased, with the bias being stronger when there are regions in P with a small
number of points. Then we show how to correct this bias. Let us call ǫi the
error in the estimation of log |Σi|:

ǫi ≡ log |Σ̃i| − log |Σi| (7)

Note that µi and Σi are the true mean and the true covariance matrix for
region Ωi; and µ̃i and Σ̃i are their sample estimations. Let us define W as
the matrix with the eigenvectors of Σi (column wise), and D as the diagonal
matrix with the corresponding eigenvalues. Then, defining U ≡ WD−1/2,
we have UTΣiU = I. This property can be used in equation 7 to obtain:

ǫi = ǫi + 2 log |U| − 2 log |U| = log |UT Σ̃iU| − log |UTΣiU| = log |UT Σ̃iU|
(8)

where we also used the properties |A ·B| = |A| · |B| and |U| = |UT |. On the
other hand, using equation 6 the expression UT Σ̃iU can be written as:
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UT Σ̃iU =
1

Ni − 1

∑

x∈Ωi

UT (x− µ̃i) · (x− µ̃i)
TU =

1

Ni − 1

∑

x∈Ωi

UT [(x− µi)− (µ̃i − µi)] · [(x− µi)− (µ̃i − µi)]
T
U (9)

with µi being the expected value of x in Ωi. The variable y defined as:

y ≡ UT (x− µi) (10)

is a random variable with expected value equal to 0 and covariance matrix
equal to the identity matrix, since UTΣiU = I. Using equations 8, 9 and 10
we get:

ǫi = log

∣

∣

∣

∣

∣

∣

1

Ni − 1

∑

y∈Ω′

i

(y − m̃) · (y − m̃)T

∣

∣

∣

∣

∣

∣

(11)

where Ω′

i is the set Ωi transformed according to equation 10, and m̃ is the
sample mean of y. This implies the important result that the error ǫi follows a
distribution that does not depend either on Σi nor µi. Moreover, the expected
value of ǫi does not depend on Σi, being equal to the expected value of
the log-determinant of the observed covariance matrix of a multidimensional
Gaussian variable with zero mean and covariance matrix equal to the identity
matrix.

We can use this result to show that, for any dimension and any number of
points, there is a systematic bias in the estimation of log |Σi| by log |Σ̃i|. Let
us call M ≡ UT Σ̃iU. Given that the logarithm is a monotonically increasing
function and that the determinant of a positive definite matrix is not greater
than the product of its diagonal terms, we have:

E[ǫi] = E[log |M|] ≤ E[log
∏

j

Mjj] =
∑

j

E[logMjj] (12)

The strict version of Jensen’s inequality [23] states that E[log x] < logE[x]
for a non constant random variable x. Therefore:

E[ǫi] <
∑

j

logE[Mjj] = 0 (13)
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since E[M] = I. This demonstrates that the estimation of ∆J given by
equation 5 is always biased towards −∞. In order to study the magnitude
of this bias, we performed numerical simulations to estimate the expected
value, E[ǫi], and the standard deviation, σ(ǫi), of ǫi for dimension 2 and a
number of points in the sample Ni ranging from 3 to 100. We generated,
for each Ni, one million samples of size Ni and calculated the average and
standard deviation across samples. In figures 5 (left) and 5 (right) we plot
E[ǫi] and σ(ǫi) versus Ni. It is clear that E[ǫi] < 0 for all Ni, tending to
−∞ as Ni decreases, and that σ(ǫi) tends to +∞ for low Ni. To correct the
bias in the estimation of the log-determinant of Σi we consider the following
estimator:

T = log |Σ̃i| − E[ǫi] (14)

Note that E[ǫi] is a number that depends only on the dimension and the
number of points in the sample Ni. It is now clear that:

E[T ] = E[log |Σi|] (15)

and so the new estimator is unbiased. We can extend this analysis to show
that an unbiased estimator of the negentropy increment is:

∆JU(P ) = ∆JB(P ) + B(P ) (16)

where:

B(P ) =
1

2
E[ǫ0]−

1

2

k
∑

i=1

p̃iE[ǫi] (17)

In the next section we will consider the confidence intervals [∆JU(P ) −
S(P ),∆JU(P ) + S(P )], where:

S(P ) =
1

2

√

√

√

√σ(ǫ0)2 +
k

∑

i=1

p̃2iσ(ǫi)
2 (18)

to determine whether the difference in ∆JU for two partitions is significant.
For the derivation of the last expression we assumed independence between
the ǫi. Note that, for a given dimension, the quantities E[ǫi] and σ(ǫi) depend
only on the number of points in the region Ωi. Since E[ǫi] is a monotonically
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increasing function of Ni, it can be shown that the bias B(P ) is always neg-
ative, except for the trivial partition where all the data points belong to the
same region. This demonstrates that ∆JB(P ) systematically underestimates
the negentropy increment.
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Figure 5: Numerical estimation of E[ǫi] (left) and σ(ǫi) (right) as a function
of the sample size of region Σi.

6. Clustering algorithm

We test the new index ∆JU by using it as the fitness function of a GA
that searches the partitions space, as we did in section 3 for ∆JB. For
any clustering problem, we perform a series of runs of the GA to find the
partitions2 that minimize the ∆JU index for a fixed number of regions k.
We consider k ranging from 2 to 9, and perform 20 different runs for each
k. This provides the set of 160 partitions Π = {Pj}, j = 1, 2, ..., 160. On
a first approach, we select as the optimal solution the partition PMIN with
minimum ∆JU across all runs:

PMIN = P ∈ Π : ∆JU(P ) ≤ ∆JU(Pj) ∀ j = 1, 2, ..., 160

As we will discuss later in the results section, this approach provides
partitions that still tend to overestimate the number of clusters. We have
observed that, for most of the problems where the number of clusters is

2To avoid numerical problems, the partitions for which some region Ωi has log |Σi| ≈ 0
are discarded.
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overestimated, the partition that minimizes ∆JU , PMIN , and the optimal
partition corresponding to the real clusters, POPT , have very close values of
∆JU . In particular there are many cases where:

∆JU(POPT )− S(POPT ) ≤ ∆JU(PMIN) + S(PMIN) (19)

In such cases, where the areas contained within one standard deviation
around ∆JU for the two partitions overlap, we may consider that there is
not enough statistical evidence to decide which partition is better, and so
additional criteria must be used to select between the two partitions. An
example of this situation is illustrated in figure 6.

To deal with this problem we propose a second approach:

1. Run the GA to get the set of partitions Π = {Pj} and obtain, from
this set, the partition PMIN with minimum ∆JU .

2. Find the subset Π′ of Π which satisfies:

Π′ = {P ∈ Π : ∆JU(P )− S(P ) ≤ ∆JU(PMIN) + S(PMIN)}

3. Select, from Π′, the partition P with the lowest S(P ).

We will refer to this approach as ∆JU+STD. It guarantees that we select,
for each problem, the simplest partition whose ∆JU is indistinguishable from
∆JU(PMIN) in the sense of figure 6.

∆JU

P2P1

∆JU (P )1

∆JU (P )2

Partition

Figure 6: The partitions P1 and P2 are considered indistinguishable from
the point of view of ∆JU because the areas contained within one standard
deviation around ∆JU(P1) and ∆JU(P2) overlap.
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7. Results

We consider two sets of problems. Firstly we use the set of randomly
generated problems described in section 3. Secondly we consider two real
problems from the UCI database [1]. In both cases we perform a comparison
between the biased and the unbiased versions of the negentropy increment
index. For a detailed comparison between the negentropy increment index
and other state of the art cluster validity indices we refer the reader to [18, 19].

7.1. Gaussian clusters in 2D

Let us consider again the set of problems introduced in section 3, and let
us now use the GA to find the partitions that minimize ∆JU instead of ∆JB.
We impose no restrictions on the regions’ size. The resulting plot of the
average number of regions versus the number of clusters is shown in figure 7
(left). Although the number of clusters is still overestimated, we can observe
a significant reduction in the amount of the overestimation with respect to
the biased case (figure 2 right). That is, the bias correction in equation 17
is able to improve the quality of the partitions found by the GA. However
these results are still not satisfactory when compared to those obtained by
limiting the minimum regions’ size to 20 data points (figure 2 left). It seems
that there is still a strong presence of small size regions in the partitions
obtained by direct minimization of ∆JU . On the other hand, if we use the
∆JU+STD approach to select the partitions, we obtain the results shown in
figure 7 (right). Note the clear improvement with respect to all our previous
results, including those where the minimum size of the partition regions was
limited ad hoc. Now the average number of regions in the selected partitions
estimates the real number of clusters with a higher accuracy. In the case
n = 1 the new approach obtains the correct partition for all the problems
considered.

In figure 8 we plot new histograms of the regions’ size for the correct (left)
and incorrect (right) partitions. Two main differences with respect to figure
4 are observed. First, the number of correct partitions is now much higher.
Second, the peak close to 0 in the histogram for incorrect partitions has
disappeared. This indicates that the differences between the real clustering
structure of the problems and the obtained partitions is no longer due to the
presence of very small regions, but to other factors related to the intrinsic
difficulty of the problems (such as a high overlap or the presence of clusters
that cross over each other).
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Figure 7: Average number of regions, k, versus actual number of clusters,
n, in the data set. Left. Results obtained by minimization of ∆JU . Right.
Results obtained with the last approach. The line k = n is shown in both
plots as a reference.
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Figure 8: Histograms of regions’ size for the partitions found by minimization
of ∆JU taking into account the uncertainty S(P ). Left. Partitions that
correctly estimate the number of clusters. Right. Partitions which find a
wrong number of regions.

We performed additional analyses in order to measure the quality of the
validated partitions. Previously we have focused on the correct estimation of
the number of clusters. However, a good result in this estimation does not
guarantee a good correspondence between the obtained partition and the
real clustering structure of the problem. Thus we analyzed the discrepancy
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between the predicted clusters (CP ) and the real ones (CR), which can be
measured by the entropy distance [21]:

DH(CP , CR) = H(CP |CR) +H(CR|CP ) (20)

The entropy distance is always greater than or equal to 0, being 0 if and only
if there is a one to one correspondence between CR and CP . In table 1 we
show the average of DH for each real number of clusters n. Each column
shows the results obtained with one of the four approaches considered so far,
namely validation using the biased estimator of the negentropy increment
(∆JB), validation using the biased estimator but limiting the minimum size
of the clusters to 20 data points (∆JB+MIN20), validation using the unbiased
estimator (∆JU), and validation using the unbiased estimator and S(P ) to
select the simplest amongst equivalent partitions (∆JU+STD). We observe
that the last approach provides the best results.

Table 1: Average entropy distance DH(CP , CR) between real and predicted
clusters using four different approaches.

n ∆JB ∆JB+MIN20 ∆JU ∆JU+STD

1 0.19± 0.16 0.01± 0.08 0.13± 0.11 0

2 0.21± 0.33 0.12± 0.30 0.17± 0.30 0.10± 0.26

3 0.17± 0.21 0.13± 0.22 0.15± 0.20 0.13± 0.19

4 0.26± 0.25 0.25± 0.29 0.24± 0.24 0.24± 0.25

5 0.41± 0.24 0.39± 0.25 0.39± 0.26 0.38± 0.24

Finally, in order evaluate the significance of our previous results, we use
the framework introduced in [9]. This framework permits to easily visualize
the statistical differences among different algorithms. First, each method
is ranked in each execution (rank 1 for the best method, rank 2 for the
second, and so on). Then a Nemenyi test is applied to compute the statistical
differences amongst the methods. Here we use the DH values to rank each
method for each one of the 500 clustering problems. The results of this test
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are shown in figure 9. The average rank obtained by each method is shown
in the lower axis. Methods for which the differences in average rank are not
statistically significant with p-value < 0.05 are linked with a solid black line.
Differences in average rank above the critical distance (CD) are considered
significant. The CD is displayed at the top of the figure for reference. From
this figure it can be observed that ∆JU+STD and ∆JB+MIN20 are the two
methods with the highest performance. Although ∆JU+STD has a higher
average rank, the differences between these two methods are not statistically
significant. The other two methods, ∆JU and ∆JB present a much poorer
performance.

1 2 3 4

DJB
DJU

DJU+STD
DJB+MIN20

CD

Figure 9: Average ranks of each method in the collection of 2D synthetic
problems.

7.2. Real datasets

We consider two real data sets from the UCI database [1], namely the
Iris data set and the Wine data set, which were also used in [19]. Although
they are essentially supervised classification problems, we will use them here
in an unsupervised manner.

The Iris data set consists of 150 points in a 4-dimensional attribute space.
There are three classes, with 50 instances in each class. One of the classes
is linearly separable from the other two. There is not agreement on whether
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the number of clusters for this problem must be considered 2 or 3, so we
consider here two possible solutions. The solution Iris A assumes an optimal
partition into 2 clusters, one corresponding to the linearly separable class,
the other containing the rest of instances. The solution Iris B assumes an
optimal partition into 3 clusters, each one corresponding to one of the classes.

The Wine data set contains 178 samples characterized by 13 continuous
attributes. There are 59 samples of the first class, 71 samples of the second
class, and 48 samples of the third class. We have performed a PCA transfor-
mation in order to reduce the dimension to the first 6 principal components,
which account for the 85.10% of the total variance.

In table 2 we compare the results for these problems obtained by the
approaches ∆JB, ∆JB+MIN and ∆JU+STD. For the ∆JB+MIN case, the min-
imum number of points per partition region is set to 20 and 35 for the Iris
and the Wine problems respectively. In [19], an additional requirement was
necessary in order to avoid too complex solutions from the minimization of
∆JB+MIN . All the partitions with ∆JB+MIN within a 95% of the absolute
minimum were considered equivalent, the simplest amongst them being se-
lected. Here we include this requirement only for the ∆JB+MIN approach.

Our first observation is that the minimization of ∆JB without any addi-
tional restrictions leads to solutions exploiting the maximum allowed com-
plexity. On the other hand, the approaches ∆JB+MIN and ∆JU+STD tend to
find solutions that are close to the real clustering structure of the problems.
They both obtain good partitions into 3 regions for the Wine problem. For
the Iris problem, the ∆JB+MIN method finds a good partition into 3 regions
that are very well related to the real classes, whilst the ∆JU+STD method
finds a partition into 2 regions, one of them corresponding exactly to one
of the classes (which is linearly separable from the other two). That is, the
∆JB+MIN finds the Iris B solution and ∆JU+STD finds the Iris A solution.

8. Discussion

In this article we have shown that the estimation of ∆J presented in
previous work [18, 19] is biased towards −∞, this bias being stronger for
partitions including regions with a small number of points. This affects the
quality of the clustering partitions obtained by minimization of ∆J which,
in spite of detecting the overall structure of the problem, include additional
regions with very few data points. Thus the number of clusters detected
by the index tends to be overestimated. We showed that this effect can be
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Table 2: Evaluation of the optimal partitions obtained with the ∆JB, the
∆JB+MIN and the ∆JU+STD approaches on the Iris and Wine problems,
using the number of partition regions and the DH measure.

Num. regions DH

Set n ∆JB ∆JB+MIN ∆JU+STD ∆JB ∆JB+MIN ∆JU+STD

Iris A 2 9 3 2 1.23 0.46 0

Iris B 3 9 3 2 1.27 0.19 0.46

Wine 3 9 3 3 1.34 0.56 0.56

alleviated by introducing additional requirements such as limitations on the
minimum number of points in each region, but these constraints need to be
adjusted ad hoc depending on parameters such as the dimension of the data
space.

We have formally analyzed how the estimation of the negentropy incre-
ment of a clustering partition is affected by the presence of regions with a
low number of points. We found, perhaps surprisingly, that the average error
in the estimation of ∆J by ∆JB depends on the number of points in each
region, but not on the scale or orientation of their distribution. This average
error can be corrected in order to obtain an unbiased estimator ∆JU . Ad-
ditionally, we calculated the standard deviation of the error, and used it to
determine whether the difference in ∆JU between two different partitions is
statistically significant, so that in the case of a draw the simplest partition is
selected. These extensions were shown to substantially improve the quality
of the clusters.
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We thank G. Mart́ınez-Muñoz, D. Hernández-Lobato and J.M. Hernández-
Lobato for providing the software to perform the statistical analysis of the
rankings. We thank the anonymous referee that provided the interesting
suggestion regarding the analytical derivation of the statement E[ǫi] < 0 for
an arbitrary dimension. This work has been funded by DGUI-CAM/UAM

19



(project CCG10-UAM/TIC-5864).

References

[1] Asuncion, A., Newman, D.J.: UCI Machine Learning Repository,
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[2] Bezdek, J.C., Pal, R.N.: Some New Indexes of Cluster Validity. IEEE
Trans. Systems, Man and Cybernetics B 28, 3, 301-315 (1998)

[3] Biernacki, C., Celeux, G., Govaert, G.: An Improvement of the NEC Cri-
terion for Assessing the Number of Clusters in a Mixture Model. Pattern
Recognition Letters 20, 3, 267-272 (1999)

[4] Bouguessa, M., Wang, S., Sun, H.: An Objective Approach to Cluster
Validation. Pattern Recognition Letters 27, 13, 1419-1430 (2006)

[5] Bozdogan, H.: Choosing the Number of Component Clusters in the
Mixture-Model Using a New Information Complexity Criterion of the
Inverse-Fisher Information Matrix. In: Opitz. O., Lausen, B., Klar, R.
(eds.) Data Analysis and Knowledge Organization, pp. 40-54. Springer-
Verlag, Heidelberg (1993)

[6] Comon, P.: Independent Component Analysis, a New Concept? Signal
Processing 36, 3, 287-314 (1994)

[7] Cover, T.M., Thomas, J.A.: Elements of Information Theory. JohnWiley,
New York (1991)

[8] Davies, D.L., Bouldin, D.W.: A Cluster Separation Measure. IEEE Trans.
Pattern Analysis and Machine Intelligence 1, 4, 224-227 (1979)
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