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Abstract:
The aim of a crisp cluster validity index is to quantify the quality of a given data partition. It allows
to select the best partition out of a set of potential ones, and to determine the number of clusters.
Recently, negentropy-based cluster validation has been introduced. This new approach seems to
perform better than other state of the art techniques, and its computation is quite simple. However,
like many other cluster validation approaches, it presents problems when some partition regions
have a small number of points. Different heuristics have been proposed to cope with this problem.
In this article we systematically analyze the performance of different negentropy-based validation
approaches, including a new heuristic, in clustering problems of increasing dimensionality, and
compare them to reference criteria such as AIC and BIC. Our results on synthetic data suggest
that the newly proposed negentropy-based validation strategy can outperform AIC and BIC when
the ratio of the number of points to the dimension is not high, which is a very common situation

in most real applications.

1 INTRODUCTION

Negentropy-based cluster validation has been re-
cently introduced (Lago-Fernédndez and Corba-
cho, 2010). It aims at finding well separated
and compact clusters, and has a number of ad-
vantages such as the simplicity of its calcula-
tion, which only requires the computation of the
log-determinants of the covariance matrices and
the prior probabilities for each cluster. It can
deal satisfactorily with clusters with heteroge-
neous orientations, scales and densities, and has
been shown to outperform other classic validation
indices on a range of synthetic and real problems.

However, like many other cluster validation
approaches (Gordon, 1998; Xu and Wunsch II,
2005), negentropy based validation presents diffi-
culties when validating clustering partitions with
very small clusters. In these cases, the quality
of the estimation of the log-determinant of the
covariance matrix involved in the computation
of the negentropy index can be very poor, with
a strong bias towards —oo, as shown in (Lago-

Ferndndez et al., 2011). This can bias the valida-
tion index towards solutions with too many clus-
ters if no additional requirements, such as con-
straints on the minimum number of points per
cluster, are imposed. In the mentioned study this
problem is formally analyzed, and a correction to
the bias is proposed. A heuristic for cluster vali-
dation based on the negentropy index is also in-
troduced. This heuristic takes into account the
variance in the estimation of the negentropy in-
dex, and allows to disregard clustering partitions
with a low negentropy index but a high variance.

In this work we propose a more formal heuris-
tic that refines the correction of the negentropy
index proposed in (Lago-Ferndndez et al., 2011)
in order to quantify the confidence levels of the
index value. Additionally, we improve their anal-
ysis studying the performance of different negen-
tropy based validation approaches with respect to
the number of dimensions. In order to make a sys-
tematical test, we use a benchmark database that
spams a broad range of dimensions. This bench-
mark is based on the twonorm classification prob-



lem (Breiman, 1996). In order to interpret our re-
sults in a proper context, we compare the perfor-
mance of the different negentropy-based cluster
validation approaches with AIC (Akaike, 1974)
and BIC (Schwartz, 1978; Fraley and Raftery,
1998).

Our results on synthetic data show that,
in general, for low dimensions negentropy-based
cluster validation performs well when there is not
a high overlap amongst the clusters. On the other
hand, when the clusters are highly overlapped the
BIC index can provide better results, as long as
the number of points per cluster is high enough.
Note however that BIC is intended for fitting dis-
tributions rather than for clustering, so it can
deal well with the overlap. We also find that,
when the ratio of the number of points to the di-
mension is small, negentropy-based methods can
outperform BIC. Given that this is usual in real
applications, and given the simplicity in the cal-
culation of negentropy-based indices, we strongly
encourage its application for real clustering prob-
lems.

2 THE NEGENTROPY INDEX

Let us consider a random variable X in a d-
dimensional space, distributed according to the
probability density function f(x). Let s =
{x1,...,Xn} be a random sample from X, and let
us consider a partition of the space into a set of
k non-overlapping regions Q = {ws,...,w;} that
cover the full data space. This partition imposes a
crisp clustering structure on the data, with & clus-
ters each consisting of the data points falling into
each of the k partition regions. The negentropy
increment of the clustering partition €2 applied to
X is defined as (Lago-Fernandez and Corbacho,
2010):
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where p; and ¥; are the prior probability and co-
variance matrix respectively for X restricted to
the region w;. The negentropy increment is a
measure of the average normality that is gained
by making a partition on the data. The lower the
value of AJ(Q), the more Gaussian the clusters
are on average, therefore the rule for cluster val-
idation is to select the partition that minimizes
the negentropy increment index. Of course, in
any practical situation we do not have knowledge

of the full distribution of X, and we have to es-
timate the negentropy increment from the finite
sample s. A straightforward estimation can be
done using the index:
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where p; and ¥, are the sample estimations of
p; and X; respectively. The subindex B has
been introduced to emphasize that this estima-
tion of the negentropy increment is biased due to
a wrong estimation of the terms involving the log-
determinants (Lago-Ferndndez et al., 2011). This
bias can be corrected using the expression:
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where C(n;,d) is a correction term for the log-
determinant which depends only on the number
of sample points in region i, n;, and on the di-
mension d (Misra et al., 2005):
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Here U is the digamma function (Abramowitz
and Stegun, 1965). It can be shown that this
new estimator is unbiased, that is:

E[AJy(Q, )]s = AJ(Q) (5)

And that the variance of AJy (2, s) can be esti-
mated as:

AJy(Q,s) = AJp(9, 5)
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where U’ is the first derivative of the digamma
function, also known as trigamma function. Dif-
ferent uses of these results lead to the different
validation approaches presented in the following
section.

3 VALIDATION APPROACHES

3.1 Negentropy-Based Approaches

The general rule for cluster validation based on
the negentropy increment is that, given a set of
clustering partitions IT = {4, ..., Qs } on a given
problem defined by the random variable X, one



should select the partition €; for which AJ(€;)
is minimum. That is:

This means that the clusters resulting from 2;
are, on average, more Gaussian than those result-
ing from any other partition in II. In practical
terms, we never know the values AJ(Q;), but
only estimations obtained from a finite sample s.
The different approximations shown in section 2
lead to the following approaches.

Biased Index. The first possibility is to use the
estimation AJp(Q,s) in equation 2. Minimiza-
tion of AJg over Il will lead to the validated
partition.

Unbiased Index V1. A second approach is to
consider the estimation AJy (€2, s) in equation 3.
As before, minimization of AJy over 11 will lead
to the validated partition.

Unbiased Index V2. The direct minimization
of the corrected index AJy (), s) does not take
into account the variance in the estimation due
to the finite sample size. So it could happen
that, for two given partitions 2; and (3, the
true values of the negentropy increment satisfy
AJ(Qq) < AJ(9Q2), while their sample estima-
tions satisfy AJy(Q4,s) > AJy (£, s). To min-
imize this effect we follow here the approach in
(Lago-Ferndndez et al., 2011) and consider the
two partitions equivalent if:

AJy (Qg, S) + US(AJU(QQ)) <
AJy (S, s) —os(AJy (1)) (7)

In such cases we select the simplest (lower
number of regions) partition. We will refer to
this approach as AJygs.

Unbiased Index V3. If we make the assump-
tion that the real AJ(Q) is normally distributed
around AJy (€2, s) with variance o2 (AJy ), we can
estimate the probability that AJ(Q1) < AJ(Qs)
by:

PAT(Q1) < AJ(Qy)) = / dafo(x)Fi () (8)
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where f;(z) and Fj(x) are, respectively,
the probability and cumulative density

functions of a random Gaussian variable
X ~ N(AJy(94,8),05(AJy)). Then we can
consider the two partitions equivalent if P is
lower than a given threshold «. In such a case we

must proceed as before and select the simplest
partition. We will consider « = 0.8, and will
refer to this approach as AJyg.

3.2 Reference Approaches

We will consider two additional criteria based on
information theoretic approaches: the Akaike In-
formation Criterion, AIC (Akaike, 1974), and the
Bayesian Information Criterion, BIC (Schwartz,
1978; Fraley and Raftery, 1998). Both of them
are intended to measure the relative goodness of
fit of a statistical model by introducing a penalty
term to the log-likelihood, and have been exten-
sively used to determine the number of clusters in
model-based clustering. It is known that, when
fitting a statistical model to a data sample, it is
possible to arbitrarily increase the log-likelihood
by increasing the complexity of the model, but
doing so may result in overfitting. AIC and BIC
are defined as follows:

AIC = 2p—2log(L)
BIC = plog(n)—2log(L)

where p is the number of free parameters in the
statistical model, n is the sample size and L is
the log-likelihood for the model. Both methods
reward the goodness of fit of the model, but also
include a penalty term that is an increasing func-
tion of the number of free parameters. In both
cases the preferred model is the one with the
smallest AIC or BIC value.

4 DATA SETS

4.1 Gaussian Clusters in 2D

We use a set of two-dimensional clustering prob-
lems generated as in (Lago-Fernandez and Cor-
bacho, 2010). Each problem consists of ¢ clus-
ters, with each cluster containing 200 points ran-
domly extracted from a bivariate normal distri-
bution whose means and covariance matrices are
also randomly selected. We consider ¢ in the
range [1,9], and generate 100 problems for each
c.

4.2 Twonorm Problems
The twonorm problem is a synthetic problem ini-

tially designed for classification (Breiman, 1996).
Given that the classes of the problem are known



it also constitutes a good benchmark for test-
ing clustering algorithms. It is a d-dimensional
problem where each class is extracted from a
d-variate normal distribution with identity co-
variance matrix and mean located at (a,a, ..., a)
for class/cluster 1 and at (—a,—a,...,—a) for
class/cluster -1, where a = 2/1/20. The optimal
separation plane is the hyperplane which passes
through the origin and whose normal vector is
(a,a,...,a). The problem is designed such that
the Bayes error is constant (= 0.023) and inde-
pendent of the dimension d. Here we consider
even dimensions in the range [2,20], and gener-
ate 1000 points for each cluster.
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Figure 1: Maximum overlap between pairs of clusters
versus number of clusters ¢ for the Gaussian 2D prob-
lems. For a given c the average over 100 problems and
its standard deviation are shown.

5 ANALYSIS

5.1 Clustering Algorithm

For a given problem, we use the Expectation-
Maximization (EM) algorithm to fit a mixture
of k Gaussian components to the data. Different
number of components are tried, and a total of
20 different runs of the algorithm are performed
for each k. After convergence of the algorithm, a
crisp partition of the data is obtained by assigning
each data point to a single cluster, represented by
the mixture component that most likely explains
it. For the 2D Gaussian problems we consider
k € {1,...,13}. For the twonorm problems we
consider k € {1,...,4}. This means that we end
up with a set of 260 different clustering partitions
(only 80 for the twonorm problems) that must be
validated in a subsequent stage. This validation
is performed using each of the 6 approaches de-

scribed in section 3. Each approach leads to a
single selected partition for each of the problems.

5.2 Evaluation of the Results

To measure the quality of a validated partition,
and extensively the quality of a given validation
approach, we compare the number of regions in
the partition with the real number of clusters in
the problem. We consider the number of prob-
lems for which a given validation approach pro-
vides a partition into the correct number of re-
gions. Additionally, in some cases we also com-
pute the average number of regions to have an
idea of whether the validation index tends to un-
der or over-estimate the number of clusters.
Finally, in order to measure the intrinsic dif-
ficulty of a given clustering problem, we consider
the maximum overlap between any two clusters
in the problem. We measure the overlap between
two clusters as the Bayes error for a two-class clas-
sification problem where each cluster is one class.
For the Gaussian 2D problems, this overlap in-
creases with the number of clusters because the
total amount of space is fixed (see figure 1). The
twonorm problem, on the other hand, is designed
such that the Bayes error is constant (= 0.023)
and independent of the dimension, so all the prob-
lems have in this case the same intrinsic difficulty.

Table 1: Gaussian problems in 2D. Number of
problems correctly validated by each of the six
validation approaches considered. The first col-
umn, ¢, represents the actual number of clusters.
The number of problems for a given c is 100.

C AIC BIC AJB AJU AJUS AJUG
1] 48 99 72 88 100 100
2 5 91 11 24 84 95
3 1 91 10 21 75 91
4 1 83 3 20 66 84
5 2 79 9 20 46 61
6 3 83 10 17 37 45
7] 3 72 13 13 24 35
8 5 66 12 17 29 32
9 3 42 16 18 16 16
6 RESULTS

6.1 Gaussian Clusters in 2D

In table 1 we show the number of problems for
which each validation technique provides the cor-



Table 2: Gaussian problems in 2D. Average number of clusters in the validated partitions for each of
the six validation approaches considered. The column labeled ¢ shows the actual number of clusters.

C AIC BIC ng]jg th]t] th]tjs th]t](;

1|1 25+17 |10+02| 1.8+14 | 14+1.1|10+£00 | 1.0£0.0
21 47+£12 | 21+£06| 40£17 | 33+£16|18+£04]19+02
3] 60£10 [{31£04| 49+£16 [43£15|27+05|29+£03
41 68+£11 [40£05| 62+18 |53£17|36=+0.7|3.8+£04
51 76+£11 | 49+£04 | 65£20 | 58+£18|43+£09|45+0.6
6| 88+£12 [H58£04| 7620 |72£17|50+09]|53+£08
71 97+£11 [ 68+£06 | 86+£21 | 78+£18|58£10]6.1+0.9
8110812 |78+£08| 99+£20 [91£19|69+13|67+£12
91 11.7+12 |{88=£10|102+22|96£20|76+15|74+1.1

rect number of clusters. Each row shows the re-
sults for a given number of real clusters in the
problem. There are 100 different problems for
each number of clusters, therefore the maximum
possible value in the table is 100. We see that the
negentropy-based approaches AJyg and AJyg
outperform the classical BIC index only for prob-
lems with a small number of clusters (¢ < 4). Of
these, the AJyg provides slightly better results.
The BIC index is the best for high number of
clusters. The AJp, AJy and AIC indices per-
form very poorly for all the problems.

In table 2 we show the average number of
clusters for the solutions selected by each of the
methods. Note that, in spite of finding a cor-
rect solution in more occasions, BIC presents a
stronger tendency to overestimate the number of
clusters when it fails. In such a situation, the in-
dices AJys and AJyea tend to underestimate the
number of clusters. From a clustering perspec-
tive, this kind of error is in more accordance with
intuition: it seems more plausible to merge two
highly overlapping clusters than to split a single
cluster into two components. It was shown in fig-
ure 1 that the maximum overlap increases with
the number of clusters. This could explain the
observed loss of performance of AJygs and AJya
with increasing c. Finally, the AJp, AJy and
AIC indices tend to overestimate the number of
clusters even in the low overlap regime.

In figure 2 we show how the overlap is dis-
tributed, both for the correctly and the incor-
rectly validated problems by each of the two
methods BIC (top) and AJyg (bottom). The
distributions for AJyg are similar to those for
AJye (not shown). Observe that AJyg is able
to assess the correct number of clusters only for
small overlap. The number of failures is also re-
duced in this small overlap region. This is in clear
contradiction with the observation for BIC, which
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Figure 2: Distribution of overlaps for correctly (black
filled) and incorrectly (white filled) validated prob-
lems by each of the two methods BIC (top) and AJya
(bottom). The highest bars have been truncated for
the sake of clarity.

is able to find the correct partition even in high
overlap regimes.

If we recompute the values shown in table 1
taking into account only the problems whose
maximum overlap is below a given threshold ¢, we
obtain the results shown in table 3. The value of
the threshold has been fixed to t = 0.03. The col-
umn labeled NP shows the number of problems
that satisfy this restriction for a given ¢. Note
that now there is almost no difference between
the results provided by BIC and AJyg.

6.2 Twonorm Problems

The twonorm problems considered here present
an overlap of approximately 0.023. This falls be-



Table 3: Gaussian problems in 2D. Number of
problems correctly validated by each of the six
validation approaches considered. Only problems
with overlap lower than ¢t = 0.03 are considered.
The column labeled NP shows the number of
problems that satisfy this constraint for a given
c.

c | NP | AIC | BIC | AJys | Adye
1] 100 | 48 99 100 100
2| 86 2 78 75 86
3179 1 72 65 79

4| 63 0 54 50 62

5| 42 0 40 32 40

6| 28 1 27 19 24

7| 12 0 10 7 10
8| 16 1 14 12 12

9 7 0 4 4 3

low the threshold ¢ = 0.03 used previously to filter
high overlap problems, which means that the two
clusters are quite well separated. The difficulty in
this case arises from the high dimensionality. The
results for these problems are shown in tables 4
and 5. The first column in both tables is the
dimension. Table 4 shows the number of prob-
lems for which each of the validation methods
provides a solution with 2 clusters. Table 5 shows
the average number of clusters in the assessed so-
lutions. All the validation approaches show a loss
of performance when the dimension of the prob-
lems increases, but the AJygs and AJyg indices
are more robust than the others. BIC starts to
fail at d = 10, experimenting a sudden loss of
accuracy. For higher dimensions it tends to se-
lect one single cluster. On the other hand, AJyg
and AJyg are very accurate even for d = 16,
and their loss of accuracy for higher dimensions
is more gradual. Finally, the AJp, AJy and AIC
approaches provide very poor results, and show
a strong tendency to overestimate the number of
clusters.

7 CONCLUSIONS

The aim of this paper was to systematically study
the performance of negentropy-based cluster val-
idation in synthetic problems with increasing di-
mensionality. Negentropy-based indices are quite
simple to compute, as they only need to esti-
mate the probabilities and the log-determinants
of the covariance matrices for each cluster. How-

Table 4: Twonorm problems. Number of prob-
lems correctly validated by each of the six valida-
tion approaches considered. The first column, d,
indicates the dimensionality of the problem. The
number of problems for a given d is 100.

d [ AIC | BIC | AJg | AJy | Adus | Adua
2] 31 [ 100 | 80 | 89 | 100 | 100
1] 5 |100] 38 | 55 | 100 | 100
6| 1 |100]| 2 10 | 100 | 100
8] 0 [100] 0O 2 100 | 100
0] 0 9 0 0 100 | 100
2] 0 0 0 0 100 | 100
4] 0 0 0 0 100 | 100
6] 0 0 0 0 100 97
18] 0 0 0 0 93 81
20 7 0 0 0 62 76

ever, the computation of the log-determinants in
regions with small number of points introduces
a strong bias that must be corrected in order
to properly estimate the negentropy index. A
heuristic based on a formal analysis of the bias
can be obtained to alleviate this effect.

In this paper we refined the correction of the
negentropy index proposed in (Lago-Ferndndez
et al., 2011) in order to quantify the confidence
levels of the index value, thus obtaining a new,
more formal heuristic for the validation of cluster-
ing partitions. Then we studied the performance
of this and other negentropy-based validation ap-
proaches in problems with increasing dimension-
ality, and compared the results with two well es-
tablished techniques such as BIC and AIC. The
performance of BIC in problems where the ratio
of the number of points to the dimension is high,
is quite good. For problems where there are clus-
ters with a high overlap, it clearly outperforms
the negentropy-based indices. This was expected
since BIC is optimal for Gaussian clusters, which
is the case for the synthetic data considered here.
The AIC criterion seems to produce very bad re-
sults for the set of problems considered, providing
a strong overestimation of the number of clusters
in all the cases. Negentropy-based indices are de-
signed for crisp clustering, and they seek to de-
tect compact and well separated clusters. When
we consider only problems where the clusters are
not highly overlapped, the performances of BIC
and the negentropy-based index are quite similar.

In order to test the behavior of the indices as
a function of the dimensionality, we constructed
a clustering benchmark database based on the
twonorm classification problem (Breiman, 1996).



Table 5: Twonorm problems. Average number of clusters in the validated partitions for each of the six
validation approaches considered. The first column shows the dimensionality of the problem.

d AIC BIC AJp AJy AJus AJdya

2 130+08|20+00|23+08]|21+04]|20+0.0|2.0%0.0
4 136£06|20£00|28+£0.7|26+0.7|2.0+0.0] 2.0+0.0
6 | 3.8+£04 |20+00|36+05|34+0.7|2.0+0.0| 2.0%+0.0
8 | 3.8+04 |20+£00|39+03|3.6+05|20+0.0]| 2.0+0.0
10 | 3.7£04 | 1.1£03 | 40£0.1 | 3.8£04 | 2.0£0.0 | 2.0£0.0
12 1 38£04 | 1.0£00 | 40£00 | 40£0.2 | 2.0£0.0 | 2.0£0.0
14 1 3804 | 1.0£00 | 40£00 | 40£0.1 | 20£0.0 | 2.0£0.0
16 | 36£05 | 1.0£00 | 40£00 | 40£0.0 | 2.0+£0.0 | 2.0£0.2
18 134£05|10£00|40+£00 |40+£00|21+£03|22+£04
20| 324+05|10+00|40£00 | 40£00|24+£05|22+£04

This database is generated using two Gaussian
clusters of increasing dimensionality but constant
degree of overlap. The number of points in each
cluster is constant independently of the dimen-
sion. Therefore, the effect of the dimensional-
ity on the performance of the indices is isolated.
As the dimensionality increases, the performance
of BIC degrades quickly, but the performance of
the negentropy-based index is quite stable, find-
ing the correct solution for all the problems up to
d = 16, and experimenting a gradual degradation
for higher dimension.

In conclusion we showed, using the syn-
thetic database twonorm, that our approach to
negentropy-based validation can outperform AIC
and BIC in problems where the ratio of the num-
ber of points to the dimension is not high, which
is a very common situation in most real applica-
tions. New experiments with other databases are
required in order to check if this property is gen-
eral. We expect that this finding will be more
accentuated in benchmarks with non Gaussian
clusters (Biernacki et al., 2000; Lago-Ferndndez
et al., 2009). This will be the subject of future
work.
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