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Summary

Monitoring the Quality of Service (QoS) of Internet links is of paramount

importance for Network Operators and Service Providers (NOSP), and con-

sequently has received great attention from the research community. To

monitor QoS, practitioners leverage on network traffic measurements and,

by means of practical models and statistical techniques, make predictions

and detect outliers that allow the planning of telecommunication networks

and the detection of abnormal behavior, respectively.

However, obtaining detailed measurements from Internet links at current

network speeds is very challenging, mainly because memory accesses’ speeds

have increased at a smaller pace than Internet links’ speeds. Moreover, the

amount of resources required to properly storage detailed network measure-

ments make unfeasible to perform long measurement campaigns. These facts

have motivated the application of different techniques to gather information

from the network, such as collecting subsets of network traffic by applying

sampling techniques in the packet capture process, or just collecting sum-

marized statistics of the number of bytes transferred, such as those used

in Multi Router Traffic Grapher (MRTG), where the maximum and aver-

age transfer speeds are recorded at non-overlapping time intervals of a given

length. These techniques make network traffic monitoring less demanding

and allow performing longer measurement campaigns.

Accordingly, this thesis proposes two methodologies to perform QoS anal-

ysis of Internet links leveraging on summarized statistics of network traffic.

Each methodology relies on a network traffic model, validated using actual

network traffic measurements, on which sound statistical methodologies are

used on attempts of detecting relevant events that either require action from
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viii Summary

the network managers or may be related with degradations of the provided

QoS.

The first methodology is designed to detect shifts in users’ behavior, and

consequently the detected events may entail capacity planning decisions. It

builds on modeling the network traffic during a day using a multivariate

fairly Gaussian distribution, from which changes in the parameters are de-

tected at timescales of weeks. The change point instants are detected using

clustering techniques and validated through the application of the Multivari-

ate Behrens-Fisher Problem (MBFP). The proposed methodology is applied

to real network measurements obtained from the Spanish academic network

RedIRIS, showing satisfactory performance and entailing large Operational

Expenditures (OPEX) reduction to NOSP in the management process of

large-scale networks.

The second methodology performs anomaly detection through trend re-

moval of network traffic measurements. It is tailored for Voice over IP (VoIP)

traffic data, which is one of the most popular services provided through In-

ternet nowadays. The methodology takes as input call count measurements

of the VoIP service exhibiting seasonal trends, and outputs stationary resid-

uals, which are used to detect anomalies by means of the application of un-

sophisticated statistical assumptions. Moreover, we propose a measurement

alternative for monitoring VoIP systems. This alternative yields smaller cor-

relations between the obtained measurements when some assumptions are

met, which we showed to be satisfied in actual measurements we analyzed.



Resumen

Monitorizar la Calidad de Servicio (QoS, de sus siglas en inglés) de enlaces

de Internet es de vital importancia para Operadores de Red y Proveedores de

Servicio (NOSP, de sus siglas en inglés), y por tanto ha recibido gran atención

por parte de la comunidad cient́ıfica. Para monitorizar la QoS, los expertos

usan medidas del tráfico de red y, mediante la aplicación de modelos prácticos

y técnicas estad́ısticas, hacen predicciones y detectan valores at́ıpicos que

permiten el dimensionado de redes de telecomunicaciones y la detección de

comportamiento anómalo, respectivamente.

Sin embargo, obtener medidas detalladas de enlaces de Internet a las

velocidades de red actuales es muy exigente, principalmente porque las velo-

cidades de acceso a memorias han crecido a menor ritmo que las velocidades

de los enlaces de Internet. Además, la cantidad de recursos requerida para

almacenar apropiadamente medidas de red detalladas hace imposible realizar

largas campañas de medidas. Estos hechos han motivado la aplicación de

diferentes técnicas para recolectar información de la red, tales como recopilar

subconjuntos del tráfico de red mediante la aplicación de muestreo en el

proceso de captura de paquetes, o simplemente la recopilación de estad́ısticos

resumidos del número de bytes transferidos, como los usados en Multi Router

Traffic Grapher, donde la tasa de transmisión máxima y media son recogidas

en intervalos disjuntos de una longitud dada.

Por consiguiente, esta tesis propone dos metodoloǵıas para realizar análisis

de QoS en enlaces de Internet usando estad́ısticos resumidos del tráfico de

red. Cada metodoloǵıa se basa en un modelo del tráfico de red, validado

con medidas de tráfico de red reales, sobre los cuales técnicas estad́ısticas

fiables son aplicadas con el objetivo de detectar eventos relevantes que o bien
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x Resumen

requieren actuación por parte de los gestores de red o quizá estén relacionados

con degradaciones de la QoS provista.

La primera metodoloǵıa está diseñada para detectar variaciones en el

comportamiento de los usuarios, por lo que los eventos detectados pueden

conllevar decisiones de dimensionado de red. Primero modelamos el tráfico de

red a lo largo de un d́ıa usando una distribución multivariante prácticamente

Gaussiana, mediante la cual cambios en sus parámetros son detectados en

escalas de tiempo de semanas. Los instantes de cambio se detectan usando

técnicas de clustering y son validados mediante la aplicación del Problema

de Behrens-Fisher Multivariante. La metodoloǵıa propuesta se ha aplicado

a medidas reales de tráfico de red obtenidas de la red académica española

RedIRIS, demostrando un rendimiento satisfactorio y conllevando para los

NOSP grandes reducciones de los gastos operacionales en el proceso de gestión

de redes de gran escala.

La segunda metodoloǵıa realiza detección de anomaĺıas mediante la elimi-

nación de la tendencia existente en medidas del tráfico de red. Está espećıfi-

camente diseñada para tráfico de Voz sobre IP (VoIP, de sus siglas en inglés),

que es uno de los servicios más populares ofrecidos a través de Internet hoy en

d́ıa. La metodoloǵıa utiliza medidas de la cantidad de llamadas en el servicio

VoIP que exhiben tendencias periódicas, y las transforma en residuos esta-

cionarios que son usados para detectar anomaĺıas mediante la aplicación de

asunciones estad́ısticas poco sofisticadas. Además, también proponemos una

forma alternativa de monitorizar sistemas de VoIP. Esta alternativa produce

menores correlaciones entre las medidas obtenidas cuando algunas asunciones

se cumplen, las cuales son satisfechas concretamente en las medidas de tráfico

real que hemos analizado.
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Thank you for all this time at the laboratory and all the good moments we

have shared. This also definitely includes my other colleagues from the labo-
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Chapter 1

Introduction

This chapter provides an overview of this Ph.D. thesis and introduces its

motivation, presents its objectives and hypothesis, and finally describes its

main contributions outlining its organization.

1.1 Overview and Motivation

Quality of Service (QoS) refers to the delivery of data over communication

networks attending to special requirements. Particularly in computer net-

works, QoS refers to the guarantee of certain levels of performance to data

delivery by means of Traffic Engineering (TE) tasks. Such levels of perfor-

mance are commonly agreed in a contractual document signed by both the

provider and the consumer, namely the Service-level Agreement (SLA). A

SLA defines the performance of the service being offered in terms of some

measurable network indicators, such as throughput, latency or jitter. Net-

work managers and operators monitor their network with the aim of timely

detecting QoS degradations. The TE tasks they make use for QoS control

can be divided into two main classes: system based and measurement based

approaches. The former class is basically formed by two architectures that

provide frameworks for ensuring QoS, namely Integrated Services (IntServ)

and Differentiated Services (DiffServ). IntServ implements a parametrized

approach where applications use the Resource Reservation Protocol (RSVP)

1
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to request and reserve resources through a network, whereas DiffServ imple-

ments a prioritized model by marking packets according to the type of service

they desire and applying different queueing strategies to tailor performance

to expectations.

On the other hand, the measurement based approaches leverage on net-

work traffic measurements and, by means of practical models and statistical

techniques, make predictions to plan telecommunication networks and de-

tect abnormal behavior. This second alternative for QoS provisioning is

commonly used in practice, as there are studies pointing out that improving

QoS by investing in capacity is more profitable than investing in provision

of multiple service classes [Odl99]. Consequently, this Ph.D. thesis focuses

on this latter class, and provides useful network traffic models and the corre-

sponding algorithms leveraging on them to develop TE tasks on large-scale

networks.

In order to accurately perform TE tasks, it has traditionally been of

paramount importance to have detailed descriptions about what is happening

in the network. For this reason, there are a lot of measurement techniques ex-

isting in the literature (active and passive), most of them being implemented

by network managers, allowing them to tackle incidences in the network. For

instance, network operators can track malicious traffic to prevent their users

for being target of security attacks [Den87, CLC04, MR04, SSS+10], assess

QoS [vdBMvdM+06, MPM05] or specially bill high consuming clients [EV02].

This increasing interest in network measurements by network operators has

been reflected in the research community. There have been many contri-

butions involving network measurements to characterize the Internet traf-

fic [RK96, BM01, BC02, NAR+04, DPV06a, MGDLdVA12], or even to char-

acterize specific applications [BS06, SFKT06, PGDM07, PM07, ZSGK08].

All these studies demonstrate the importance of network measurements

for network research and operation, however, collecting accurate network

measurements has become an arduous task because links’ speeds have in-

creased at a larger pace than memory accesses’ speeds [Rob00], making it

unfeasible to monitor all the network traffic. This fact has motivated the de-

velopment of new techniques to substitute the previously used ones, such as
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the application of sampling to network traffic measurement [CPB93, Coc97,

LG08]. Sampling allows longer measurement campaigns; however, it entails a

reduction of the available information. Therefore, the application of statisti-

cal inference and digital signal processing techniques have gained importance,

allowing to obtain information of interest. One of the most common ways

for gathering this information is by extracting patterns or footprints that

are easily detectable and then characterize in an accurate manner the mea-

sured traffic [MC00], even measuring these footprints at different time resolu-

tions [PTZD05]. Once the footprints are detected, statistical methodologies

are applied to corroborate whether the conclusions obtained from them can

be extrapolated or they are just a particular case of the study [KN02].

This constraint in the amount of information possible to gather and an-

alyze from the network has fostered the development of techniques able to

identify abnormal behavior [ACP09] or pattern shifts with minimal informa-

tion [MGDA12]. The ability to infer different networks status with mini-

mal information makes these techniques also useful for real-time monitoring.

Consequently, network managers and operators are still capable of control

their networks and take action timely to resolve security breaks and capacity

shortages even though the information they can gather from the network is

a subsample of what really the network is transmitting.

1.2 Objectives and Hypothesis

This thesis presents the analysis of different measurement datasets of Internet

links with the aim of detecting degradations of the QoS in the network. The

analyzed datasets contain minimal information, in the sense that they contain

summarized statistics instead of having detailed records of each event in the

network.

We make two common assumptions for developing models of the analyzed

traffic. First, we assume that network traffic is short-term stationary—i.e.,

the statistics of the traffic distribution, and consequently its corresponding

parameters, slowly vary with time. Second, we assume that network traf-

fic exhibits a normal baseline under benign and without problems usage, and
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deviations from such baseline may evidence the presence of attacks or pat-

tern shifts, which we term as anomalous events. This anomalous events,

which may pose QoS degradations to the network customers, may be de-

tected through deviations from the proposed models.

Consequently, our objective is to provide the necessary machinery to de-

tect such anomalous events in a timely fashion with statistical foundation

of their relevance, which is of paramount interest for Network Operators

and Service Providers (NOSP). This machinery places alerts of the detected

events to the network managers, allowing them to take appropriate responses

on attempts of diminishing the impact of such events in the level of QoS in

the network. To this end, we build network traffic models that are useful

for tracking the network traffic behavior at the timescales of interest, which

are given by the relevant events we aim to detect with the model. This

models constitute the normal baseline from which deviations are flagged as

anomalous, which are detected using sound statistical techniques.

1.3 Thesis Structure

The rest of the present document is structured as follows. First, Chapter 2

describes the state of the art. The first section presents a description of the

main formats of storing information captured from network links, whereas

the second one is devoted to survey the different approaches proposed in the

literature for the detection of anomalies, providing a taxonomy for classifying

the surveyed techniques.

Then, Chapter 3 presents a methodology for detecting change points at

large timescales which may evidence shifts in users’ behavior. The method-

ology leverages on a multivariate model for representing the network traf-

fic along a day, and change points are detected by inspecting the evolution

through time in the mean vector of the model. The change point instants are

detected using clustering techniques and validated through a sound statis-

tical technique, namely the Multivariate Behrens-Fisher Problem (MBFP).

This technique contrast the null hypothesis of stationary mean against the

alternative hypothesis of a mean shift. The proposed methodology is applied
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to real network measurements obtained from the Spanish academic network

RedIRIS, showing satisfactory performance. Finally, we propose a framework

for applying the described methodology to perform network management of

large-scale networks. This framework allows the visualization of the detected

anomalous events in a network weather map, which entails a large reduction

of the Operational Expenditures (OPEX).

Chapter 4 describes a methodology for removing the inherent trend in

actual measurements due to the well-known day-night traffic pattern. This

methodology is specifically tailored for Voice over IP (VoIP) traffic data,

which is one of the most popular services provided through Internet nowa-

days. The methodology takes as input call count measurements of the VoIP

service exhibiting a seasonal trends, and outputs stationary residuals, which

are used to detect anomalies by means of unsophisticated statistical assump-

tions. Moreover, we propose in this chapter a measurement alternative for

monitoring VoIP systems. This alternative yields smaller correlations be-

tween the obtained measurements when some assumptions are met, which

we showed to be satisfied in the actual measurements from an Italian operator

that we analyzed.

Finally, Chapter 5 concludes this thesis and outlines future steps contin-

uing the work presented in Chapter 3 and Chapter 4.





Chapter 2

State of the Art

This chapter provides the background and revises the most relevant works

related to the topic of this thesis. The structure of the chapter is as follows.

First, the different kinds of usually available network measurements are de-

scribed in Section 2.1. Then, the concept of Quality of Service (QoS), that is,

the quality that the service provider is offering to its customers, is reviewed

from the viewpoint of anomaly detection in Section 2.2. Anomalies are net-

work events that deviate from the normal pattern and may be related to degra-

dations in the performance of Internet systems and host, thus influencing the

QoS. In the survey of Section 2.2 we include two approaches to anomaly de-

tection that are used in this thesis: change point detection of time series data

(Chapter 3) and time series prediction for detecting deviations from normal

behavior that may be closely related with service degradation (Chapter 4). In

any case, a more detailed revision of the related work of these and different

topics will be presented in the corresponding chapters when required.

2.1 Network Measurements

Network managers are in charge, among other tasks, of keeping network

performance under reasonable levels. For this reason, production networks

are continuously monitored, exporting the obtained measurements for fur-

ther processing. However, the amount of network traffic generated at large-

7
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scale networks is humongous, so it is very challenging to handle it in an

efficient way. These challenges appear since traffic traversing network links

at ever-increasing speeds has to be monitored in a timely fashion. For this

reason, different kinds of network traffic monitors have been developed. In

this chapter we describe the most common network monitoring tools and the

characteristics of the measurement data that they output. These measure-

ment data has been deeply analyzed in this study, so it is strongly necessary

to understand their advantages and their drawbacks, e.g., the information

that can or cannot be extracted from them, their computational costs, etc.

The remaining of the chapter is structured as follows. Section 2.1.1 describe

packet captures measurements. Following, the NetFlow records and the def-

inition of network flow are presented in Section 2.1.2. Finally, Section 2.1.3

describes the information available in Multi Router Traffic Grapher (MRTG)

records, and how it is obtained.

2.1.1 Packet Captures

Packet capture is the process whereby each packet traversing a link is copied

to output files, which are commonly referred as packet traces. This measure-

ment process reproduces exactly the status of the link within the measure-

ment period. The most common format for these packet traces is the one ob-

tained through the Packet Capture (PCAP) [JLM93] Application Program-

ming Interface (API), which is used and supported by a variety of network

sniffers and packet analyzers.

The advantage of packet captures is that all the available network infor-

mation is included in the packet traces, i.e., both the payloads and headers.

This, however, leads to an important drawback regarding storage require-

ments. As packet traces contain all the information within a packet, this

means that the packet trace size will be equal to the number of bytes of

the captured packets. As the speeds of networks are continuously increas-

ing [Rob00], the size of the packet traces is growing at the same rate for a

fixed measurement period. This fact makes long packet capture measure-

ment campaigns unfeasible, and it is common to have them split into one
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hour intervals within one day.

Another negative aspect of packet traces is that packet traces of produc-

tion networks are very hard to find. The reason for this is related to privacy

concerns regarding the personal information that is sent and received in the

Internet Protocol (IP) packets, including the IP addresses. Techniques to

circumvent these legal aspects are mainly based on anonymization of IP ad-

dresses and removal of packet payloads. Even taking into account these

limitations, there are few packet traces publicly available in the Internet.

These sources of traffic are not used in this thesis, as they are not con-

sidered to contain minimal information about the network status.

2.1.2 NetFlow Records

A flow is defined as a sequence of packets that share the same source and

destination IP addresses, port numbers and transport protocol identifica-

tion. The information that NetFlow stores for each flow entry in its memory

includes traffic volume (in bytes and packets), port numbers, source and

destination IP addresses, Type of Service (ToS), input and output interfaces

indexes (as per Simple Network Management Protocol (SNMP) Management

Information Base (MIB)), together with timestamps for the flow beginning

and end..

NetFlow is a proprietary format developed by Cisco Systems that runs in

their routers and it is implemented by other vendors as well. This protocol is

used to monitor the traffic that traverses a router and to keep performance

statistics. Cisco defines a flow as a unidirectional sequence of packets sharing

all the following 7 values, commonly referred as 7-tuple: Source and Desti-

nation IP addresses, IP protocol, Source and Destination ports in case that

the IP protocol is Transmission Control Protocol (TCP) or User Datagram

Protocol (UDP), Ingress interface and IP ToS.

NetFlow updates the NetFlow record for a flow when a new packet be-

longing to that flow is sampled, until a timeout counter expires, i.e., when

no packets belonging to that flow are sampled for more than timeout units of

time, or when it samples a packet that finalizes a TCP session, i.e., it samples
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a packet with either the FIN flag or the RST flag set. The NetFlow sampling

method is a deterministic sampling method, i.e., for every N packets it sees,

NetFlow samples the first packet and does nothing with the remaining ones.

The NetFlow record contains a wide variety of statistics about the flow,

where the most important ones are the timestamps for the flow start and

finishing times, number of bytes and packets observed in the flow (that are

actually estimations of the real value by taking into account the sampling

ratio), as well as the 7-tuple (see [Cla04] for more detailed description of

NetFlow records).

Each router with NetFlow capabilities generates NetFlow records, which

are exported from the router using UDP or Stream Control Transmission

Protocol (SCTP) packets to a NetFlow collector. In the RedIRIS scenario of

Figure 2.1, the autonomic routers are routers with NetFlow capabilities that

export the NetFlow records to the NetFlow collector located at Universidad

Autónoma de Madrid (UAM)’s premises. This scenario is also used for the

reporting of MRTG network measurements (Section 2.1.3).

1
2

3

Processing 
system

Data
repository

Flow Collector

Monitoring 
system

Figure 2.1: RedIRIS Points of Presence.
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2.1.3 MRTG Records

MRTG [OR98] is a software tool distributed under GNU General Public Li-

cense (GPL) freely available from the MRTG web page1. In its origins it was

developed as a software to monitor and measure traffic load on network links,

graphing the information and showing statistics as maximum, minimum and

mean values, but it has evolved to allow the user to visualize almost any kind

of information. It is written in Perl, and is available for several operating

systems, including Windows, Linux and Mac.

It uses SNMP to send requests to the monitored device. SNMP is an

application layer protocol that facilitates the exchange of information be-

tween network devices (where a SNMP agent must be running) using MIBs

to define hierarchically what information is available to be monitored.

Figure 2.2: Sample one-day MRTG monitoring.

The requests that MRTG sends to a device contain the Object IDentifier

(OID) of the resource that it wants to get information about. The SNMP

agent of the device looks up the OID in its MIB and response the MRTG

with the corresponding data encapsulated in SNMP protocol. MRTG then

gathers all the information received in an incremental database and creates

a HyperText Markup Language (HTML) document containing graphs of the

received information, as shown in Figure 2.2.

MRTG measures two values per target, the input value and the output

value. The input value is plotted as a solid green area and the output one

as a blue line, as can be seen in the figure. It collects the data every five

1http://oss.oetiker.ch/mrtg
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minutes for daily graphs, and greater time spans for weekly, monthly and

yearly graphs. Furthermroe, MRTG features automatic scaling of the Y-axis

to fit the graph to the information area and it also reports the maximum,

average and current values for both input and output data, as is shown in

Table 2.1.

Table 2.1: Sample statistics for the input and output of the target

Direction Max Average Current

In 2.23 Mb/s (22.3%) 1.23 Mb/s (12.3%) 1.89 Mb/s (18.9%)
Out 880.0 b/s (0.0%) 16.0 b/s (0.0%) 312.0 b/s (0.0%)

MRTG measurements will form the information basis for the thesis, as

they are regarded as the minimum source of network information for man-

agement purposes.

2.2 Anomaly Detection

The Internet has opened new avenues for information accessing and sharing.

However, the widespread use of the Internet also presents an opportunity for

hackers and enemies to attack unprotected hosts in order to control them,

gain access to their sensitive information or discontinue its availability for

a certain period of time. This kind of activities impose severe losses to the

targets of the attacks, in the order of billions of U.S. dollars. In addition,

they may affect the QoS that the service providers offer to their customers

in several ways. Consequently, there is an increasing interest in preventing,

detecting and responding to such attacks in a timely fashion, which is com-

monly denoted as intrusion detection in the networking community. Intrusion

detection is accomplished by means of misuse detection systems, based on

well-known attack signatures, or anomaly detection systems, with the ability

of discover unknown kinds of attacks. In this section, we survey the proposed

taxonomies of anomaly intrusion detection systems, and propose a new one

that embraces them. Furthermore, we present the most comprehensive sur-

vey of anomaly intrusion detection techniques to date, based on the structure
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given by the proposed taxonomy. Finally, we discuss the main problems re-

lated to the anomaly intrusion detection paradigm, and the open roads for

future research that we envisage as of paramount importance for the success

of the field.

2.2.1 Introduction

The Internet has brought about numerous benefits, representing nowadays

one of the biggest avenues for information accessing and sharing. This en-

tails the development of complex corporate networks and a diversity of web

services, at which there is an important ensemble of data (customers per-

sonal information, financial corporate data, etc.) and resources that must

not be accessed, modified nor compromised by external entities. However,

the widespread use of the Internet also presents an opportunity for hackers

and enemies to attack unprotected hosts in order to control them, gain ac-

cess to their sensitive information or discontinue its availability for a certain

period of time, thus reducing their QoS. This kind of activities impose severe

losses to the targets of the attacks, in the order of billions of U.S. dollars

[Com08]. Consequently, there is an increasing interest in preventing, detect-

ing and responding to such attacks in a timely fashion, which is commonly

denoted as Intrusion Detection (ID) in the networking community.

Dating back more than twenty years, the bases for ID in networked

systems were established in the works of Anderson [And80] and Denning

[Den87]. The assumptions posed by these works for ID state that exploitation

of system’s vulnerabilities involves abnormal use of the system, and therefore

security violations could be detected from abnormal patterns of system usage

[Den87]. Since then, myriads of studies and proposals have been published

presenting different alternatives to tackle the ID problem, namely IDSs. IDSs

are the burglar alarm of the computer security field, making noise when an

intruder is detected to alert the security officer, which can respond to with

it an appropriate action. The performance of IDSs is measured in terms of

the detection accuracy and false positives rate. The detection accuracy is

the percentage of correct detected intrusions (true positives) out of the total
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number of intrusions, the higher the better. On the contrary, false positives

rate is the percentage of incorrect alerts placed by the Intrusion Detection

System (IDS) out of the total number of alerts generated, the lower the

better.

Traditionally, IDSs are classified as misuse-based intrusion detection sys-

tems or anomaly-based intrusion detection systems. A combination of both is

termed hybrid intrusion detection system. MIDSs, also denoted as signature-

based intrusion detection systems, aim at finding a match between the ac-

tivities in the system and a set of predefined malicious activity patterns,

similar to fingerprint identification against a criminal fingerprint database in

dactyloscopy. MIDSs have large detection accuracy for known attacks with a

low false positive rate. This makes them suitable for taking response actions

to the detected attacks. However, they are not able to detect new kinds of

attacks, or variants of existing ones, and the process of generating signatures

is a time-consuming task that must be performed continuously because new

classes of attacks are developed everyday.

On the contrary, AIDSs define a normal baseline, flagging deviations from

such normal profile as abnormal behavior, with the assumption that anoma-

lies are scarce compared to the normal behavior. It is like finding metals

buried in the beach sand, where the Anomaly-based Intrusion Detection Sys-

tem (AIDS) is the metal detector that points to possible metals. When an

AIDS places an alert, we either find a priced treasure (true positive) or a

worthless item (false positive). AIDSs are capable of pointing to new un-

known kind of attacks such as zero-day attacks . Nonetheless, they place a

high volume of false positive alerts, which prevents its autonomous deploy-

ment and forces the network manager to spend a significant amount of time

discarding irrelevant events. For this reason, AIDSs are not commonly de-

ployed in real networks under production, and MIDSs are used instead. Per

contra, this room for improvement has made AIDSs a fertile field of research

in the last years.

Motivated by the vast amount of research on AIDSs and its relevance

to QoS, this work aims at providing a comprehensive survey of the state of

the art in Anomaly-based Intrusion Detection (AID) techniques presented in
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the literature over the period 2000-2012, including a survey of the proposed

taxonomies.

We organize the rest of this article as follows. In Section 2.2.2 we survey

the taxonomies of AID techniques proposed in the literature and propose a

new one. Then, we review the proposed AID techniques in Section 2.2.3. We

leverage in this section on the taxonomy presented in Section 2.2.2, grouping

the existing techniques into the different categories in the taxonomy based

on the underlying detection paradigm they adopt. Section 2.2.4 discusses the

main problems when developing an AIDS, whereas Section 2.2.5 deliberates

on the future trends on AID. Finally, Section 2.2.6 concludes the section.

2.2.2 Anomaly Intrusion Detection Taxonomy

This section is devoted to review the taxonomies proposed in the literature

for AID techniques. In addition, we will propose a new taxonomy based on

the most important characteristics of the surveyed taxonomies.

Taxonomies Proposed in the Literature

There have been several studies surveying AID systems and techniques in the

recent past years, and some of them have proposed taxonomies to classify

such techniques. In addition, there exist taxonomies for AID that do not only

focus on classifying the different techniques used for AID, but also include

classifications based on other features of AIDSs—that also apply to IDSs in

general. Consequently, we divide this section into two parts, one dealing with

the taxonomies of AIDSs based on their features excepting the taxonomy of

the AID techniques, which is treated in the second part. The reason for

such splitting is because the first part applies generally to IDSs and there

is a high grade of consensus on it, while the taxonomies for AID techniques

vary considerably depending on the authors, and consequently deserve more

discussion.

Taxonomies of AIDSs AIDSs own a wide range of characteristics that

allow their classification. Although not all the authors providing taxonomies
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Figure 2.3: General taxonomy of AIDSs that is applicable to MIDSs. The
classification of AID techniques is deferred to Section 2.2.2.

for AIDSs include all these characteristics, there is a high grade of acceptance

on the ability of such characteristics to allow AIDSs differentiation, which

are also applicable to MIDSs. Such characteristics are summarized in Figure

2.3 and will be described in the following paragraphs.

Analysis Scale: Analysis scale ([ETGTDV04]) refers to the granular-

ity, either in terms of the parts of the system analyzed or in terms of the

time scale, used in the detection of anomalous events.

• Microscale: Methods based on the analysis of low-level features, such

as analysis of individual packets, traffic analysis over short periods of

time (in the order of seconds) or the analysis of specific services or

applications.

• Mesoscale: Methods based on the analysis of medium-level features,

such as analysis of connections or flows, traffic analysis over medium

periods of time (in the order of minutes) or the analysis of the traffic

destined to a specific host or subsets of hosts.

• Macroscale: Methods based on the analysis of high-level features, such

as network-wide analysis [LCD04b], traffic analysis over long periods

of time (in the order of hours or days) or the analysis of all the host

within the network.
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Behavior on Detection: Behavior of detection ([DDW00]) refers to

the action the IDS takes when an anomaly is detected.

• Passive alerting : Passive alerting is the usual approach used by AIDSs

given the high number of false alarms such systems usually place. Con-

sequently, AIDSs just signal an alert to the system manager in order

to alert for the discovered event, instead of taking actions that may

degrade the performance of the system to benign users.

• Active response: Some IDSs have an active response to the detected

events. These responses may be of the form of closing the connections

related to the attack, banning the remote IP address from which the

attack is launched or restoring the files modified by the suspicious user.

Data Source: Data source ([DDW00]) refers to the origin of the data

used to detect anomalies.

• Host-based : Host-based IDSs collect audit data from the host that is

under protection. The sources of the audit data may be Unix com-

mands providing snapshots of information on what is happening in the

host, such as ps, pstat, vmstat, getrlimit, ..., accounting information of

the usage of host’s resources, or the syslog of system calls.

• Network data: Network-based IDSs collect information from the net-

work to perform the AID. The sources of such data may be information

contained in MIB repositories accessed through SNMP, flow summaries

gathered from routers implementing NetFlow or its variants, or network

packets captured at the network interface card (see Section 2.1).

• Application log files : Application log files are log files generated by the

designer of the application, and are gaining importance lately given the

trend towards application servers. They have the advantage of being

more accurate and complete, but some kinds of attacks may prevent

the writing in such logs or may be targeted to lower levels of the system

stack making such sources worthless.
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Locus of Data-Collection: Locus of data-collection ([Axe00]) refers

to the number of sources of the data. It can be collected from many different

sources in a distributed fashion or from a single point using the centralized

approach.

Locus of Data-Processing: Locus of data-processing ([Axe00]) refers

to the way the data is processed after collection. It can be processed in a

central location or in a distributed fashion.

Time of Detection: Time of detection ([Axe00]) refers to the time

required to verify new data instances for anomalies. An IDS can detect

intrusions in real-time or off-line, in a forensic manner.

Usage Frequency: Usage frequency ([DDW00]) refers to the way IDSs

monitors the system. It can either continuously monitor the system or it can

wake-up periodically to perform the analysis.

Taxonomies of AID techniques There have been proposed several tax-

onomies for AID techniques that may vary considerably from one to another.

In order to survey such taxonomies in an organized manner, we review them

in chronological order. The description of the different classes in the tax-

onomies is deferred to Section 2.2.3.

We begin the survey of taxonomies with the technical report from 2000

of Axelsson [Axe00]. This was one of the first works to provide a taxonomy

of IDSs. The AID principles are divided into self-learning and programmed

principles (see Figure 2.4). The self-learning principles are divided depending

on whether they leverage on temporal information or not. On the other hand,

the programmed principles are either based on descriptive statistics or they

model the behavior through state series. The taxonomy proposed by McHugh

in 2001 [McH01] is basically the same proposed by Axelsson, but he added

immune inspired methods into the time series models.

Also in 2000, Debar et al. [DDW00] presented a revision of a previously

authored taxonomy [DDW99]. In such taxonomy, they divide the AID tech-
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Figure 2.4: Taxonomy of AID principles proposed by Axelsson [Axe00].

niques into five classes: Statistics, Expert systems, Neural networks, User

intention identification, and Computer immunology. User intention identifi-

cation is better known as profile-based, as denoted in other works.

Later in 2002, Verwoerd and Hunt [VH02] proposed a more detailed tax-

onomy, as shown in Figure 2.5. From the proposed classes, File and Taint

checking are already implemented in many operative systems and program-

ming languages.

In 2004, Estevez-Tapiador et al. [ETGTDV04] proposed a simple taxon-

omy, where the AID techniques are classified into Learnt-models and Specifi-

cation-based models. Then, Learnt models are later splitted into Statistical

and Rule-based. Similarly simple taxonomies were proposed by Kabiri and

Ghorbani in [KG05] and Sobh in [Sob06]. The taxonomy of Kabiri and

Ghorbani consists of four classes: Artificial intelligence, Embeded program-

ming, Agent based, and Software engineering; but no subclasses were pro-

posed. Similarly, the taxonomy proposed by Sobh divides AID techniques

into three classes: Statistical analysis, Data mining, and Rate limiting. These
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Figure 2.5: Detailed taxonomy of AID principles proposed by Verwoerd and
Hunt [VH02].

taxonomies are very simple and lack some very important AID techniques’

classes.

Patcha and Park in [PP07] and Garćıa-Teodoro et al. in [GTDVMFV09]

propose other taxonomies based also in three main classes. However, such

classes are later divided into subclasses, providing more fine-grained taxono-

mies—see Figure 2.6 for Patcha and Park’s taxonomy and Figure 2.7 for the

taxonomy of Garćıa-Teodoro et al.

Finally, the most comprehensive taxonomy we have found in the literature

is that proposed by Chandola et al. in [CBK09]. Chandola et al. provided an

exhaustive survey of anomaly detection techniques not limited only to those

applied to ID, but also surveyed those applied to other fields such as fraud

detection or image processing. However, the taxonomy perfectly applies to

AID techniques, as shown in Figure 2.8.

As can be seen from the surveyed taxonomies, there is some kind of

consensus in the classes proposed in the literature to classify the different
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Figure 2.6: Fine-grained taxonomy of AID principles proposed by Patcha
and Park [PP07].

techniques, being the principal differences related to the grouping of tech-

niques and the granularity of the description of the different branches in the

trees.

Finally, there are some other taxonomies of AID techniques restricted to

specific scientific disciplines. In this light, Kim et al. in [KBA+07] provide

a survey and taxonomy of immune system approaches to ID. The immune

system approaches may be divided into two main classes: Negative selection

and Danger theory. Artificial immune systems are a class of computationally

intelligent systems inspired by the principles of the human immune system.

The use of computational intelligence in intrusion detection systems was

studied by Wu and Banzhaf in [WB10], who proposed a taxonomy for such

systems as shown in Figure 2.9.

Taxonomy Proposal

In this section we propose a new taxonomy to classify the AID techniques.

This taxonomy is based on the surveyed taxonomies and on the review of

the existing literature that is presented in Section 2.2.3. The taxonomy
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Figure 2.9: Taxonomy of computational intelligence systems applied to AID
proposed by Wu and Banzhaf [WB10].

is presented in Figure 2.10. It is a more detailed taxonomy divided into

five main classes: Computational intelligence, Information theory, Machine

learning, Statistical and Time series analysis.

Computational intelligence is a set of Nature-inspired computational method-

ologies and approaches to address complex problems of the real world, ap-

plications to which traditional methodologies and approaches are ineffective

or infeasible. Information theory is a branch of applied mathematics and

electrical engineering involving the quantification of information. Machine

learning is a scientific discipline concerned with the design and development

of algorithms that allow computers to evolve behaviors based on empiri-

cal data, such as from sensor data or databases. Although it is conceived

as a branch of computational intelligence, we have separated it as another

class given the prolific contribution of AIDSs belonging to machine learn-

ing. Statistical methods are based on statistics, which is the study of the

collection, organization, analysis, and interpretation of data. Finally, time

series analysis comprises methods for analyzing time series data in order to
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extract meaningful statistics and other characteristics of the data. Although

it can be groped inside statistical, we have decided to locate it in a separate

branch because the viewpoint taken for AID may not be based on statistical

methods.

2.2.3 Anomaly Intrusion Detection Techniques

This section is devoted to provide a survey of the proposed techniques in AID.

Since the majority of the techniques rely on existing detecting paradigms as

presented in the taxonomy of Figure 2.10 and apply variations to them, we

will follow in this section the aforementioned classification and describe each

basic technique for each category, finally summarizing the different variations

proposed in the literature.

All these techniques are divided into two main steps. In the first step,

commonly denoted as the training phase, the AID technique builds a model

of the normal behavior based on training data. Then, in the second step,

anomalies are detected, and usually given an anomaly score, based on a

similarity measure of the test instances with the normal trained baseline.

This second step is denoted in the literature as testing phase.

Computational Intelligence

Computational intelligence (CI) is a fairly new research field of Nature-

inspired computational methodologies and approaches to address complex

problems of the real world applications. Although there is not yet full agree-

ment on what CI exactly is, there is a widely accepted view on which areas

belong to CI, which will be described next. The most accepted definition of

CI is given by Bezdek in [Bez92]:

A system is computational intelligent when it: deals with only

numerical (low-level) data, has pattern recognition components,

does not use knowledge in the artificial intelligence sense; and

additionally when it (begins to) exhibit (i) computational adap-

tivity, (ii) computational fault tolerance, (iii) speed approaching
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human-like turnaround, and (iv) error rates that approximate

human performance.

Artificial Immune Systems AISs try to mimic the Human Immune Sys-

tem (HIS), which is capable of protecting the body against damage from an

extremely large number of harmful pathogens without prior knowledge of the

structure of these pathogens [KBA+07].

Negative Selection: Negative Selection (NS) algorithms are based on

one specific aspect of the HIS: NS in the T-cell maturation process. NS elim-

inates inappropriate T-cells that bind to self antigens. This allows the HIS

to detect non-self antigens without mistakenly detecting self antigens. NS

algorithms consist of the following three steps: defining self, generating de-

tectors and monitoring the occurrence of anomalies. The self is defined as the

normal behavior of analyzed patterns in the monitored system. Secondly, the

algorithm generates a number of random patterns that are compared to the

self patterns. In the case of a pattern matching a self-pattern, such pattern

is not a useful detector and thus it is eliminated. Otherwise, it becomes a

detector. Finally, in the monitoring stage, when any of the detector patterns

match a monitored pattern, the monitored system is considered to be under

risk and an alert is placed [KBA+07].

NS-based methods entail a number of features that make them suitable

for AID. First, no prior knowledge of intrusions is required, which allows

to detect new kinds of anomalies. Second, the detection rate is tunable by

setting the number of generated detectors. Finally, detection is distributable,

which means that each detector can detect anomalies independently and

without communication with other detectors [DFH96].

Table 2.2 summarizes different approaches to AID based on NS algorithm.
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Table 2.2: Negative selection approaches to AID.

Technique Comments

Hofmeyr

and Forrest

[HF00]

They present LISYS, an architecture for detecting

anomalies using NS algorithm for binary detection gen-

eration.

González et

al. [GDK02]

They present a technique to detect anomalies using

negative selection and classification.

Harmer et al.

[HWGL02]

NS applied to detect anomalies based on 28 TCP

packet header features and 16 features of UDP and In-

ternet Control Message Protocol (ICMP) packet head-

ers.

Dasgupta

and González

[DG02]

They present two Artificial Immune System (AIS)-

based methods to detect anomalies: negative and pos-

itive characterization.

González and

Dasgupta

[GD02b]

They propose a two-step approach for AID. First, a

NS algorithm is used to generate abnormal samples,

that are used jointly with normal ones in the training

of an artificial neural network. The proposed method

is compared with a self-organizing map.

González and

Dasgupta

[GD03]

Network-based anomaly detection technique.

Gómez et al.

[GGD03]

They present a new technique for generating a set of

fuzzy rules that can characterize the non-self space (ab-

normal) using only self (normal) samples.

Esponda et al.

[EFH04]

They present a framework to evaluate positive and neg-

ative selection schemes.

Continued on next page
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Table 2.2 – continued from previous page

Technique Comments

Sarafijanović

and Le

Boudec

[SLB05]

They investigate the use of an AIS to detect node mis-

behavior in a mobile ad hoc network using dynamic

source routing.

Powers and

He [PH08]

They propose a two-component hybrid model. The

first one uses an AIS to detect anomalies. The second

one uses self-organizing maps to classify the anomalies

detected by the AIS.

Greensmith et

al. [GFA08]

They present an AIS-based AID focused on the detec-

tion of port scanning using SYN packets.

Schmidt et al.

[SPL+09]

They present a framework to monitor smartphones and

remotely detect anomalies using self-organizing maps

and AIS techniques.

Danger Theory: In 1998, Burgess [Bur98] claimed that the self and

non-self distinction on which the NS algorithms are based was too simple

to model the whole HIS mechanism. Consequently, he proposed to use the

Danger theory [Mat94].

Danger theory argues that there must be discrimination beyond the self

and non-self distinction because the HIS only discriminates the self from

the non-self partially. As a consequence, Danger theory posits that it is

not the foreignness of the antigens what is important for immune detection,

but instead the relative danger of these antigens. In this way, the Danger

theory suggests that foreign invaders which are dangerous will induce the

generation of cellular molecules (danger signals) by initiating cellular stress

or cell death. Finally, this danger signal triggers the evaluation of potential
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antigens through negative selection. Aickelin et al. in [ABC+03] present the

first in-depth discussion on the application of Danger theory to ID.

Table 2.3 summarizes different approaches to AID based on Danger the-

ory.

Table 2.3: Danger theory approaches to AID.

Technique Comments

Burgess

[Bur00]

Cfengine: Open source configuration management

platform.

Begnum

and Burgess

[BB03]

Combine process homeostasis with Cfengine positive

and negative selection schemes.

Sarafijanović

and Le

Boudec

[SLB04]

They present an AID system for wireless ad hoc net-

works that considers packet losses as a danger signal.

Greensmith et

al. [GAC05]

They employ DCs within AIS that coordinated T-cell

immune responses.

Kim et al.

[KWAM05]

They discuss T-cell immunity and tolerance for com-

puter worm detection.

Kim et al.

[KGTA05]

The artificial tissue, the Dendritic Cells (DC) algo-

rithm and T-cell algorithm were combined and pre-

sented as a different version of the danger theory in-

spired AISs.

Evolutionary Computation Evolutionary Computation (EC) is a sub-

field of CI that involves combinatorial optimization problems. EC uses iter-
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ative progress, such as growth or development in a population. This popu-

lation is then selected in a guided random search using parallel processing

to achieve the desired end. Such processes are often inspired by biological

mechanisms of evolution [WB10].

Genetic Algorithm: A Genetic Algorithm (GA) is a search heuristic

that mimics the process of natural evolution. This heuristic is routinely used

to generate useful solutions to search problems, such as finding anomalies

buried in the background traffic. GA is used in IDSs as optimization compo-

nents, for automatically modeling structure design or as classifiers [WB10].

In a GA, a population which encode candidate solutions to the target

problem evolves toward better solutions. The evolution usually starts from a

population of randomly generated individuals and happens in generations. In

each generation, the fitness of every individual in the population is evaluated,

multiple individuals are stochastically selected from the current population

based on their fitness, and modified (mutated) to form a new population.

The new population is then used in the next iteration of the algorithm.

Commonly, the algorithm terminates when either a maximum number of

generations has been produced, or a satisfactory fitness level has been reached

for the population. If the algorithm has terminated due to a maximum

number of generations, a satisfactory solution may or may not have been

reached. Consequently, a GA requires a genetic representation of the solution

and a fitness function to evaluate it.

Table 2.4 summarizes different approaches to AID based on GAs.

Table 2.4: Genetic algorithm approaches to AID.

Technique Comments

Mischiatti

and Neri

[MN00]

They learn network models using GAs, and compare

for discrepancies.

Continued on next page
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Table 2.4 – continued from previous page

Technique Comments

Balajinath

and Ragha-

van [BR01]

They use GAs to learn the individual user behavior and

detect anomalies by predicting current user behavior

based on past observations.

Gomez and

Dasgupta

[GD02a]

They present a methodology that allows the applica-

tion of fuzzy classifiers and genetic algorithms to AID.

Gómez et al.

[GDNG02]

The authors propose a new linear representation

scheme for evolving fuzzy rules using the concept of

complete binary tree structures and apply it to detect

network-based anomalies.

Hofmann et

al. [HSS03]

They use a GA to learn the structure of Radial Basis

Function (RBF) nets.

Pillai et al.

[PEV04]

They introduce the application of GAs, in order to im-

prove the effectiveness of IDSs.

Liu et al.

[LCLZ04]

They use genetic clustering to automatically establish

clusters and detect intruders by labeling normal and

abnormal groups.

Leon et al.

[LNG04]

They apply clustering to detect anomalies. The num-

ber of clusters is automatically determined by a GA.

Li [Li04] The author describes a technique of applying GAs to

network ID. The implementation considers both tem-

poral and spatial information of network connections.

Lu and Traore

[LT05]

They applied a GA to decide the number of clusters

based upon Gaussian mixture models.

Zhao et al.

[ZZL05]

They apply k-means to decide potential cluster centers

and a GA subsequently refined the centroids.

Continued on next page
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Table 2.4 – continued from previous page

Technique Comments

Gong et al.

[GZA05]

A GA is employed to derive a set of classification rules

from network audit data, and the support-confidence

framework is utilized as fitness function to judge the

quality of each rule.

Stein et al.

[SCWH05]

The authors propose an IDS that uses a GA to select

a subset of input features for decision tree classifiers,

thus improving the classification performance.

Abadeh et al.

[AHL07]

They propose an AID system based on fuzzy learning

using GAs.

Abadeh et al.

[SAHBS07]

They propose a method based on GAs to find fuzzy

rules.

Toosi and Ka-

hani [TK07]

They present a method to detect anomalies based on

three layers. One of them is based on GAs.

Özyer et al.

[ÖAB07]

The authors propose an intelligent IDS that uses fuzzy

association rules mining to select classification rules

that are later used by a genetic fuzzy classifier.

Tsang et al.

[TKW07]

The authors present a novel ID approach that evolves

fuzzy-rules using GAs to detect network-based intru-

sions.

Genetic Programming: Genetic Programming (GP) is a specializa-

tion of GAs where each individual is a computer program. It is used to

optimize a population of computer programs according to a fitness land-

scape determined by a program’s ability to perform a given computational

task.
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GP evolves computer programs, traditionally represented in memory as

tree structures, which can be easily evaluated in a recursive manner. Every

tree node has an operator function and every terminal node has an operand,

making mathematical expressions easy to evolve and evaluate. Non-tree rep-

resentations have been suggested and successfully implemented, such as Lin-

ear Genetic Programming (LGP).

Table 2.5 summarizes different approaches to AID based on GP.

Table 2.5: Genetic programming approaches to AID.

Technique Comments

Song et al.

[SHZH03]

They propose page-based LGP with two-layer Sub-

set Selection to address a two-class intrusion detection

classification problem.

Lu and Traore

[LT04]

They present a rule evolution approach based on GP

for detecting novel attacks on networks.

Mukkamala et

al. [MSA04]

They present an AID approach based on LGP.

Song et al.

[SHZH05]

They present a methodology to filter features of a

dataset to its application to genetic programming.

Grosan et al.

[GAH05]

They present an AID system based on Multi-

Expression Programming.

Yin et al.

[YTHH05]

They present a GP-based rule learning approach for

detecting attacks on network.

Folino et al.

[FPS05]

They present an intrusion detection algorithm based

on GP ensembles.

Abraham

et al.

[AGMV07]

They present three variants of GP techniques to AID.

Continued on next page
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Table 2.5 – continued from previous page

Technique Comments

Chen et al.

[CAY07]

The authors present an IDS using a flexible multi-layer

Artificial Neural Network, which is evolved using the

probabilistic incremental program evolution algorithm

and whose features are selected using Particle Swarm

Optimization.

Fuzzy Systems FSs are based on fuzzy logic. Fuzzy logic, dealing with

the vague and imprecise, analyzes analog input values in terms of logical

variables that take on continuous values between 0 and 1, in contrast to

digital logic, which operates on discrete values of either 1 or 0 (true or false

respectively).

The input variables in a Fuzzy System (FS) are in general mapped into by

sets of membership functions, known as fuzzy sets. The process of converting

a crisp input value to a fuzzy value is called fuzzification. The microcontroller

makes decisions for what action to take based on a set of rules involving fuzzy

sets.

FSs consist of an input stage, a processing stage, and an output stage.

The input stage maps inputs to the appropriate membership functions and

truth values. The processing stage invokes each appropriate rule and gen-

erates a result for each, then combines the results of the rules. Finally, the

output stage converts the combined result back into a specific control output

value.

Table 2.6 summarizes different approaches to AID based on FSs.
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Table 2.6: Fuzzy system approaches to AID.

Technique Comments

Dickerson

and Dickerson

[DD00]

They present FIRE, an anomaly-based IDS that uses

fuzzy logic to assess whether malicious activity is tak-

ing place on a network.

Bridges and

Vaughn

[BV00]

They propose the use of fuzzy association rules and

fuzzy sequential rules to mine normal patterns from

audit data.

Luo and

Bridges

[LB00]

They build an AID system by comparing fuzzy rules

mined in the training phase with those mined from

new audit data.

Zhu et al.

[ZPZC01]

They present a comparison of three data mining tech-

niques for AID. They conclude that fuzzy sets provide

the best accuracy, followed by artificial neural networks

and rule-based techniques.

Florez et al.

[FBV02]

They propose a fuzzy rules comparison algorithm that

is amenable to on-line application.

Gómez et al.

[GDNG02]

The authors propose a new linear representation

scheme for evolving fuzzy rules using the concept of

complete binary tree structures and apply it to detect

network-based anomalies.

Gómez and

Dasgupta

[GD02a]

They present a methodology that allows the applica-

tion of fuzzy classifiers and genetic algorithms to AID.

Shah et al.

[SUJ03]

They present a fuzzy clustering (C-Mediods) approach

to AID.

Continued on next page
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Table 2.6 – continued from previous page

Technique Comments

Gómez et al.

[GGD03]

They present a new technique for generating a set of

fuzzy rules that can characterize the non-self space (ab-

normal) using only self (normal) samples.

Chavan et al.

[CSD+04]

The authors propose an IDS using artificial neural net-

works and fuzzy inference system.

El-Semary

et al.

[ESEGP05]

They propose an AID based on a fuzzy inference engine

to compare rules.

Chimphlee

et al.

[CANMS+06]

They present a fuzzy clustering (C-Means) approach

to AID.

Abadeh et al.

[AHL07]

They propose an AID system based on fuzzy learning

using genetic algorithm.

Abadeh et al.

[SAHBS07]

They propose a method based on GAs to find fuzzy

rules.

Toosi and Ka-

hani [TK07]

They present a method to detect anomalies based on

three layers. One of the is based on fuzzy logic.

Abraham et

al. [AJTH07]

They present a distributed AID system using fuzzy

classifiers.

Özyer et al.

[ÖAB07]

The authors propose an intelligent IDS that uses fuzzy

association rules mining to select classification rules

that are later used by a genetic fuzzy classifier.

Tsang et al.

[TKW07]

The authors present a novel ID approach that evolves

fuzzy-rules using genetic algorithms to detect network-

based intrusions.
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Knowledge-Based A Knowledge-Based System (KBS) is a computer sys-

tem that emulates the decision-making ability of a human expert. KBSs are

designed to solve complex problems by reasoning about knowledge, like an

expert, and not by following the procedure of a developer as is the case in

conventional programming.

Finite State Machines: A Finite State Machine (FSM) is a mathe-

matical model used to design computer programs and digital logic circuits.

It is conceived as an abstract machine that can be in one of a finite number

of states. The machine is in only one state at a time (current state). It

can change from one state to another when initiated by a triggering event or

condition (transition). A particular FSM is defined by a list of the possible

transition states from each current state, and the triggering condition for

each transition.

Table 2.7 summarizes different approaches to AID based on FSMs.

Table 2.7: Finite state machines approaches to AID.

Technique Comments

Ghosh et al.

[GMS00]

They present two methods to detect anomalies. The

methods are based on artificial neural networks and

FSMs.

Sekar et al.

[SGF+02]

They present a method to detect anomalies based on

protocol modeling with FSMs.

Estevez-

Tapiador

et al.

[ETGTDV03]

They present a FSM model for TCP which is useful for

detecting anomalies through the use of Markov chains.

Treurniet

[Tre11]

The author presents a method to monitor Internet traf-

fic sessions using FSMs of the main protocols.
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Rule-Based: Rule-Based (RB) AID techniques learn rules that capture

the normal behavior of a system. A test instance that is not covered by any

such rule is considered as an anomaly. A basic RB technique consists of

two steps. The first step is to learn rules from the training data using a

rule learning algorithm. Each rule has an associated confidence value that

is proportional to the ratio of correctly classified training instances. The

second step is to find, for each test instance, the rule that best captures the

test instance. The inverse of the confidence associated with the best rule is

the anomaly score of the test instance.

Table 2.8 summarizes different approaches to AID based on RB.

Table 2.8: Rule-based approaches to AID.

Technique Comments

Lee et al.

[LSM00]

They propose to use the association rules and frequent

episodes computed from audit data to detect anoma-

lies.

Barbará et al.

[BCJW01]

They propose a system that implements several data

mining techniques to detect anomalies.

Zhu et al.

[ZPZC01]

They present a comparison of three data mining tech-

niques for AID. They conclude that fuzzy sets provide

the best accuracy, followed by artificial neural networks

and rule-based techniques.

Mahoney and

Chan [MC02]

They present a method that learn rules from attack-

free network traffic.

Mahoney and

Chan [MC03]

They present an algorithm (LERAD) that learns rules

for finding rare events in nominal time-series data with

long range dependencies.

Continued on next page
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Table 2.8 – continued from previous page

Technique Comments

Han and Cho

[HC03]

They present a rule-based model to integrate different

AID approaches.

Chan et al.

[CMA03]

They explore two methods for anomaly detection based

on past behavior. The first method is a rule learning

algorithm. The second method uses a clustering algo-

rithm to identify outliers.

Otey et al.

[OPG+03]

They present and evaluate a NIC-based network intru-

sion detection system. The AID system is rule-based.

Gómez et al.

[GGD03]

They present a new technique for generating a set of

fuzzy rules that can characterize the non-self space (ab-

normal) using only self (normal) samples.

Qin and

Hwang

[QH04]

They propose a new Internet trace technique for gen-

erating frequent episode rules to characterize Internet

traffic events.

Tandon and

Chan [TC07]

They propose the use of weights in the learned rules to

enhance LERAD.

Brauckhoff et

al. [BDWS09]

They propose the use of association rule mining to

find and summarize the flows related with the detected

anomalies.

Swarm Intelligence Swarm Intelligence (SI) is an CI technique involving

the study of collective behavior in decentralized systems. It computation-

ally emulates the emergent behavior of social insects or swarms in order to

simplify the design of distributed solutions to complex problems.

Generally speaking, SI models are population-based. Individuals in the

population are potential solutions. These individuals collaboratively search
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for the optimum through iterative steps. Individuals change their positions in

the search space, however, via direct or indirect communications, rather than

the crossover or mutation operators in evolutionary computation. Among the

SI methods, there are two that outstand: Ant Colony Optimization (ACO)

and Particle Swarm Optimization (PSO) [WB10].

Table 2.9 summarizes different approaches to AID based on SI.

Table 2.9: Swarm intelligence approaches to AID.

Technique Comments

Ramos and

Abraham

[RA05]

They present an ant-based clustering algorithm to de-

tect intrusion in a network infrastructure.

Tsang and

Kwong

[TK05]

They propose an improved version of the basic ant-

based clustering algorithm.

Abadeh et al.

[AHA06]

They embedded a standard PSO into their fuzzy ge-

netic algorithm.

Guolong et al.

[GQW07]

They propose the use of PSO to learn classification

rules.

He et al.

[HLC07]

They present an ant-classifier algorithm for discovering

classification rules.

Chen et al.

[CAY07]

The authors present an IDS using a flexible multi-layer

Artificial Neural Network, which is evolved using the

probabilistic incremental program evolution algorithm

and whose features are selected using PSO.



42 Chapter 2. State of the Art

Information Theory

Information theory is a branch of applied mathematics and electrical engi-

neering involving the quantification of information. A key measure of in-

formation, known as entropy, was proposed by Claude E. Shanon in 1948.

Entropy quantifies the uncertainty involved in predicting the value of a ran-

dom variable, and it has been applied to AID since, by hypothesis, anoma-

lies in data induce irregularities in the information content of the data set.

Consequently, measuring the information content in anomaly-free data and

comparing it to the entropy of test data is able to detect potential anomalies.

Table 2.10 summarizes different approaches to AID based on information

theory.

Table 2.10: Information theory approaches to AID.

Technique Comments

Lee and Xi-

ang [LX01]

They propose to use several information-theoretic mea-

sures, namely, entropy, conditional entropy, relative

conditional entropy, information gain, and information

cost for anomaly detection.

Gu et al.

[GMT05]

They introduce the detection of anomalies using the

maximum entropy which detect changes that point to

anomalies.

Lakhina et al.

[LCD05]

They present a method to detect anomalies in large

datasets through sample entropy.

Xu et al.

[XZB05]

They present a model to profile backbone traffic using

clustering and entropy.

Wagner and

Plattner

[WP05]

They present an application of entropy to detect worms

in the Internet.

Continued on next page
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Table 2.10 – continued from previous page

Technique Comments

Żuraniewski

and Rincón

[ŻR06]

They propose two methods for detecting change points

in the network traffic fractality. The first one is based

on a cumulated sum (CUSUM) technique while the sec-

ond uses the Schwarz Information Criterion.

Nychis et al.

[NSA+08]

They evaluate entropy-based AID techniques. They

found that port and address distributions are highly

correlated.

Ashfaq et al.

[ARM+08]

They present a comparison of eight AID systems fo-

cused on detecting portscans. The best performance is

exhibited by entropy-based and threshold random walk

techniques.

Lee et al.

[LKK+08]

They propose a method for proactive detection of Dis-

tributed Denial of Service (DDoS) attacks using en-

tropy and clustering. The method is able to detect the

attacks in their initial stages.

Androulidakis

et al.

[ACP09]

They present a study of how to improve the sampling

process to reduce its impact on AID. They illustrate

their results with an entropy-based AID.

Burkhart et

al. [BSMD10]

They propose SEPIA, a library for multiparty compu-

tation that allows preserving privacy when aggregating

multi-domain network events and statistics. They illus-

trate the framework detecting anomalies using entropy

and thresholds.
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Machine Learning

Machine learning is a scientific discipline concerned with the design and de-

velopment of algorithms that allow computers to evolve behaviors based on

empirical data. A learner can take advantage of examples (data) to capture

characteristics of interest of their unknown underlying probability distribu-

tion. A major focus of machine learning research is to automatically learn

to recognize complex patterns and make intelligent decisions based on data.

Hence the learner must generalize (perform accurately on new, unseen ex-

amples after training on a finite data set) from the given examples, so as to

be able to produce a useful output in new cases. Quoting Tom M. Mitchell:

A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if

its performance at tasks in T, as measured by P, improves with

experience E [Mit97].

Nearest Neighbor Algorithms Nearest Neighbor (NN) algorithms are

based on the assumption that normal data instances are far from anomalous

data instances. Consequently, NN-based AID techniques require a distance

or similarity measure. For continuous attributes, Euclidean distance is a

popular choice.

The most popular algorithm uses the distance to the kth nearest neighbor

(k -NN). In this technique, an anomaly score proportionally inverse to the

distance to its kth nearest neighbor is assigned to new data instances. Finally,

a threshold, based either on the anomaly score or given by the mth largest

score, is used to determine which instances of the dataset are considered to

be anomalous.

Table 2.11 summarizes different approaches to AID based on nearest

neighbor algorithm.
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Table 2.11: Nearest neighbor algorithm approaches to

AID.

Technique Comments

Eskin et al.

[EAP+02]

They present three methods to detect anomalies, based

on nearest neighbors, clustering and support vector

machines, respectively.

Liao and Ve-

muri [LV02b]

They present a method to detect intrusions by moni-

toring executing programs. They use k -NN to detect

deviations of programs’ behavior.

Liao and Ve-

muri [LV02c]

They present a new approach, based on the k -NN clas-

sifier, to classify program behavior as normal or intru-

sive.

Dokas et al.

[DEK+02]

They present three methods to detect anomalies, based

on nearest neighbors, density based local outliers and

support vector machines, respectively.

Hu et al.

[HLV03]

They compare the performance of robust support vec-

tor machines with that of conventional support vector

machines and NN classifiers.

Lazarevic et

al. [LEK+03]

They compare different AID techniques, among which

they use k -NN.

Hautamaki et

al. [HKF04]

They present an outlier detection using indegree num-

ber algorithm that utilizes k -NN graph.

Patwari et al.

[PHIP05]

They use k -NN to reduce dimensionality of network

measurements to two dimensions thus providing a

mean for visualization of the relationships existing in

the data.

Continued on next page
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Table 2.11 – continued from previous page

Technique Comments

Ahmed et al.

[AOC07]

They investigate the use of the block-based One-Class

Neighbor Machine and the recursive Kernel-based On-

line Anomaly Detection algorithms for network ID.

Sharma et al.

[SPP07]

They present an IDS based on system call sequences

using text processing techniques. As similarity mea-

sure a kernel function is used, and k -NN classify the

processes as either normal or abnormal.

Li and Guo

[LG07]

The authors propose a novel supervised network ID

method based on transductive confidence machines for

k -NN.

Supervised Learning Supervised learning is the machine learning task

of inferring a function from supervised (labeled) training data. The training

data consist of a set of training examples and a desired output value. A

supervised learning algorithm analyzes the training data and produces an

inferred function. The inferred function should predict the correct output

value for any valid input object. Supervised learning techniques have been

numerously applied to AID, although it is hard to properly label training

data. Typically, attack-free data are used for the training phase, and the

paradigms flag unseen patterns as anomalous.

Artificial Neural Networks: An Artificial Neural Network (ANN) is

a mathematical model that is inspired by the structure and functional aspects

of biological neural networks. An ANN consists of an interconnected group

of artificial neurons, which changes its structure based on information that

flows through the network during the learning phase. They are typically
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used to model complex relationships between inputs and outputs or to find

patterns in data.

A basic ANN operates in two steps. First, an ANN is trained on the

normal training data to learn the normal classes. Second, each test instance

is provided as an input to the ANN. If the ANN accepts the test input, it is

normal and it is an anomaly on the contrary.

Table 2.12 summarizes different approaches to AID based on artificial

neural network.

Table 2.12: Artificial neural network approaches to AID.

Technique Comments

Ghosh et al.

[GMS00]

They present two methods to detect anomalies. The

methods are based on ANNs and finite state machines.

Lee and Hein-

buch [LH01]

They present a method to detect protocol misuse using

hierarchical neural networks.

Zhu et al.

[ZPZC01]

They present a comparison of three data mining tech-

niques for AID. They conclude that fuzzy sets provide

the best accuracy, followed by ANNs and rule-based

techniques.

Manikopoulos

and Papavas-

siliou [MP02]

They present a method to detect anomalies using a

distribution comparator. The comparisons are joined

with a neural network.

González and

Dasgupta

[GD02b]

They propose a two-step approach for AID. First, a

negative selection algorithm is used to generate abnor-

mal samples, that are used jointly with normal ones

in the training of an ANN. The proposed method is

compared with a self-organizing map.

Continued on next page
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Table 2.12 – continued from previous page

Technique Comments

Mukkamala et

al. [MJS02]

They describe two approaches to AID, one using sup-

port vector machines and other using ANNs. In ad-

dition, they show an approach for data reduction, ex-

hibiting its performance with the proposed models.

Sung and

Mukkamala

[SM03]

They perform experiments to identify which are the

most interesting features of DARPA datasets (§2.2.4)
for the identification of the different traffic kinds.

Joo et al.

[JHH03]

They propose a method that uses the neural network

model for AID but consider the cost ratio of false neg-

ative errors to false positive errors to enhance the ef-

fectiveness of the intrusion detection.

Li and

Manikopoulos

[LM03]

The authors present MAID, a histogram-based AIDSs

that uses ANN classifiers to detect Denial of Service

(DoS) attacks using MIB traffic parameters.

Moradi and

Zulkernine

[MZ04]

They present a a model to classify anomalies in three

classes (one of them is normal traffic) using a multilayer

neural network.

Chavan et al.

[CSD+04]

The authors propose an IDS using ANN and fuzzy in-

ference system.

Corchado et

al. [CHS05b]

They present a method to detect anomalies by project-

ing features using neural networks.

Chen et al.

[CHS05a]

They compare ANNs and support vector machines to

detect anomalies on business service management au-

dit data. They conclude that support vector machines

outperform ANNs.

Continued on next page
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Table 2.12 – continued from previous page

Technique Comments

Zhang et al.

[ZJK05]

They present two hierarchical frameworks to detect

intrusions based on modular neural networks trained

with RBFs.

Mukkamala et

al. [MSA05]

They present three methods to detect anomalies based

on artificial neural networks, support vector machines

and multivariate adaptive regression splines. Then

they build a new detector joining the previous ones,

which outperforms them.

Gavrilis and

Dermatas

[GD05]

They present and evaluate a RBF neural network de-

tector for DDoS attacks in public networks based on

statistical features estimated in short-time windows of

the incoming data packets.

Han and Cho

[HC06]

They use evolutionary neural networks to detect

anomalies.

Amini et al.

[AJS06]

They present a framework to detect intrusions using

different kinds of neural networks.

Florez-

Larrahondo

et al.

[FLLD+06]

They propose the integration of intelligent anomaly de-

tection agents for distributed monitoring. They moni-

tor operating system calls with neural network models

and function calls with hidden Markov models.

Faraoun

and Boukelif

[FB07]

They present a method to detect anomalies using neu-

ral networks that uses k -means clustering to improve

the training phase.

Chen et al.

[CAY07]

The authors present an IDS using a flexible multi-layer

ANN, which is evolved using the probabilistic incre-

mental program evolution algorithm and whose fea-

tures are selected using Particle Swarm Optimization.

Continued on next page
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Table 2.12 – continued from previous page

Technique Comments

Liu et al.

[LYY07]

The authors propose a hybrid IDS using principal com-

ponent analysis neural networks.

Corchado

and Herrero

[CH11]

They present a methodology to visualize network traffic

that is able to expose the anomalies present in such

traffic.

Bayesian Networks: A Bayesian Network (BN) is a probabilistic graph-

ical model that represents a set of random variables and their conditional de-

pendencies via a Directed Acyclic Graph (DAG). The nodes of such DAG rep-

resent random variables in the Bayesian sense. Edges represent conditional

dependencies—nodes which are not connected represent variables which are

conditionally independent of each other. Each node is associated with a prob-

ability function that takes as input a particular set of values for the node’s

parent variables and gives the probability of the variable represented by the

node.

Given a test data instance, the model estimates the posterior probability

of the test instance belonging to the normal and anomaly classes, based on

the training data. The class with the largest posterior probability is chosen

as the predicted class for the given test instance.

Table 2.13 summarizes different approaches to AID based on Bayesian

networks.
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Table 2.13: Bayesian networks approaches to AID.

Technique Comments

Valdes and

Skinner

[VS00]

They present an adaptive, model-based technique for

attack detection, using Bayes networks technology to

analyze bursts of traffic.

Ye et al.

[YXE00]

They present a method based on Bayesian probabilistic

network to detect network anomalies.

Barbara et al.

[BWJ01]

They propose a method based on a technique called

pseudo-Bayes estimators to enhance an anomaly de-

tection systems ability to detect new attacks while re-

ducing the false alarm rate as much as possible.

Bronstein et

al. [BDD+01]

They propose a general architecture and implementa-

tion for the autonomous assessment of health of arbi-

trary service elements using Bayesian networks.

Sebyala et al.

[SOS02]

They present the application of Bayesian technology

in the development of an anomaly detection system for

proxylets.

Kruegel et al.

[KMRV03]

They present a method to detect anomalies based

Bayesian classifiers aggregated in a Bayesian network.

Mutz et al.

[MVVK06]

They present a host-based AID system based on several

models of system call arguments. The different models

are joined using a Bayesian network.

Decision Trees: A Decision tree is a decision support tool that uses

a tree-like graph of decisions and their possible consequences. Decision tree

learning uses a decision tree as a predictive model which maps observations

about an instance to conclusions about the instance’s target value. In these



52 Chapter 2. State of the Art

tree structures, leaves represent class labels and branches represent conjunc-

tions of features that lead to those class labels.

Table 2.14 summarizes different approaches to AID based on decision

trees.

Table 2.14: Decision trees approaches to AID.

Technique Comments

Li and Ye

[LY01]

They present a model to detect anomalies based on

decision trees. The trees are trained using past data

with anomalies.

Amor et al.

[ABE04]

They present two models and compare their perfor-

mance using DARPA datasets(§2.2.4). The methods

are naive Bayes classifier and decision trees.

Peddabachigari

et al. [PAT04]

The authors compare IDSs based on decision trees and

support vector machines. They show that decision

trees give better overall performance than support vec-

tor machines.

Kang et al.

[KFH05]

They present a new model for representing system calls

and test its efficiency when applied to AID.

Depren et al.

[DTAC05]

They present a hybrid model for intrusion detection. A

self-organizing map and a decision tree are joined with

a rule-based decision support system.

Stein et al.

[SCWH05]

The authors propose an IDS that uses a genetic algo-

rithm to select a subset of input features for decision

tree classifiers, thus improving the classification perfor-

mance.

Continued on next page
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Table 2.14 – continued from previous page

Technique Comments

Gaddam et al.

[GPB07]

They present a two-step method to detect anomalies.

First they apply k -means clustering to cluster the data,

and then they apply ID3 decision to detect subgroups

within each cluster.

Peddabachigari

et al.

[PAGT07]

They present four different methods based on different

intelligent system approaches to detect anomalies.

Xiang et al.

[XYM08]

They propose a multiple-level hybrid classifier for ID

that combines tress classifiers and Bayesian clustering.

Ensemble of Classifiers: Ensemble of Classifiers (EoC) methods use

multiple models to obtain better predictive performance than could be ob-

tained from any of the constituent models. The objective is to combine the

different models in order to enhance their benefits while diminishing their

drawbacks. In addition, different models can provide complementary infor-

mation about the patterns to be classified.

Table 2.15 summarizes different approaches to AID based on ensembles

of classifiers.

Table 2.15: Ensembles of classifiers approaches to AID.

Technique Comments

Bass [Bas00] The author surveys IDSs requirements. He points that

future IDSs would base their decisions on data fusion.

Continued on next page
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Table 2.15 – continued from previous page

Technique Comments

Manikopoulos

and Papavas-

siliou [MP02]

They present a method to detect anomalies using a

distribution comparator. The comparisons are joined

with a neural network.

Han and Cho

[HC03]

They present a rule-based method to integrate different

anomaly detection models. The final system is more

robust to false positives.

Siaterlis and

Maglaris

[SM04]

They present a method to integrate different denial of

service attack detection mechanisms.

Mukkamala et

al. [MSA05]

They present three methods to detect anomalies based

on artificial neural networks, support vector machines

and multivariate adaptive regression splines. Then

they build a new detector joining the previous ones,

which outperforms them.

Shifflet

[Shi05]

The author presents a model, independent of the AID

techniques, to fusion alerts and information.

Mutz et al.

[MVVK06]

They present a host-based AID system based on several

models of system call arguments. The different models

are joined using a Bayesian network.

Peddabachigari

et al.

[PAGT07]

They present four different methods based on different

intelligent system approaches to detect anomalies. The

ensemble of all the methods has the best performance.

Zhou et al.

[ZHR+07]

They propose a method to fusion alerts from different

intrusion detection systems.

Continued on next page
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Table 2.15 – continued from previous page

Technique Comments

Giacinto et al.

[GPDRR08]

They present a method to detect anomalies by creating

a classifier for each traffic kind and fusing the informa-

tion of such classifiers.

Naive Bayes Classifiers: A Naive Bayes Classifier (NBC) is a sim-

ple probabilistic classifier based on applying Bayes’ theorem with strong

(naive) independence assumptions. This means that a NBC assumes that

the presence/absence of a particular feature of a class is unrelated to the

presence/absence of any other feature, given the class variable.

An advantage of the NBCs is that it only requires a small amount of

training data to estimate the parameters necessary for classification. Be-

cause independent variables are assumed, only the variances of the variables

for each class need to be determined and not the entire covariance matrix.

Despite of its simplicity, NBCs have shown remarkable performance in com-

plex problems.

Table 2.16 summarizes different approaches to AID based on naive Bayes

classifier.

Table 2.16: Naive Bayes classifier approaches to AID.

Technique Comments

Schultz et al.

[SEZS01]

The authors propose a method for detecting new ma-

licious executables using different classifiers. The best

performance is obtained through NBCs.

Kruegel et al.

[KMRV03]

They present a method to detect anomalies based

Bayesian classifiers aggregated in a Bayesian network.

Continued on next page
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Table 2.16 – continued from previous page

Technique Comments

Axelsson

[Axe04]

The author presents a method to detect anomalies us-

ing a Bayesian classifier with interactive training for

reducing the false positive rate.

Amor et al.

[ABE04]

They present two models and compare their perfor-

mance using DARPA datasets(§2.2.4). The methods

are naive Bayes classifier and decision trees.

Kang et al.

[KFH05]

They present a new model for representing system calls

and test its efficiency when applied to AID.

Support Vector Machines: A Support Vector Machine (SVM) is a

concept in statistics and computer science for a set of related supervised

learning methods that analyze data and recognize patterns, used for classi-

fication and regression analysis. The basic SVM takes a set of input data

and predicts, for each given input, which of two possible classes forms the

input, making SVMs a non-probabilistic binary linear classifier. Given a

set of attack-free training examples, an SVM training algorithm builds a

model that determines whether new examples lie within the learned region

or outside its boundaries. Kernels, such as RBF kernel, can be used to learn

complex regions.

Table 2.17 summarizes different approaches to AID based on support

vector machines.
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Table 2.17: Support vector machines approaches to AID.

Technique Comments

Dokas et al.

[DEK+02]

They present three methods to detect anomalies, based

on nearest neighbors, density based local outliers and

SVMs, respectively.

Eskin et al.

[EAP+02]

They present three methods to detect anomalies, based

on nearest neighbors, clustering and SVMs, respec-

tively.

Mukkamala et

al. [MJS02]

They describe two approaches to AID, one using SVMs

and other using artificial neural networks. In addition,

they show an approach for data reduction, exhibiting

its performance with the proposed models.

Hu et al.

[HLV03]

They compare the performance of Robust SVMs with

that of conventional SVM and nearest neighbors clas-

sifiers.

Lazarevic et

al. [LEK+03]

They compare different AID techniques, among which

they use SVMs.

Heller et al.

[HSKS03]

They present a host-based IDS that monitors accesses

to the Microsoft Windows Registry using SVMs.

Sung and

Mukkamala

[SM03]

They perform experiments to identify which are the

most interesting features of DARPA datasets (§2.2.4)
for the identification of the different traffic kinds.

Kim and Park

[KP03]

They propose and evaluate a network-based IDS using

SVMs.

Laskov et al.

[LSK04]

They propose a novel formulation of a one-class SVM

specially designed for typical IDSs data features.

Continued on next page
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Table 2.17 – continued from previous page

Technique Comments

Peddabachigari

et al. [PAT04]

The authors compare IDSs based on decision trees and

SVMs. They show that decision trees give better over-

all performance than SVMs.

Chen et al.

[CHS05a]

They compare artificial neural networks and SVMs to

detect anomalies on business service management audit

data. They conclude that SVMs outperform artificial

neural networks.

Kang et al.

[KFH05]

They present a new model for representing system calls

and test its efficiency when applied to AID.

Zhang and

Shen [ZS05]

They present modifications to SVMs that allow opti-

mizing their training time and its application on real-

time.

Mukkamala et

al. [MSA05]

They present three methods to detect anomalies based

on artificial neural networks, support vector machines

and multivariate adaptive regression splines. Then

they build a new detector joining the previous ones,

which outperforms them.

Khan et al.

[KAT07]

They present a method to enhance the training effi-

ciency of SVMs using hierarchical clusters.

Peddabachigari

et al.

[PAGT07]

They present four different methods based on different

intelligent system approaches to detect anomalies.

Yu et al.

[YLKP08]

They propose to detect traffic flooding attacks using

MIB data accessed through SNMP. For attack detec-

tion and classification they use different SVMs.
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Unsupervised Learning Unsupervised learning refers to the problem of

trying to find hidden structure in unlabeled data. Since the examples given

to the learner are unlabeled, there is no ground-truth to evaluate a potential

solution. This distinguishes unsupervised learning from supervised learning

and reinforcement learning.

Clustering: Clustering is the task of assigning a set of objects into

groups so that the objects in the same cluster are more similar to each other

than to those in other clusters.

Clustering can be achieved by various algorithms that differ significantly

in their notion of what constitutes a cluster and how to efficiently find them.

Popular notions of clusters include groups with low distances among the clus-

ter members, dense areas of the data space, intervals or particular statistical

distributions.

To detect anomalies using clustering, a clustering algorithm and a simi-

larity measure must be chosen. The most popular similarity measure is the

Euclidean distance. The clustering algorithm builds the clusters based on

the similarity distance. The anomalies are determined by the instances that

do not belong to any cluster, the instances that are far from their cluster

centroids, or data instances that belong to small or sparse clusters. The

interested reader is deferred to [CBK09, Section 6.1] for a discussion of the

differences between nearest neighbor and clustering paradigms.

Table 2.18 summarizes different approaches to AID based on clustering.

Table 2.18: Clustering approaches to AID.

Technique Comments

Portnoy et al.

[PES01]

They present a method to detect anomalies based on

clustering.

Ye and Li

[YL01]

They present a method based on clustering and classi-

fication to recognize intrusion signatures.

Continued on next page
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Table 2.18 – continued from previous page

Technique Comments

Taylor and

Alves-Foss

[TAF02]

They evaluate with real data an network-based AID

system based on clustering.

Eskin et al.

[EAP+02]

They present three methods to detect anomalies, based

on nearest neighbors, clustering and support vector

machines, respectively.

Sequeira and

Zaki [SZ02]

They present a host-based anomaly detection model

which uses clustering to detect anomalous events.

Gómez et al.

[GDN03]

The authors present a novel unsupervised robust clus-

tering technique based on the Gravitational Law and

the second Newton’s motion Law and apply it to

network-based AID.

Zanero and

Savaresi

[ZS04]

They present a two-tier architecture to detect anoma-

lies. The first layer summarizes the packet payload in-

formation, whereas the second layer detects and signals

anomalies.

Liu et al.

[LCLZ04]

They use genetic clustering to automatically establish

clusters and detect intruders by labeling normal and

abnormal groups.

Lakhina et al.

[LCD05]

They present a method to detect anomalies in large

datasets through sample entropy. The detected anoma-

lies are classified using clustering.

Xu et al.

[XZB05]

They present a model to profile backbone traffic using

clustering and entropy.

Kang et al.

[KFH05]

They present a new model for representing system calls

and test its efficiency when applied to AID.

Continued on next page
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Table 2.18 – continued from previous page

Technique Comments

Leung and

Leckie [LL05]

They present a method to detect anomalies using den-

sity and grid-based clustering.

Jiang et al.

[JSW+06]

They present CBUID, a clustering-based method for

the unsupervised intrusion detection.

Khan et al.

[KAT07]

They present a method to enhance the training effi-

ciency of SVMs using hierarchical clusters.

Faraoun

and Boukelif

[FB07]

They present a method to detect anomalies using neu-

ral networks that uses k -means clustering to improve

the training phase.

Gaddam et al.

[GPB07]

They present a two-step method to detect anomalies.

First they apply k -means clustering to cluster the data,

and then they apply ID3 decision to detect subgroups

within each cluster.

Zhong et al.

[ZKS07]

They investigate multiple unsupervised clustering al-

gorithms for AID: k -means, mixture of spherical Gaus-

sians and self-organizing map among others.

Lee et al.

[LKK+08]

They propose a method for proactive detection of

DDoS attacks using entropy and clustering. The

method is able to detect the attacks in their initial

stages.

Xiang et al.

[XYM08]

They propose a multiple-level hybrid classifier for ID

that combines tress classifiers and Bayesian clustering.

Self-Organizing Maps: A Self-Organizing Map (SOM) is a type of

artificial neural network that is trained using unsupervised learning to pro-

duce a low-dimensional, discretized representation of the input space of the



62 Chapter 2. State of the Art

training samples, called a map. This makes SOMs useful for visualizing

low-dimensional views of high-dimensional data, akin to multidimensional

scaling. The model was first described as an artificial neural network by

the Finnish professor Teuvo Kohonen, and therefore it is sometimes called a

Kohonen map [Koh82].

Like most artificial neural networks, SOMs operate in two modes: train-

ing and mapping. Training builds the map using input examples. It is a

competitive process, also called vector quantization. Mapping automatically

classifies a new input vector.

Table 2.19 summarizes different approaches to AID based on self-organizing

maps.

Table 2.19: Self-organizing maps approaches to AID.

Technique Comments

Rhodes et al.

[RMC00]

They use SOMs to recognize anomalies in computer

network data stream.

Lichodzijewski

et al.

[LZHH02a]

They present an AID system based on a SOM.

Lichodzijewski

et al.

[LZHH02b]

They present a host-based unsupervised AID method

using a SOM on user session’s information.

Labib and Ve-

muri [LV02a]

They present a method to detect anomalies based on

a SOM that allows results visualization.

González and

Dasgupta

[GD02b]

They propose a two-step approach for AID. First, a

negative selection algorithm is used to generate abnor-

mal samples, that are used jointly with normal ones in

the training of an artificial neural network. The pro-

posed method is compared with a SOM.

Continued on next page
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Table 2.19 – continued from previous page

Technique Comments

Kayacik et al.

[KZHH03]

They present a method based on 6 SOMs, one for each

analyzed feature, to detect anomalies.

Ramadas et

al. [ROT03]

They present an AID model based on a SOM and apply

it to a six-tuple of network features.

Zanero and

Savaresi

[ZS04]

They present a two-tier architecture to detect anoma-

lies. The first layer summarizes the packet payload in-

formation, whereas the second layer detects and signals

anomalies.

Zanero

[Zan05]

They present a method to detect anomalies by moni-

toring TCP traffic patterns using a SOM.

Sarasamma et

al. [SZH05]

They present an AID system using a hierarchical SOM.

Depren et al.

[DTAC05]

They present a hybrid model for intrusion detection. A

SOM and a decision tree are joined with a rule-based

decision support system.

Vokorokos et

al. [VBC06]

They present an AID system using a SOM.

Bolzoni et al.

[BEH06]

They present a two-tier AID system. The first layer

uses a SOM to classify network traffic while the second

uses PAYL [WS04] to detect the anomalies.

Amini et al.

[AJS06]

They present a framework to detect intrusions using

different kinds of neural networks.

Wang et al.

[WGZY06]

They present two methods for host-based anomaly

detection by creating application profiles. The first

method is based on hidden Markov models while the

second is based on a SOM.

Continued on next page
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Table 2.19 – continued from previous page

Technique Comments

Kayacik et al.

[KZHH07]

They present an AID system using a hierarchical SOM.

Zhong et al.

[ZKS07]

They investigate multiple unsupervised clustering al-

gorithms for AID: k -means, mixture of spherical Gaus-

sians and SOMs among others.

Greensmith et

al. [GFA08]

They present an AIS-based AID focused on the detec-

tion of port scanning using SYN packets, and compare

it with a solution based on a SOM.

Powers and

He [PH08]

They propose a two-component hybrid model. The

first one uses an artificial immune system to detect

anomalies. The second one uses SOMs to classify the

anomalies detected by the artificial immune system.

Zanero and

Serazzi [ZS08]

They present a two-tier AID system. The first layer

uses a SOM to classify network traffic while the second

uses outlier detection to detect the anomalies.

Schmidt et al.

[SPL+09]

They present a framework to monitor smartphones and

remotely detect anomalies using a SOM and artificial

immune system techniques.

Signal Processing

Signal processing deals with operations on or analysis of signals, in either

discrete or continuous time. Signals of interest can include sound, images,

time-varying measurement values and sensor data. Signals are analog or

digital electrical representations of time-varying or spatial-varying physical

quantities.
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The most applied signal processing technique to detect anomalies is based

on the wavelet transform. The wavelet transform is a representation of a

signal by a combination of square-integrable functions, which is very useful

for detecting abrupt changes in the analyzed signals.

Table 2.20 summarizes different approaches to AID based on signal pro-

cessing.

Table 2.20: Signal processing approaches to AID.

Technique Comments

Barford

and Plonka

[BP01]

They present their intention to build a framework to

obtain and analyze anomalies based on flow-level net-

work traces, and present their main characteristics.

Thottan and

Ji [TJ03]

They present a method to detect anomalies based on

statistical signal processing technique based on abrupt

change detection.

Zhang et al.

[ZGGR05]

They introduce the term anomography, which is the

union of anomaly detection using tomographic data.

They present and compare different techniques.

Dainotti et al.

[DPV06b]

They propose a two-tier architecture to detect anoma-

lies. In the first layer two conservative are used to point

to possible anomalies. In the detectors second layer, a

continuous wavelet transform is used to determine the

time instant of the anomaly and its duration.

Zheng and Hu

[ZH06]

They present a method based on vector quantization,

a technique used in image compression.

Kyriakopoulos

and Parish

[KP07]

They use the wavelet transform to detect anomalies at

different timescales. Anomalies are detected as abrupt

signal changes.

Continued on next page
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Table 2.20 – continued from previous page

Technique Comments

Lu and Ghor-

bani [LG09]

They propose an AID system using wavelets and Gaus-

sian mixture models. They define 15 network features

that are able to model the normal network situation.

Then, using wavelets and an autoregressive model they

fit the time series of the characteristics. The residuals

of the regression are used to detect the anomalies.

Silveira et al.

[SDTG10]

They propose ASTUTE, a threshold-based AID tech-

nique focused on detecting correlated flows. They

compare the performance of ASTUTE with two alter-

nate anomaly detectors based on Kalman filters and

wavelets.

Statistical

Statistical AID methods rely on statistics to detect anomalous events. Statis-

tics is the study of the collection, organization, analysis, and interpretation of

data. The underlying principle of any statistical anomaly detection technique

is, quoting Anscombe and Guttman [AG60]:

An anomaly is an observation which is suspected of being

partially or wholly irrelevant because it is not generated by the

stochastic model assumed.

Statistical techniques fit a statistical model (usually for normal behavior)

to the given data and then apply a statistical inference test to determine if

an unseen instance belongs to this model or not.
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Parametric Parametric statistics is a branch of statistics that assumes

that the data have come from a type of probability distribution and makes

inferences about the parameters of the distribution. Parametric methods

establish more assumptions than non-parametric methods. If those extra

assumptions are correct, parametric methods can produce more accurate and

precise estimates. However, if those assumptions are incorrect, parametric

methods can be very misleading.

Gaussian Model: The Gaussian distribution is a two-parameter con-

tinuous probability distribution that has a bell-shaped probability density

function. The Gaussian distribution is considered the most prominent prob-

ability distribution in statistics: it is very tractable analytically, arises as the

outcome of the central limit theorem and the bell shape of the normal distri-

bution makes it a convenient choice for modeling a large variety of random

variables encountered in practice.

Gaussian model-based techniques fit a Gaussian distribution to anomaly-

free data. The parameters are commonly estimated using maximum likeli-

hood estimation [Ald97]. The anomaly score for a data instance is the inverse

of the probability of that instance being generated by the fitted model, and

a threshold is set to determine the anomalies.

Table 2.21 summarizes different approaches to AID based on Gaussian

models.

Table 2.21: Gaussian model approaches to AID.

Technique Comments

Yamanishi

and Takeuchi

[YT01]

They propose an AID method that uses a Gaussian

mixture model as a statistical representation of normal

behaviors.

Ye et al.

[YECV02]

They present an AID system based on a multivariate

Gaussian model. They use the Hotelling’s T2 test to

detect mean-shift anomalies.

Continued on next page
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Table 2.21 – continued from previous page

Technique Comments

Mutz et al.

[MVVK06]

They present a host-based AID system based on several

models of system call arguments. The different models

are joined using a Bayesian network.

Robertson et

al. [RVK+06]

They use different AID models to develop an AID sys-

tem. One of the methods uses a Gaussian distribution

to model attribute length. The system is applied to

detect web-based attacks.

Zhong et al.

[ZKS07]

They investigate multiple unsupervised clustering al-

gorithms for AID: k-means, mixture of spherical Gaus-

sians and self-organizing map among others.

Chhabra et al.

[CSKC08]

They present a method to detect network-wide anoma-

lies with sparse communication between monitors. The

method is based on the quantiles of traffic distributions

after Gaussian modeling.

Lu and Ghor-

bani [LG09]

They propose an AID system using wavelets and Gaus-

sian mixture models. They define 15 network features

that are able to model the normal network situation.

The, using wavelets and an autoregressive model they

fit the time series of the characteristics. The residuals

of the regression are used to detect the anomalies.

Markov Models: A Markov model is a stochastic model that assumes

the Markov property. A stochastic process has the Markov property, also

known as memoryless property, if the conditional probability distribution of

future states of the process (conditional on both past and present values)

depends only upon the present state; that is, given the present, the future

does not depend on the past.
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The most popular Markov models are Markov chains and HMMs. A

Markov chain is a mathematical system that undergoes transitions from one

state to another, between a finite or countable number of possible states.

It is a random process characterized by the Markov property. A Hidden

Markov Model (HMM) is a statistical Markov model in which the system

being modeled is assumed to be a Markov process with unobserved (hidden)

states. In a regular Markov model, the state is directly visible to the observer,

and therefore the state transition probabilities are the only parameters. In a

HMM, the state is not directly visible, but output, dependent on the state,

is visible. Each state has a probability distribution over the possible output

tokens. Therefore the sequence of tokens generated by a HMM gives some

information about the sequence of states.

Table 2.22 summarizes different approaches to AID based on Markov

models.

Table 2.22: Markov model approaches to AID.

Technique Comments

Lane and

Brodley

[LB03]

They introduce two approaches to AID: one employing

instance-based learning and the other using HMMs.

Estevez-

Tapiador

et al.

[ETGTDV03]

They present a finite state machine model for TCP

which is useful for detecting anomalies through the use

of Markov chains.

Yeung and

Ding [YD03]

They present two methods to detect host-based anoma-

lies. System calls are modeled using a HMM or fre-

quency distributions (histograms).

Wang et al.

[WGZ04b]

They present a model for detecting anomalies by ana-

lyzing system call logs using HMMs.

Continued on next page
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Technique Comments

Ye et al.

[YZB04]

They present the application of Markov chains to

anomalies by building a model for system activity tran-

sitions.

Estevez-

Tapiador

et al.

[ETGTDV05]

They present a method based on the monitoring of in-

coming HTTP request to detect attacks against web

servers. The detection is accomplished through a

Markovian model.

Khanna and

Liu [KL06]

They present a method to detect anomalies on mobile

ad-hoc networks using a HMM.

Wang et al.

[WGZY06]

They present two methods for host-based anomaly

detection by creating application profiles. The first

method is based on HMMs while the second is based

on a self-organizing map.

Mutz et al.

[MVVK06]

They present a host-based AID system based on several

models of system call arguments. The different models

are joined using a Bayesian network.

Florez-

Larrahondo

et al.

[FLLD+06]

They propose the integration of intelligent anomaly de-

tection agents for distributed monitoring. They moni-

tor operating system calls with neural network models

and function calls with HMMs.

Paschalidis

and Smarag-

dakis [PS09]

They propose two methods to on-line spatial AID.

One is model-based using a Markov modulated process

whereas the other is model-free.

Mixture of Parametric Distributions: A mixture model is a prob-

abilistic model for representing the presence of subpopulations within an
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overall population, without requiring that an observed dataset should iden-

tify the subpopulation to which an individual observation belongs. Generally,

mixture models are used to make statistical inferences about the properties of

the subpopulations given only observations on the pooled population, with-

out subpopulation-identity information.

There are two possible approaches using mixture models. The first one

use a set of distributions to model the normal behavior, while using a differ-

ent set of distributions to model the anomalous behavior. Then, new data

instances are assigned to any of the distributions based on their likelihood,

and in the case such distribution is used to model the anomalous behavior,

data instances are flagged as anomalous. The second approach only models

the normal instances as a mixture of parametric distributions, and the data

instances that have low likelihood of belonging to the any of the distributions

are reported as anomalous.

Table 2.23 summarizes different approaches to AID based on mixtures of

parametric distributions.

Table 2.23: Mixture of parametric distributions ap-

proaches to AID.

Technique Comments

Eskin [Esk00] They present a method to detect anomalies using a

mixture model for explaining the presence of anomalies

in the data.

Yamanishi

and Takeuchi

[YT01]

They propose an AID method that uses a Gaussian

mixture model as a statistical representation of normal

behaviors.

Yamanishi

et al.

[YTWM04]

They propose a method to detect anomalies using a

finite mixture model.

Continued on next page
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Table 2.23 – continued from previous page

Technique Comments

Zhong et al.

[ZKS07]

They investigate multiple unsupervised clustering al-

gorithms for AID: k -means, mixture of spherical Gaus-

sians and self-organizing map among others.

Lu and Ghor-

bani [LG09]

They propose an AID system using wavelets and Gaus-

sian mixture models. They define 15 network features

that are able to model the normal network situation.

The, using wavelets and an autoregressive model they

fit the time series of the characteristics. The residuals

of the regression are used to detect the anomalies.

Nonparametric Nonparametric statistics refer to statistical techniques

that either do not rely on data belonging to any particular distribution or do

not assume that the structure of a model is fixed. Such techniques typically

make fewer assumptions regarding the data when compared to parametric

techniques.

Histogram: A histogram is a graphical representation showing a visual

impression of the distribution of data. It is an estimate of the probability

distribution of a random variable and was first introduced by Karl Pear-

son [Pea95]. A histogram consists of tabular frequencies, shown as adjacent

rectangles, erected over discrete intervals (bins), with an area equal to the

frequency of the observations in the interval. A histogram may also be nor-

malized displaying relative frequencies.

Histogram-based AID techniques build histograms of the analyzed data

to maintain a profile of the normal data. The histogram is build using attack-

free data, and new data instances are labeled as anomalous if they do not

fall in any of the histogram bins.

Table 2.24 summarizes different approaches to AID based on histograms.
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Table 2.24: Histogram-based approaches to AID.

Technique Comments

Eskin [Esk00] They present a method to detect anomalies using a

mixture model for explaining the presence of anomalies

in the data.

Yamanishi

and Takeuchi

[YT01]

They propose an AID method that uses a Gaussian

mixture model as a statistical representation of normal

behaviors.

Sekar et al.

[SGF+02]

They present a method to detect anomalies based on

protocol modeling with finite state machines.

Krügel et al.

[KTK02]

They present a method to detect anomalies based on

packet payload modeling. Then they use histograms

and a variation of χ2 test to detect deviations.

Yeung and

Ding [YD03]

They present two methods to detect host-based anoma-

lies. System calls are modeled using a hidden Markov

model or frequency distributions.

Li and

Manikopoulos

[LM03]

The authors present MAID, a histogram-based AIDS

that uses artificial neural network classifiers to detect

DoS attacks using MIB traffic parameters.

Yamanishi

et al.

[YTWM04]

They propose a method to detect anomalies using a

finite mixture model.

Mutz et al.

[MVVK06]

They present a host-based AID system based on several

models of system call arguments. The different models

are joined using a Bayesian network.
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Kernel Function: Kernel functions are used to estimate probability

density distributions. Although kernel-based techniques are nonparametric,

anomaly detection techniques based on kernel functions are similar to the

parametric methods aforementioned. The only difference is how the density

is estimated.

Table 2.25 summarizes different approaches to AID based on kernel func-

tions.

Table 2.25: Kernel function-based approaches to AID.

Technique Comments

Yeung and

Chow [YC02]

They present a method to detect anomalies using

Parzen windows with Gaussian kernels.

Ahmed et al.

[ACL07]

They present a kernel-based method to detect anoma-

lies that is amenable for on-line deployment.

Ahmed et al.

[AOC07]

They investigate the use of the block-based One-Class

Neighbor Machine and the recursive Kernel-based On-

line Anomaly Detection algorithms for network ID.

Sharma et al.

[SPP07]

They present an IDS based on system call sequences

using text processing techniques. As similarity mea-

sure a kernel function is used, and k -NN classify the

processes as either normal or abnormal.

Principal Component Analysis: Principal Component Analysis (PCA)

is an orthogonal transformation to convert a set of observations of possibly

correlated variables into a set of values of linearly uncorrelated variables

called principal components. The number of principal components is less

than or equal to the number of original variables.



2.2. Anomaly Detection 75

The assumption of PCA-based AID techniques is that data can be em-

bedded into a subspace of lower dimensionality where normal and anomalous

instances differ significantly.

Table 2.26 summarizes different approaches to AID based on principal

component analysis.

Table 2.26: Principal component analysis based ap-

proaches to AID.

Technique Comments

Shyu et al.

[SCSC03]

They present a method to detect anomalies based on

outlier detection using PCA.

Lakhina et al.

[LCD04b]

They use PCA to decompose network traffic in regu-

lar (anomaly-free) and noisy components which contain

spikes that point to anomalies.

Bouzida et al.

[BCCBG04]

They use PCA to alleviate the decision process of deci-

sion trees and nearest neighbor based AID techniques.

Lakhina et al.

[LCD04a]

They extend their work presented in [LCD04b] apply-

ing it to origin-destination flows. Moreover, they per-

form a manual classification of the detected anomalies.

Labib and Ve-

muri [LV04]

They present a PCA-based method to detect anomalies

focused on DoS attacks.

Oka et al.

[OOAK04]

They present a method to detect anomalies using sys-

tem information and eigen co-occurence matrix, which

is a technique close to PCA.

Wang et al.

[WGZ04a]

They present a ID method based on PCA with low

overhead and high efficiency.

Continued on next page
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Table 2.26 – continued from previous page

Technique Comments

Zhang et al.

[ZGGR05]

They introduce the term anomography, which is the

union of anomaly detection using tomographic data.

They present and compare different techniques.

Li et al.

[LBC+06]

They present an improvement to network-wide PCA-

based AID by using sketches.

Huang et al.

[HGH+06]

They present a framework to distributed AID by using

sophisticated thresholds. Moreover, they use PCA to

separate the network traffic in regular and noisy com-

ponents.

Wang and

Battiti

[WB06]

They present novel method for intrusion identification

in computer networks based on PCA.

Huang et al.

[HNG+07a]

The authors build a method to detect network-wide

anomalies based on the method proposed in [LCD04b],

but using less communication with the coordinator

node.

Ringberg et

al. [RSRD07]

The authors evaluate the application of PCA to de-

tect anomalies. They show that using PCA-based AID

techniques is harder because of the parameter tuning.

Huang et al.

[HNG+07b]

They present a framework to detect network-wide

anomalies in a distributed but coordinated fashion.

Huang et al.

[HFLX07]

They present a method to analyze BGP announce-

ments in large-scale networks. Using PCA they man-

age to detect events that cause network problems.

Liu et al.

[LYY07]

The authors propose a hybrid IDS using PCA neural

networks.

Continued on next page
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Table 2.26 – continued from previous page

Technique Comments

Wang et al.

[WGZ08]

They present a method to detect anomalies that is ap-

plicable to large datasets. It is based on PCA using

system call registries.

Schmidt et al.

[SPL+09]

They present a framework to monitor smartphones and

remotely detect anomalies using self-organizing maps

and artificial immune system techniques. The features

are selected using PCA.

Xu et al.

[XHF+09]

They present a method to extract useful information

from system logs and use it for PCA-based AID.

Brauckhoff et

al. [BSM09]

They analyze the problems of using PCA for AID and

propose the Karhunen-Loeve expansion to solve them.

Rubinstein et

al. [RNH+09]

They evaluate poisoning techniques to evade attack de-

tection in AID systems and propose an antidote using

robust statistics on the PCA-subspace method.

Threshold: Threshold-based techniques for AID detection are the sim-

plest statistical process control [SRRW00] mechanisms. Usually, the thresh-

olds are predefined based on heuristics or experience of the manager. The

thresholds may be upper or lower bounds that when surpassed provide ev-

idence of an attack. When the system has collected the sufficient enough

statistics, the thresholds establish when to place an alarm.

Table 2.27 summarizes different approaches to AID based on thresholds.
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Table 2.27: Threshold based approaches to AID.

Technique Comments

Staniford et

al. [SHM02]

They present SPADE, a statistical packet anomaly de-

tection engine to detect portscans.

Williamson

[Wil02]

They present a method to detect virus on the Internet.

They use a threshold-based technique to detect new

outgoing connections of infected hosts.

Jung et al.

[JPBB04]

They present a method to detect portscans based on

thresholds and sequential reasoning.

Wu et al.

[WVGK04]

They present a method to detect worms based on

checking which hosts are attempting connections to

unassigned IP addresses. They confirm the infection

by setting thresholds in different network statistics.

Borders and

Prakash

[BP04]

They present a method to detect malicious outgoing

connections. The detection is targeted to already in-

fected hosts, and is based on thresholds over outgoing

connections’ data.

Xu et al.

[XZB05]

They present a model to profile backbone traffic using

clustering and entropy.

Siris and

Papagalou

[SP06]

They present two algorithms to detect anomalies,

specifically SYN flooding DoS attacks. The pro-

posed algorithms are based on threshold and CUSUM

[Pag54].

Huang et al.

[HGH+06]

They present a framework to distributed AID by using

sophisticated thresholds. Moreover, they use PCA to

separate the network traffic in regular and noisy com-

ponents.

Continued on next page
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Table 2.27 – continued from previous page

Technique Comments

Agosta et al.

[ADWCL07]

They propose the use of a supervised classifier trained

as a traffic predictor to control a time-varying detection

threshold for the detection of worms in a distributed

fashion.

Ashfaq et al.

[ARM+08]

They present a comparison of eight AID systems fo-

cused on detecting portscans. The best performance is

exhibited by entropy-based and threshold random walk

techniques.

Silveira et al.

[SDTG10]

They propose ASTUTE, a threshold-based AID tech-

nique focused on detecting correlated flows. They

compare the performance of ASTUTE with two alter-

nate anomaly detectors based on Kalman filters and

wavelets.

Burkhart et

al. [BSMD10]

They propose SEPIA, a library for multiparty compu-

tation that allows preserving privacy when aggregating

multi-domain network events and statistics. They illus-

trate the framework detecting anomalies using entropy

and thresholds.

Time Series Analysis

A time series is a sequence of data points, measured typically at successive

time instants spaced at uniform time intervals. Time series analysis com-

prises methods for analyzing time series data in order to extract meaningful

statistics and other characteristics of the data.
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Change Detection Change Detection (CD) is a statistical analysis tool

that tries to identify changes in the probability distribution of a stochas-

tic process or time series. In general the problem concerns both detecting

whether or not a change has occurred, or whether several changes might have

occurred, and identifying the times of any such changes. AID techniques

based on CD assume that any change in the modeled process is related with

an anomaly. In Chapter 3 we present an example of a CD technique to detect

sustained changes in large-scale networks.

Table 2.28 summarizes different approaches to AID based on change de-

tection.

Table 2.28: Change detection based approaches to AID.

Technique Comments

Choi et al.

[CPZ02]

They present a method to detect change points in net-

work traffic volume by detecting non-stationarities.

Cabrera et al.

[CLQ+02]

The authors propose the detection of DDoS attacks by

modeling the rate of change of key MIBs variables.

Thottan and

Ji [TJ03]

They present a method to detect anomalies based on

statistical signal processing technique based on abrupt

change detection.

Schweller et

al. [SGPC04]

They present a method to detect change points based

on sketches (reverse hashing).

Siris and

Papagalou

[SP06]

They present two algorithms to detect anomalies,

specifically SYN flooding DoS attacks. The pro-

posed algorithms are based on threshold and CUSUM

[Pag54].

Chen and

Hwang

[CH06]

They present a method to detect DDoS attacks by us-

ing change aggregation trees at each router.

Continued on next page
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Table 2.28 – continued from previous page

Technique Comments

Tartakovsky

et al.

[TRBK06a]

They present three methods to detect anomalies based

on CUSUM and applied to detect TCP SYN flooding

attacks.

Żuraniewski

and Rincón

[ŻR06]

They propose two methods for detecting change points

in the network traffic fractality. The first one is based

on a cumulated sum (CUSUM) technique while the sec-

ond uses the Schwarz Information Criterion.

Tartakovsky

et al.

[TRBK06b]

They present two CD methods to detect anomalies.

The methods differ in the training step, and are applied

to network traffic.

Scherrer et al.

[SLO+07]

They present a model for Internet traffic at different ag-

gregation levels using a non-Gaussian process. Based

on such model, they present a method to detect anoma-

lies based on change detection on the parameters of the

model.

Dewaele et al.

[DFB+07]

They present a method to detect anomalies at a sin-

gle point in the network. To that end, sketches are

used to condense the information on similar groups.

Then, each group is modeled with a multiresolution

non-Gaussian process that is used to detect the anoma-

lies.

Chen et al.

[CHK07]

They present an architecture to detect DDoS attacks

using CD in the traffic volumes of different routers.

Schweller et

al. [SLC+07]

They propose the detection of volume-based anoma-

lies through change detection, using prediction and re-

versible sketches.

Continued on next page



82 Chapter 2. State of the Art

Table 2.28 – continued from previous page

Technique Comments

Rebahi et al.

[RSM08]

They present a CD method to detect attacks against

IP multimedia subsystems based on CUSUM.

D’Alconzo

et al.

[DCRM10]

They present a method to detect anomalies on 3G mo-

bile traffic. The method is based on detecting changes

on traffic distributions.

Mandjes and

Żuraniewski

[MŻ11]

They propose the use of CUSUM-type change point

detection techniques for detecting overload periods in

network links in a setting in which each connection

roughly consumes the same amount of bandwidth.

Forecasting Time Series Forecasting (TSF) is the use of a model to predict

future values based on previously observed values. Typically, the predicted

values are given along with a confidence interval. Consequently, the AID

techniques based on TSF flag as anomalous any data instance that lie outside

the confidence interval provided on their prediction. In this section we can

also include regression models, where the residuals for the test instances are

used to provide anomaly scores. In Chapter 4 we provide an example of a

TSF technique for the detection of anomalies in Voice over IP (VoIP) call

count data.

Table 2.29 summarizes different approaches to AID based on forecasting.
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Table 2.29: Forecasting approaches to AID.

Technique Comments

Brutlag

[Bru00]

The author propose a method to detect aberrant be-

havior using the Holt-Winters prediction method.

Eskin et al.

[ELS01]

They present the use of dynamic windows in the de-

tection of system-call anomalies. They use prediction

to detect whether a sequence is probable or not.

Balajinath

and Ragha-

van [BR01]

They use genetic algorithms to learn the individual

user behavior and detect anomalies by predicting cur-

rent user behavior based on past observations.

Dagon et al.

[DQG+04]

They present a method to detect worms by using hon-

eypots (§ 2.2.5). They use logit regression to detect

clusters of relevant events.

Ye et al.

[YCB04]

They present two models for forecasting system calls

and detect anomalies when the χ2 distance to the pre-

diction is high.

Kang et al.

[KFH05]

They present a new model for representing system calls

and test its efficiency when applied to AID.

Zhang et al.

[ZGGR05]

They introduce the term anomography, which is the

union of anomaly detection using tomographic data.

They present and compare different techniques.

Schweller et

al. [SLC+07]

They propose the detection of volume-based anoma-

lies through change detection, using prediction and re-

versible sketches.

Continued on next page
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Table 2.29 – continued from previous page

Technique Comments

Agosta et al.

[ADWCL07]

They propose the use of a supervised classifier trained

as a traffic predictor to control a time-varying detection

threshold for the detection of worms in a distributed

fashion.

Lu and Ghor-

bani [LG09]

They propose an AID system using wavelets and Gaus-

sian mixture models. They define 15 network features

that are able to model the normal network situation.

The, using wavelets and an autoregressive model they

fit the time series of the characteristics. The residuals

of the regression are used to detect the anomalies.

Silveira et al.

[SDTG10]

They propose ASTUTE, a threshold-based AID tech-

nique focused on detecting correlated flows. They

compare the performance of ASTUTE with two alter-

nate anomaly detectors based on Kalman filters and

wavelets.

2.2.4 Problems of Anomaly Intrusion Detection

The application and development of AID systems is problematic in many

ways. First, the evaluation of new proposed AID systems lacks of properly

labeled data. This situation also obstruct the comparison of different AID

systems in order to select the system which better fits the needs of the man-

ager. Second, current network monitoring approaches are based on sampling

to cope with the ever-increasing communication speeds. This entails a infor-

mation reduction that may spoil the AID techniques applied in current IDSs.

However, despite of the traffic sampling, the amount of data to be analyzed

by an IDS is humongous, and usually is high-dimensional. Working with such
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large datasets make the training and testing phases of AID systems very time

consuming, and it may even prevent some AID systems to be deployed in

an on-line fashion. Moreover, the presence of none-relevant features in such

data sets may also reduce the detection accuracy of some AID systems. Con-

sequently, feature selection has gained interest in the recent years in order

to work only with the most relevant features to detect the target intrusions.

Finally, the fact that AID systems place large number of false alarms is vox

populi. Such large number of false positives is the reason for the limited

deployment of AID systems in real networks under production, because the

network manager has to manually inspect all the raised alarms in order to

filter those that were not related with a security compromise, and automated

responses to detected attacks cannot be applied, because they may lead to

self-imposed denials of service. We further analyze these problems related

with AID in what follows.

Evaluation of IDSs

Evaluating IDSs requires that the datasets used for testing have properly

labeled the data instances as normal or anomalous. This is also a require-

ment for the training datasets in supervised learning techniques. However,

labeling audit data is a very challenging and time consuming task. Such dif-

ficulty is observed by the scarce availability of free datasets for testing IDSs.

The most popular, and almost the only, labeled datasets for evaluating IDSs

were provided by the Lincoln Laboratory at MIT under the DARPA sponsor-

ship. Such laboratory provided two datasets ([LFG+00] and [LHF+00]) for

off-line evaluation of IDSs, but the process was discontinued, mainly because

of the mentioned difficulties in generating such datasets. The datasets were

generated in a controlled private network, with a mix of real and simulated

machines using custom software automata that generated background traffic,

while the 32 different attack types were targeted to the real machines. There

were four different sources for the datasets: sniffed network traffic, Solaris

Basic Security Mode (BSM) audit data, Windows NT audit data (added

in [LHF+00]), and file-system snapshots; and two datasets were provided
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for evaluation, one with labeled attacks for training purposes, and an unla-

beled one for fairly testing the different AID approaches. Later, Stolfo et

al. extracted basic features and derived secondary features from these origi-

nal data and created the KDD Cup 1999 data2 that was used for the Third

International Knowledge Discovery and Data Mining Tools competition.

However, despite the impressive undertaking of the Lincoln Lab evalua-

tion program, it has raised criticism regarding the methodologies used in the

evaluation and the generation of the datasets [McH00]. McHugh stressed the

lack of documentation of the experimental approach and the relative poor

basis for characterizing IDSs that the measures used in the evaluation pro-

vide. Such measures were the operating points of the different algorithms

tested. Receiver Operating Characteristic (ROC) techniques analyze the

trade-off between false alarm and detection rate for detection systems, and

were originally developed in the field of signal detection. McHugh criticizes

that ROC analysis is not a constructive measure, claim raised by some of the

participants in the evaluation as well. This has motivated the development

of more specific measures for evaluating IDSs. For instance, Cárdenas et

al. [CBS06] propose Intrusion Detection Operating Characteristic (IDOC)

curves as a new IDS performance trade-off which combines in an intuitive

way the variables that are more relevant to the ID evaluation process. Ring-

berg et al. [RRR08] present the basic needs for evaluating AID systems,

claiming that the field deserves more rigor and an universal framework that

permits performance comparisons. They propose to use anomaly simula-

tion and background traffic in addition to labeled datasets to enhance IDSs

evaluation.

Finally, despite of the shortcomings pointed out by McHugh, there is a

large amount of research on IDSs that have used the DARPA datasets to

evaluate their proposals. We would like to note that these datasets are too

old for being useful for evaluation, and comparing the performance of new

developed techniques for AID with those evaluated in DARPA competitions

is extremely unfair.

2The dataset is available at http://kdd.ics.uci.edu/databases/kddcup99/

kddcup99.html

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Sampling

With the ever-increasing speeds of communication channels, sampling is a

must rather than an option in network traffic measurement. Sampling pro-

cedures are applied in several monitoring systems, such as NetFlow, and ba-

sically selects individuals (e.g., packets, flows, etc.) from within a population

(i.e., the network traffic) to estimate characteristics of the whole population

when observing the whole population is infeasible. However, despite of its

necessity, there have been several works pointing out the drawbacks that

sampling entails for AID ([BTW+06, MCS+06, MSC+06]).

These works have evaluated the impact of sampling on anomaly detection

metrics and whether sampled data is sufficient for anomaly detection. The

authors of [BTW+06] have observed that simple random sampling, which

is the most typically applied sampling technique, does not severely affect

the distributions of the number of bytes and packets, whereas the sampled

flow distribution significantly differs from the population counterpart. As

a consequence, the AID approaches leveraging on the amount of bytes or

packets work almost perfectly on sampled data, but flow-based AID tech-

niques [SSS+10] experience a decrement in their performance. Furthermore,

they found out that sampling affect the most the volume-based techniques,

whereas entropy-based alternatives maintain almost all their properties un-

altered, thus recommending their use when using sampled data.

There exist other sampling methods proposed in the literature, and some

of them are evaluated by Mai et al. [MCS+06]. Specifically, they compare

the simple random sampling with smart sampling [DLT03], flow-sampling

[DLT04] and sample-and-hold [EV03]. Among these techniques, the best

performance is observed with flow-sampling because it maintain higher accu-

racy at the flow level. On the other hand, smart sampling and sample-and-

hold are focused on detecting large flows (heavy-hitters), which makes them

irrelevant for AID because AID techniques focus typically on small flows.

To solve the problems that come along with sampling network traffic, An-

droulidakis et al. [ACP09] present an study on how network traffic sampling

may be improved in order that not only the impact of the sampling process
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on AID techniques is reduced, but also AID gets improved after the sampling

process. To this end, they propose selective sampling, that is able to remove

not interesting network data by opportunistically and preferentially sampling

traffic data with the aim of achieving a magnification of the appearance of

anomalies within the sampled data set.

Feature Selection and Reduction

Reducing the number of features used in an AID system reduces the training

and detection times. This is very advantageous, specifically reducing the

detection times, as it enable the deployment of the AID system to work in an

on-line fashion. Consequently, selecting an appropriate number of features on

which the AID approach is designed enhances the detection system, and may

also improve the system’s performance in a similar way that does selective

sampling [ACP09].

The problem of feature selection is of paramount importance in genetics,

where the number of features is overwhelming. It focuses on removing ir-

relevant features (those that not contribute to differentiate the instances in

the classification problem) and redundant features (those whose information

is contained or can be derived from other features). Many feature selection

techniques have been developed, and the interested reader is referred to the

survey of Chen et al. [CLCG06] for a detailed review of the state of the art.

An alternative to feature selection is feature transformation. Examples

of feature transformation are singular value decomposition and PCA, which

is one of the reasons for this technique being so popular for AID (see Sec-

tion 2.2.3).

False Positives

Current AID systems are popular for placing large number of false alarms.

Such false alarms appear as a result of the lack of interpretation of the dis-

covered suspicious events—an AID system classify audit data as normal or

anomalous, but do not provide detailed information regarding the nature of

the abnormality. False positives reduce the performance of AID system for



2.2. Anomaly Detection 89

several reasons. First of all, there is a very high cost of errors, specially

when compared to other fields where anomaly detection is applied [SP10].

A false positive forces the manager to spend time examining the reported

incident to ensure that the flagged event is malicious, discovering eventually

that it is benign. On the other hand, false negatives entail a compromise of

the monitored system, which may cause serious damage to an organization.

Furthermore, the high number of false positives prevent AID systems to take

automated response to the discovered events. Blocking an attack by dy-

namically reconfiguring a firewall to drop packets from the intruder-flagged

connection may result in an undesired denial of service to a benign user if it

is done in response to a legal network action wrongly identified as an attack.

For this reason, there have been studies to reduce the number of false

positives. Noel et al. [NWY02] propose a framework to characterize ID

activities: degree of attack guilt. This framework allows to assign a con-

fidence score to reported alarms and share such scores in order to reduce

the false positives rate. Kruegel et al. [KMRV03] identified two reasons for

the large number of false alarms, namely the simplistic aggregation of model

outputs in the decision phase and the lack of integration of additional infor-

mation into the decision process, and proposed an event classification scheme

to mitigate such shortcomings. The event classification scheme is based on

Bayesian networks, which improve the aggregation of different model outputs

and the incorporation of additional information. Their experimental results

show that the accuracy of the event classification process is significantly im-

proved. Later, Axelsson [Axe04] proposed to use a visualization process to

interact with the training of a Bayesian classifier, in order to reduce the false

positives rate by adjusting the model parameters. More recently, Gil Pérez

et al. [GPGMMPSG12] proposed to assign a reputation score to each IDS

within a network, where the different IDSs collaborate to detect distributed

attacks. The reputation score is used to discard alarms from low reputation

IDSs, thus lowering the number of false alarms. Such reputation score is

based on previous interactions and alerts placed by each IDS.
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2.2.5 Future Trends in Anomaly Intrusion Detection

Future trends in AID have to focus on solving the problems pointed out in

the previous section, principally those related with evaluation of IDSs and

reduction of false positives rate. Regarding the former, more effort is needed

to develop ground-truth datasets, where the behavior-deviating patterns are

properly labeled and hence practitioners may evaluate their proposals to

be aware of their shortcomings. In addition, a fair comparison metric for

comparing different AID solutions is still missing. Those metrics proposed as

alternative to ROC analysis lack of generality, as the parameters values they

use (such as the cost associated with false positives/negatives) are system

dependent.

Regarding the false positives rate, we believe that reducing it is the main

open challenge in AID. One intermediate step could be the reduction of man-

ager’s analysis time spent in checking the reported alarms. To accomplish

such time reduction, we propose to use clustering techniques in order to

inspect groups of alarms instead of reviewing them individually. If an ap-

propriate clustering is obtained, then the manager would be able to inspect

only several alarms from a cluster in order to decide whether a given alarm

cluster constitutes a real threat or is a false alarm, thus saving great amount

of expensive manager time.

Another field of further investigation is to find ways to keep pace with cur-

rent networks’ increased size, speed, and dynamics. Paxson et al. [PAD+06]

propose to rethink hardware support for network analysis and ID. In this

light, the use of Graphic Processing Unit (GPU) acceleration to design high-

performance software, such as PacketShader [HJPM10] (a software router

framework for general packet processing with GPU acceleration) may open

new avenues for improving AID systems’ performance.

We would also like to note that, after the exhaustive revision of the lit-

erature provided, we have observed that the number of spatial-based AID

systems is surprisingly scarce. It is our belief that spatial-based AID systems

would gain interest by practitioners given the benefits that such approaches

may imply for the management of large-scale networks. Spatial analysis of
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the anomalies may in addition detect different kinds of attacks that go un-

noticed when observed at a single network point, by taking into account

correlations of the observed values at different network points and not only

its marginal distributions.

Finally, we believe that there is still a large gap to fill in the intrusion

security area based on detection of anomalies in order to be deployed in

real systems under production. Current approaches are based on hybrid

system, where a misuse intrusion detection components are used to detect

well-known attacks at high detection rates with the support of AID compo-

nents to quarantine unknown kind of attacks. Such systems would benefit

the usage of HPs in addition. A Honeypot (HP) is a trap set to detect,

deflect, or in some manner counteract attempts of unauthorized use of in-

formation systems. Generally it consists of a computer, data, or a network

site that appears to be part of a real network, but is actually isolated and

monitored, and which seems to contain information or a resource of value to

attackers. Consequently, any connection attempt to the HP is highly prob-

able of being a malicious activity. In this way, HPs may be regarded as a

surveillance system using cameras that record the intruder when trying to

open a safeguard that allow observing the intruder’s techniques to evade the

systems security. Furthermore, HPs will keep the attacker busy leaving more

time for the system manager to take response, and, as a consequence, HPs

may waste attackers’ time and force them to gave up promptly after failing

to reach their objectives.

2.2.6 Conclusions

This section presented a survey of the state of the art of anomaly intrusion

detection, focusing on the period 2000-2012. During this period, numerous

studies have presented research in new ways of discovering abnormal events

using network or host data. We believe this is the more comprehensive survey

on AID systems to date. We have presented in addition a survey of the

proposed taxonomies to classify the existing AID techniques, and proposed

a new comprehensive one. The taxonomy allowed us to present the main
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techniques applied in AID in an structured manner.

Furthermore, we have analyzed the main problems affecting the AID

paradigm, and which future trends should be addressed in order to solve

them. We hope that this work can serve as a useful guide through the maze

of the literature, enabling the understanding of the different approaches to

allow new practitioners focusing on the AID techniques that are prone to

provide higher performance given their specific requirements.



Chapter 3

Detection of Traffic Changes in

Large-Scale Backbone

Networks

Network management systems produce a huge amount of data in large-scale

networks. For example, the Spanish academic network features hundreds of

access and backbone links, each of which produces a link utilization time se-

ries. For the purpose of detecting relevant changes in traffic load a visual

inspection of all such time series is required. As a result, the operational ex-

penditure increases. In this chapter, we present an on-line change detection

algorithm to identify the relevant change points in link utilization, which are

presented to the network manager through a graphical user interface. Conse-

quently, the network manager only inspects those links that show a stationary

and statistically significant change in the link load. These changes may call

for link’s capacity upgrade in order to maintain desired levels of Quality of

Service.

3.1 Introduction

In large-scale networks, the amount of information provided by management

systems is huge. For example, time series of traffic volume or network link

93
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load may be provided per each access link. Network managers face with

visual inspection of far too many graphs, which motivates automated proce-

dures that basically pinpoint which are the links that deviate from a typical

behavior and demand intervention from the manager, out of the many links

present in the network. We propose a load model for network links that is

capable of efficiently tracking sustained load changes in network links. These

sustained changes may call for link’s capacity upgrade in order to maintain

a desired level of Quality of Service (QoS). Our model is suitable for any

network link with high aggregation—e.g., backbone links and access links

of large institutions. It is aimed at facilitating network-wide monitoring of

large-scale networks, by clearly identifying network links with a varying traf-

fic behavior. Moreover, forensic data for each link can be later analyzed

off-line, in order to spot possible correlations that serve to understand how

the detected load changes in one link have impacted the performance of the

rest of the network.

Previous approaches to network-wide traffic analysis use point-to-point

[BDTJ02, LPC+04] or point-to-multipoint [FGL+01] models for analyzing

the demands in backbone networks. The key concept in these works is the

Origin-Destination (OD) flow. An OD flow is a time series that comprises

all the traffic that enters the backbone in a given Point of Presence (PoP)

and leaves in another PoP. Therefore, the analysis of the backbone demands

is divided into n2 time series, each representing an OD flow, being n the

number of PoPs in the backbone network. To compute the OD flow time

series, the authors of these works leverage on flow level measurements to find

the amount of traffic entering the network at each PoP and routing informa-

tion measurements to determine the egress point of each measured flow. Our

approach to network-wide traffic analysis reduces the complexity of the afore-

mentioned methodologies leveraging on link time series. Network topologies

in backbone networks are usually far from being a completely meshed topol-

ogy. Thus, the number of links in a backbone network is considerably lower

than the square of the number of nodes. In our case study, the Spanish

academic network RedIRIS1 comprises 18 PoPs and only 30 backbone links.

1http://www.rediris.es/index.php.en

http://www.rediris.es/index.php.en


3.1. Introduction 95

Therefore, our network-wide traffic analysis approach accounts for only 60

elements to monitor (because the links are bidirectional), considerably less

than the 182 = 324 different OD flows with the RedIRIS topology. Moreover,

our model is fed only with average load measurements at high granularity

(90 minutes intervals), which can be easily obtained from Simple Network

Management Protocol (SNMP) measurements [Sta98]. This also entails a

complexity reduction compared with the other network-wide traffic analysis

approaches existing in the literature. Our model needs simpler measure-

ments and simpler post-processing steps for the measurements, which makes

it amenable for on-line application and enables its utilization in a broader

set of network links.

We think this work is relevant to network operators and the research

community. On one hand, network operators are aware of the importance of

detection of traffic changes, which are relevant at different timescales. Load

changes at short timescales are relevant for attack detection, where a sudden

change in the load may be related with flash crowds or Denial of Service

(DoS) attacks [BKPR02, CH06, KSZC03, SGPC04]. On the contrary, load

changes at long timescales (in the scale of days or weeks) should be taken into

account for traffic engineering task such as load balancing and capacity plan-

ning in order to guarantee some predefined levels of QoS [PTZD05, FGL+00].

To the best of our knowledge, there is little existing work in the literature

regarding traffic engineering procedures based on the detection of statisti-

cally significant sustained changes, and the more relevant approaches are

normally based on simple time series forecasting techniques [Bru00] focused

on short-term changes. In those cases, a prediction of the load is used to

compute confidence bands, where the actual value of the load should lie in

under normal network performance. However, this methodology is not able

to determine whether the change is stationary (i.e., the changed value is

maintained over several time periods) and therefore the traffic behavior has

changed. Consequently, in practice, the network manager should visually

inspect the different link load plots to make such decision. In contrast, our

methodology focuses only on sustained changes that may imply a shift in

users’ behavior, and the network manager should take action in response to
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such shift in order to maintain the offered QoS on the network.

In this chapter, we provide techniques that allow the network manager to

focus only on those links that show stationary load changes. The case study

is the Spanish Academic Network RedIRIS. We note that RedIRIS features

30 bidirectional backbone links and hundreds of connections to large insti-

tutions, and it is not feasible to analyze all of the corresponding time series

separately from an Operational Expenditures (OPEX) point of view. Con-

sequently, our proposed technique filters out those links which do not show

statistically significant changes in the traffic behavior. As a result, the OPEX

is largely reduced, because the traffic engineering tasks are only performed on

a reduced subset of links. To identify such changes, we developed an on-line

algorithm that uses clustering techniques and statistically sound method-

ologies to determine the location and statistical significance of the change

points. In addition to providing valuable techniques to discriminate load-

changing links, which have a direct impact in OPEX reduction, our findings

also serve to gain insight about the dynamics of load change in large-scale

networks. Is the load change continuous or showing sudden change in mean?

How frequent are load changes in a large network? Our analysis serves to

address these issues with a dataset that is three-year long and comprises the

whole Spanish academic network—i.e., more than one million users.

Our proposed algorithm is based on a fairly multivariate Gaussian vector

that models the daily traffic pattern of links with large aggregation level.

Such model splits the 24 hour day period into 16 non-overlapping intervals

of 90 minutes starting at midnight, each of which is a vector component. We

have validated our fairly Gaussian model with real network measurements

obtained also from the RedIRIS network, showing evidence that the signifi-

cance of the normal theory tests of mean vectors and covariance matrices is

not severely affected by the deviations from normality existing in actual data.

This result allows us to apply multivariate normal inference to the mean vec-

tor, namely the Multivariate Behrens-Fisher Problem (MBFP) procedure, to

determine if there is a statistically significant difference in the mean vectors

of two consecutive time series. Therefore, when there is evidence of a change

in the load time series, we alert the network managers, allowing them to take
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the appropriate action as a response to that change.

After assessing the performance of the load change detection algorithm,

we have applied it to such real network measurements, showing the efficiency

in reducing the number of times the network needs supervision. We have

analyzed more than 300 days worth of data, and in average, we have placed

around 11 alerts per link. This supposes that a network manager would have

receive an alert for a statistically significant and sustained change less than

4% of the days. In the remaining days, the network is considered stable and

no action is required.

A distinguishing feature of the MBFP procedure to detect changes is that

it evaluates the difference in the mean vectors taking all the vector compo-

nents into account at the same time. This may result in changes that are due

to either small differences in several vector components or large differences in

a single vector component. In addition, as the vector components represent

time intervals, the relevance of a change may be different depending on the

vector component that caused the change detection. For instance, changes

at night-time may not be relevant compared to those at the busy hours.

Consequently, we devise an alert color code to categorize the change points

located by our algorithm. Such color code is used to create weather maps

of the network, allowing to visually inspect the relevant events happening in

the network in an straightforward manner.

The rest of the chapter is organized as follows: Section 3.2 is devoted to

present the measurement dataset. Section 3.3 describes the load model and

presents the methodology and results of its validation process. Section 3.4

presents the on-line load change detection algorithm and the assessment of

its performance with synthetic data. Section 3.5 provides the results of the

application of the algorithm to actual network measurements and Section 3.6

shows how the proposed methodology could be applied to monitor a large-

scale network like RedIRIS. Finally, Section 3.7 concludes the chapter.
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3.2 Measurement Dataset

This section is devoted to present an overview of the network traffic mea-

surements used in this chapter. As we noted in the previous section, our

algorithm is fed by average load measurements computed at non-overlapping

intervals of 90 minutes length. A simple averaging process of SNMP measure-

ments obtained at 5 minutes granularity is enough to obtain such data. We

gather network measurements at such resolution from Multi Router Traffic

Grapher (MRTG) tools [OR98] installed on the network equipments of the

Spanish academic network RedIRIS (see Section 2.1.3 for a detailed descrip-

tion of MRTG). In what follows, we present a description of the dataset and

the network from which we obtained such measurements, and an overview

of the daily and weekly traffic patterns that characterize the links in the

network.

3.2.1 Description of the Measurement Dataset

The RedIRIS network comprises 18 PoPs spread along the Spanish country

(Figure 3.1 shows the backbone network topology), and provides Internet

access to more than 350 institutions, mainly universities and public research

centers, which make up a grand total of more than a million users. In addi-

tion, it has several Internet exchange points with the European Research and

Education Network GEANT, and with other ISPs (Telia, Global Crossing,

etc.). RedIRIS provided us with MRTG records and flow summaries of the

PoPs in Figure 3.1 and from an extensive set of universities and exchange

points. We have selected 18 links out of the total to make this study, which

transport large amounts of data and are representative of the variety of links

that are present in the network. Our dataset includes 10 university links, 5

backbone links of the RedIRIS core network and 3 links that provide con-

nection with exchange points or the European academic network GÉANT2.

For privacy concerns, we label the University links as U1, U2, . . . , U10. We do

the same with the Backbone links, B1, B2, . . . , B5, and the eXchange point

2http://www.geant.net/

http://www.geant.net/
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links, X1, X2 and X3.

National 
IXPs

GÉANT

International 
IXPs

Figure 3.1: RedIRIS network architecture.

In total, we have collected and analyzed three-years worth of MRTG

records (2007, 2008 and 2009). MRTG have been configured with measure-

ment intervals of 5 minutes—i.e., there is a new record every five minutes.

With this time granularity, we have 288 records for each day and direction

(incoming/outgoing) in every link. Our measurements span from the 2nd of

February 2007 to the 10th of March 2009, namely we collect more than 750

days worth of data per link. Such MRTG records contain five different fields:

the UNIX timestamp of the measurements (which will play an special role in

the measurements preprocessing step) and the average and maximum trans-

fer rates, in bps, for both interfaces in the last measurement interval. We

summarize some relevant information about the links present in the dataset

in Table 3.1.
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Table 3.1: Relevant data from the links contained in the dataset (Incom-
ing/Outgoing).

Link type Average load (Mbps) Average no. of users

University 31.51/19.20 19,346
Backbone 437.34/344.61 171,988
eXchange 1101.40/818.17 1,000,000

3.2.2 RedIRIS Daily and Weekly Traffic Patterns

As RedIRIS is an academic network, its traffic pattern slightly differs from

that of residential networks previously reported in the literature [TMW97,

TRA08, FCE05]. Therefore, instead of having its maximum peak after 8

p.m., when residential users come back home, the RedIRIS peak hour hap-

pens around mid-day. We also observe a clear daily traffic pattern for week-

days, which is very similar among the different analyzed links. However,

greater differences appear when considering weekends, which show a nearly

flat traffic pattern, mainly composed by traffic that is sent without user

interaction. Such differences are shown in Figure 3.2, where the solid line

corresponds to the traffic of the outgoing direction (traffic sourced in RedIRIS

and destined to the Internet) and the dashed line corresponds to the incom-

ing traffic (traffic sourced in the Internet and destined to RedIRIS), of one

week for one of the backbone links, which we have found to be representative

of the phenomenon.

In Figure 3.2 we have plotted the link utilization, instead of bandwidth

consumption. Note that such values are linearly related by the capacity of the

link, i.e., utilization = bandwidth/capacity. Plotting utilization values fa-

cilitates the comparison between different days and universities. In addition,

it provides evidence that the utilization values are always under reasonable

thresholds (say 30% [NP08]). Therefore, the links are not congested, which

means our analysis is not influenced by clipping of traffic peaks reaching

the link capacity. Therefore, we safely work under the free traffic hypoth-

esis [Nor95], which allows unbiased characterization irrespective of the link

capacity. Consequently, assuming such an initial state when we deploy our
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Figure 3.2: Time Series representation of the utilization of a RedIRIS link
for a whole week.

proposed methodology in a network and that the manager takes into consid-

eration the alerts placed by the algorithm, the network should not present

saturation during long periods of time and the free traffic hypothesis should

remain valid.

3.3 Multivariate Normal Model for Daily

Traffic

In this section, we present our multivariate model for network daily traffic

load, and show practical evidence of its applicability. We assume that the

network measurements to model come from SNMP reports at 5 minutes

granularity due to its popularity, or instead come from another measurement

methodology but using the same format. This model takes advantage of

the apparently invariance of the daily traffic pattern shape for working days

presented in Section 3.2.2. The methodology for the model validation is

presented in Section 3.3.2, and the corresponding results can be found in

Section 3.3.3. Finally, a discussion of the results concludes this section.
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3.3.1 Description of the Multivariate Normal Model

From the overview of the RedIRIS daily traffic pattern, we can clearly differ-

entiate between weekdays and weekends. The former have a clear day-night

pattern, which is influenced by the number of users being active (sending

or receiving traffic) at the different times of the day. On the contrary, the

weekends have a nearly flat, less utilized daily pattern, which supports the

hypothesis that such traffic is mainly due to standalone applications, with

no user interaction. Accordingly, we remove weekends, summer & Christmas

holidays, national & regional holidays and eventually examination periods.

Thus, we only consider working days, which are more interesting for traffic

engineering purposes.

The model assumes that measurements of the same interval during dif-

ferent days come from the same (at first hand unknown) probability distri-

bution. We base such an assumption in the fact that the shape of the traffic

pattern does not show significant variation with time. Consequently, the

differences between the measurements in the same measurement interval of

different days should be small (if there is no change in the users’ behavior).

However, such probability distribution does not have the same parameters

between different measurement intervals of the same day, for instance at 12:00

a.m. and at 12:00 p.m. Therefore, a multivariate distribution to model the

daily network load seems to be reasonable, with each measurement interval

having its own parameters.

However, the number of different measurement intervals per day with the

default SNMP time granularity of the reports (5 minutes, which results in

288 measurements per day) is too large. Actually, a 288-variate model is

not analytically tractable [Don00]. In order to make the model more man-

ageable, we averaged the load values into 16 disjoint intervals of 90 minutes

(i.e., we average 90/5 = 18 SNMP samples to form each of the vector com-

ponents). The reasons to choose such averaging period are manifold: first,

we need the averaging period to be a multiple of the measurement gran-

ularity and a divisor of the number of minutes in a day; second, chances

are that data are missing in the five minutes timescale, but having 18 con-
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secutive five-minutes interval samples missing is unlikely. Note that if all

measurements from an averaging interval are missing, we place an alert to

the network manager (the link may be down), and then remove the whole

day from the sample, because the Gaussian vector is incomplete3; third, the

different measurement points may not be synchronized. A timescale of 90

minutes is coarse enough to circumvent this problem, as stated in [PTZD05];

fourth, the averaging process reduce the bias that outliers and measurement

errors introduce to the results; last, but not the least, the assumption of fairly

Gaussian Internet traffic holds when there is enough temporal aggregation

of the measurements [KN02, vdMMP06, vdBMvdM+06]. Consequently, in

addition to simplifying the model, we obtain a reasonable distribution for the

averaged samples (however, we take the fairly normal distribution only as an

hypothesis, and show practical evidence of the validity of such assumption

in the remaining of the section).

After the preprocessing step, which removes the holidays and incomplete

day-vectors, the dataset contains more than 300 samples per link and direc-

tion, each of them representing a day worth of traffic data that we model

with a 16-variate Gaussian distribution. Note that this preprocessing step

can be done in an on-line fashion, because the days to be removed are known

in advance. Finally, Figure 3.3 shows the time series of the average daily

utilization pattern of the RedIRIS network with the 16 selected intervals

presented in Table 3.2.

To summarize, we present the assumptions relevant to the model in the

following bullet list:

• The daily traffic-pattern shape can be regarded as short-term invariant.

• The utilization of the links is always below critical levels, e.g., 60%.

That means that we safely work under the free traffic hypothesis.

• Measurements from the same interval during different days come from

the same probability distribution.

3Alternatively, the network manager could decide to apply missing value techniques
such as replacing with the mean value of such vector component of the cluster [AH08,
Chapter 13].
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Figure 3.3: Time Series representation of the average utilization pattern of
the RedIRIS network (solid line) and time divisions according to the multi-
variate model (vertical dashed lines).

Table 3.2: Correspondence between vector components and time of day.

Vector
Time interval

Vector
Time interval

component component

1 00:00-01:30 9 12:00-13:30
2 01:30-03:00 10 13:30-15:00
3 03:00-04:30 11 15:00-16:30
4 04:30-06:00 12 16:30-18:00
5 06:00-07:30 13 18:00-19:30
6 07:30-09:00 14 19:30-21:00
7 09:00-10:30 15 21:00-22:30
8 10:30-12:00 16 22:30-00:00
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• The parameters of such distribution depend on the actual interval of

measurement.

• The Gaussian distribution is appropriate for modeling the average load

in such intervals (this assumption is validated in Section 3.3.3).

3.3.2 Methodology

To validate the applicability of the model to network traffic inferences, we

have performed several verifications of the fairly Gaussian assumption. More

specifically, we have adopted the methodology used in [vdMMP06] to verify

the fair normality of the marginal distributions of our multivariate model. In

addition to this, we have also tested for Multivariate Normality (MVN). This

is necessary because the fact that several variables have univariate normal dis-

tributions does not imply that they jointly have normal distribution [Kow73].

In what follows, we briefly describe the normality tests applied for both uni-

variate marginal and the joint multivariate distributions.

Van de Meent et al. [vdMMP06] have shown that the linear correlation

coefficient γ between the order statistics of the sample and the corresponding

normal quantiles of the model distribution (i.e., a normal distribution with

parameters estimated from the sample) is, roughly speaking, equivalent to

the Kolmogorov-Smirnov (KS) test for testing univariate normality, i.e., if

γ > 0.9, then the null hypothesis of normality cannot be rejected by the KS

test at significance level 0.05 (see Appendix A for further description of the

KS test). We have followed such approach and calculated the coefficient γ

for each of the 16 univariate normal distributions according to our model. To

compute γ, let x1, x2, . . . , xn be a univariate sample of size n. Let x̄ and s2

be the unbiased estimates for the sample mean and the sample variance, i.e.,

x̄ = n−1
∑n

i=1 xi and s2 = (n− 1)−1
∑n

i=1(xi − x̄)2. Define x(i), i = 1, 2, . . . , n

as the order statistics of the sample, i.e., x(1) < x(2) < . . . < x(n), and qi their

corresponding quantiles given by qi = Φ−1( i
n+1

), where Φ−1 is the inverse of

the normal cumulative distribution function with mean x̄ and variance s2.

Denote by q̄ the mean of the quantiles, then the linear correlation coefficient

γ is given by:
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γ =

∑n

i=1(x(i) − x̄)(qi − q̄)
√

∑n

i=1(x(i) − x̄)2
∑n

i=1(qi − q̄)2
. (3.1)

Regarding MVN, we have selected Mardia’s multivariate skewness and

kurtosis coefficients b1,p and b2,p [Mar70] to measure deviations from MVN.

The main reasons to select these statistics are their affine invariance prop-

erty and tractability. Moreover, Mardia has shown that the significance of

the normal theory tests of mean vectors and covariance matrices is adversely

affected by skewness [Mar75] and kurtosis [Mar74], respectively, i.e., having a

large skewness (kurtosis) deviation from multinormality adversely affects the

false positive rate of normal theory tests applied to the mean vector (covari-

ance matrix). Therefore, we can assess fairly MVN by using these tests and,

in addition, this can shed light on the suitability of our multivariate model for

making inferences about the mean vector and the covariance matrices—the

methodology we apply in Section 3.4 for change detection makes inference

about the mean vector. Let y1,y2, . . . ,yn be a p-dimensional random sample

of size n, then Mardia’s multivariate coefficients for skewness and kurtosis

are given, respectively, by:

b1,p =
1

n2

n
∑

i=1

n
∑

j=1

r3ij and b2,p =
1

n

n
∑

i=1

r4i , (3.2)

where n > p and

rij = (yi − ȳ)TS−1
n (yj − ȳ), r2i = (yi − ȳ)TS−1

n (yi − ȳ), (3.3)

ȳ =
1

n

n
∑

i=1

yi, Sn =
1

n

n
∑

i=1

(yi − ȳ)(yi − ȳ)T , (3.4)

where xT is the transpose vector of x. For convenience of applying ex-

isting statistical tables, the following standardized forms are used in prac-

tice [Mar70]:
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sb1,p =
nb1,p
6

d→ χ2
df , sb2,p =

b2,p − p(p+ 2)(n− 1)/(n+ 1)
√

8p(p+ 2)/n

d→ N (0, 1),

(3.5)

where df = p(p+1)(p+2)/6 are the degrees of freedom of the χ2 distribution

and
d→ means convergence in distribution (n → ∞). Therefore, large values

of b1,p and |b2,p| (because this second test is two-sided) indicate non-MVN.

3.3.3 Results of the Model Validation

To apply the above-mentioned techniques, we have preprocessed the data

set described in Section 3.2.1 according to the restrictions presented in Sec-

tion 3.3.1 (removal of holidays and incomplete day-vectors).

We have then computed the linear correlation coefficient γ using all the

measurement campaign samples in each direction of each link. The results

were very poor, and the univariate normality was rejected for all the marginal

distributions. However, this does not imply that the model is inappropriate,

but that the parameters may be changing with time, i.e., the sample is non-

stationary. In spite of this, we can assume that the traffic is short-term

stationary [GDHA+11], i.e., that the parameters of the underlying distri-

bution remain nearly stable for a short period of time, say 20-30 days, and

accordingly apply the normality tests to subsamples of that size. For this rea-

son, we have divided our sample into subsamples of size n = 20 day-vectors,

which is equivalent to a period of 25-28 natural days—that is because we rule

out holidays. Consequently, we computed the γ coefficient for each subsam-

ple marginal distribution, and the results are shown in Figure 3.4(a), where

we have plotted the cumulative distribution function of the γ value of such

marginal subsamples.

With regard to MVN, it is well-known that if non-normality is indicated

for one or more of the marginals, MVN can be rejected [JW92, p. 133].

Hence, we do not verify MVN neither for the whole dataset nor for those of

the above-mentioned subsamples in which any of the marginal distributions

was deemed non-Gaussian. To properly apply the corresponding standard-
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Figure 3.4: Normality test results: (a) Univariate normality results. (b)
Multivariate normality results.

ized values of the statistics for testing multivariate skewness and kurtosis,

we cannot use the corresponding limiting distributions, because the size of

our samples is small. Therefore, we ran N = 100, 000 Monte Carlo simula-

tions on N independently generated samples Z ∼ Np(0, Ip) of size n = 20 to

estimate the critical values of the standardized forms of the statistics, where

0 is a vector of 16 components all equal to 0, and Ip is the identity matrix

of rank p = 16. These critical values are summarized in Table 3.3 for three

different significance levels.

Table 3.3: Critical values for the statistical tests for multivariate skewness
and kurtosis.

Significance level (α) cvsb1,p

cvsb2,p

lower upper

0.10 695.7828 −0.0040 0.0054
0.05 708.6464 −0.0046 0.0069
0.01 732.4614 −0.0054 0.01

In this table, cvsb1,p refers to the critical value for the standardized value

of b1,p. Values of sb1,p larger than cvsb1,p indicate skewness in the sample.

On the other hand, cvsb2,p lower and cvsb2,pupper are the critical values for

the two-tailed test for kurtosis. Values of sb2,p smaller than cvsb2,p lower or

greater than cvsb2,pupper indicate kurtosis in the sample.

We have presented in Figure 3.4(b) the results of the statistical tests when
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applied to our dataset. We show in the x-axis the value of sb1,p whereas in

the y-axis we can find the values of sb2,p. Each subsample is represented by

a ◦ symbol for the incoming direction or by a × symbol for the outgoing

direction. We have represented with straight lines the thresholds given by

the critical values at the significance level α = 0.01. The percentage of

tests indicating rejection of the null hypothesis are presented in Table 3.4,

where we show the results of the Skewness test, the Kurtosis test and the

combination of both.

Table 3.4: Percentage of rejection of the multivariate skewness and kurtosis
tests.

Direction

Rejection ratio

Skewness test Kurtosis test
Either Skewness

or Kurtosis

Incoming 2.80% 4.60% 6.54%
Outgoing 5.88% 8.24% 14.12%
Both 4.17% 6.25% 9.90%

3.3.4 Discussion of the Results

The results for the univariate normality test shown in Figure 3.4(a) give

evidence that the performance in the incoming and outgoing directions is

nearly the same, as the corresponding lines for each direction are partially

superimposed. In both of them, it can be seen that for more than 80% of

the cases studied, the goodness-of-fit measure γ was above the threshold 0.9.

Such results are close similar to those of [vdMMP06], so we can obtain a

similar conclusion, i.e., the 16-variate traffic load vector components, when

considered separately, can be deemed as fairly Gaussian.

Regarding MVN, Table 3.4 shows that the model fits better to the incom-

ing direction of traffic. This is a consequence of the larger aggregation of the

incoming traffic, as shown in Table 3.1. When taking both directions into

account, Table 3.4 shows that MVN can be rejected for approximately 10% of

the cases. Although we cannot assume that the multivariate model is totally
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accurate, there is an evidence based on the results that fairly MVN can be ac-

cepted. Moreover, we can see from such results that our model is suitable for

applying multinormality inference to the mean vector (e.g., the MBFP pro-

cedure), because the percentage or rejections for the skewness tests (4.17%)

is small and therefore the significance of the multinormality theory tests for

mean vectors [Mar75] will not be severely affected. The same conclusion can

be drawn by having a look at the percentage of rejections for the kurtosis

tests (6.25%), which in turn evidences that the significance of multinormality

theory tests for covariance matrices [Mar74] will not be affected drastically.

With regards to outstanding peaks or non sustained congestions, e.g.,

flash crowds, that may spoil the normality of the data, we note that the

effect of such undesirable situations is absorbed by the averaging process

applied in the preprocessing step of the model.

All in all, we note that the fair normality assumption cannot be rejected

for the majority of the subpopulations in the univariate case, and the fair

MVN assumption also seems to be correct, so the fair MVN hypothesis of

the proposed model can be accepted.

3.4 On-line Load Change Detection Algorithm

In the validation of the multivariate model we confirmed that the whole

dataset does not follow a normal distribution, whereas small subsamples of

it actually do. This fact suggest that the parameters of the normal distribu-

tion may be changing slowly with time—i.e., short-term stationarity. This

section presents an on-line load change detection algorithm, aimed at identi-

fying changes in traffic loads when monitoring Internet links. Such algorithm

produces an alert when a sustained and statistically significant change has

been detected. Then, the network manager verifies the change and takes ac-

tion if the change is truly relevant. Our algorithm uses a two-step approach

to detect the change points: first, a clustering technique for selecting poten-

tial change points is applied; then a sound statistical methodology is used to

determine whether changes are casual or they define a breakpoint between

stationary regions. Before describing the proposed algorithm in Section 3.4.2,
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we introduce the applied methodology in Section 3.4.1. Then, we validate the

behavior of the algorithm with synthetically generated time series, showing

the results in Section 3.4.3.

3.4.1 Methodology

In this section, we first present the clustering technique that has been adopted

and then provide a brief introduction to the statistical methodology, namely

the Behrens-Fisher problem. The selected clustering algorithm is k -means

[DHS01], which is a two-step iterative algorithm that finds the clusters by

minimizing the sum of the squared distances to a representative, which is

called centroid. The input to the algorithm is the number of clusters k ex-

isting in the dataset—in our algorithm we always look for two clusters. The

choice of k -means for our on-line algorithm is due to the ease of adding a

new instance to an existing model. To do so, it is only necessary to compute

the distance from the new instance to the existing centroids, and then re-

compute the centroid for the cluster the new instance is assigned to. Finally,

if the centroids have changed, k -means is applied again from a quasi-optimal

solution, so the algorithm finds the new centroids faster than the first time.

On the other hand, in order to obtain clusters that are adjacent in time

(i.e., all samples of the cluster being sequential in time and not out of order),

the UNIX initial timestamp of the last sample of the day is included as an

additional vector component.

In order to verify that the obtained clusters are actually different, we

have applied the MBFP. The MBFP is the statistical problem of testing

whether the mean vectors of two multivariate Gaussian distributed popula-

tions (X(1),X(2)) are the same (null hypothesis H0), for the case of unknown

covariance matrices. Assuming homogeneity of the covariance matrices would

allow applying simpler models, such as MANOVA. However, the homogeneity

of covariance matrices is a strong assumption that indeed is not verified by

the data. This motivates the application of the MBFP whose sole assump-

tions are that X(i) ∼ Np(µ
(i),Σ(i)), i = 1, 2; i.e., the samples of population i

come from a p-variate normal distribution with mean vector µ(i) and covari-
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ance matrix Σ(i). To solve this problem, the Hotelling’s T 2 statistic given

by

T 2 = n
YS−1

y YT

n− 1

n− p

p
∼ F (3.6)

is used, where Y is a p-dimensional vector Y = (y1, y2, . . . , yp) of the means

of the differences between both populations (X(1),X(2)), assuming both pop-

ulations are of equal size n [And58], and Sy is the unbiased estimation of its

covariance matrix as given by (3.4). This statistic follows a F -distribution

with p and n − p degrees of freedom under H0. However, when the sample

sizes are not the same, a transformation is needed before computing the T 2

statistic [And58, Section 5.6]. The interested reader is referred to Appendix

B.2 for further description of the MBFP procedure. We note that such test

is suitable when using our multivariate model because we have shown, in

Section 3.3, that the skewness of our sample (which is the deviation from

normality that mostly affects hypothesis testing procedures for normal mean

vectors) is typically under the bounds allowed by the statistical test.

The MBFP assumes that the data comes from multivariate normal dis-

tributions. In order to trust in the results of the MBFP test, we have to

make sure that our data is multivariate normal. Although we have assessed

the MVN of our model in the previous section, it was shown that in some

cases such assumption could be rejected. Consequently, we apply the same

analytical tests described in Section 3.3.2 to both clusters before applying

the MBFP. Although it is necessary to test the MVN assumption before

each application of the MBFP test, these tests are lightweight and can be

performed on-line very fast. If the MVN condition does not hold, the dis-

tribution of the T 2 statistic under the null hypothesis may differ from the

central F -distribution, and thus the probability of rejecting the null hypoth-

esis when it is actually true would be different—Type I error. Therefore, we

warn the network manager whenever this happens, in order not to blindly

trust the output of the algorithm.
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3.4.2 Description of the Algorithm

Our on-line load change detection algorithm aims at identifying whether the

detected change point represents a breakpoint between two different station-

ary behaviors of the link load. More specifically, we wish to assess if a change

in the mean vector has occurred. Once detected, the change points are re-

ported to the network managers to let them know that potential anomalies

may have happened. The first step in our algorithm is to preprocess the

measurements in order to obtain daily samples according to the multivariate

model presented in Section 3.3.1.

We do such preprocessing in an on-line fashion, obtaining a day-sample

after all the measurements of a day have been collected, which we add to

the sample set S. When we have enough day-samples (#S ≥ 34), we apply

the k-means technique looking for two clusters. If the reported clusters are

suitable for the algorithm, i.e., each one with at least 17 samples (meaning

two potential sustained change-free regions), we mark as a potential change

point between the reported clusters. Once a potential change point is found,

we apply the MBFP statistical hypothesis testing procedure to the reported

clusters after testing for MVN. Even if the MVN assumption does not hold

(i.e., the MVN tests reject the null hypothesis) the algorithm continues to

the following step, and applies the MBFP test to the populations. However,

the network manager is warned about this fact to be aware of the potential

inaccuracy. Finally, if the MBFP test rejects the null hypothesis of equality

of means, an alert is placed to the network manager that indicates a sustained

and statistically significant change point, and the oldest cluster is removed

from the sample set. The flowchart of Figure 3.5 summarizes the work-flow

of the algorithm.

3.4.3 Validation of the Algorithm

To assess the performance of the load change detection algorithm, we have

tested it with synthetically generated data. Such data allow us to verify

whether the algorithm is detecting the changes properly, because we know

beforehand where the changes are located. The synthetic datasets generated
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Figure 3.5: Work-flow of the on-line algorithm. The starting point is defined
in the “Measurement of a new day” box.

to test the algorithm can be classified into two different groups, depending on

whether they have changes or not. In what follows we describe the datasets

and show the results of the performance evaluation. The datasets are N

16-dimensional normal distributed vectors4, with N = 9000, which is large

enough to assess the validity of the obtained results—note that a sample of

N = 9000 is equivalent to analyzing approximately 25 years of data in our

algorithm.

Datasets with no Changes

We have generated four datasets with no changes—i.e., all the samples in

the dataset have the same mean vector. Even in this case, there is always

the chance of detecting a change anyway, thus having False Positive (FP)

alarms. These FPs can be controlled with the significance level α, which is the

probability of rejecting the null hypothesis (that is, detecting a change) even

though there is no change in the data—Type I Error. The purpose of these

datasets is to evaluate the FP rate under no changes, which asymptotically

4all the vector components are independent of each other
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must approach the probability of Type I Error, namely

P(Type I Error) = P(reject H0|H0 is true) = α = lim
M→∞

# of rejections

M
,

(3.7)

where M is the total number of tests performed in datasets that fulfill H0.

Description of the Datasets These datasets are obtained through four

different affine transformations on four different random samples of size N

distributed according to a standard 16-variate normal distribution. The ap-

plied transformations have been chosen in order to obtain: (i) a sample where

all the vector components have the same mean and variance: All Equal (AE)

dataset; (ii) a sample where each vector component has a different mean, but

their variances are the same: Means (M) dataset; (iii) a sample where each

vector component has the same mean but a different variance: Variances (V)

dataset; and (iv) a sample where each vector component has different values

for the mean and variance: Mean-Variances (MV) dataset. Matlab code

for generating these affine transformations is provided in Appendix D. Even

though different vector components may have different values for the mean

and/or the variance, such values are held for all the N realizations of such

vector components.

Results We have measured the False Positives Ratio (FPR) given by (3.7)

for different significance levels α—see Figure 3.6. The results show that

the FPR of each dataset is always below the significance level used in the

tests. Such FPR remains almost negligible for significance levels smaller than

α = 0.06. Thus, we have a large interval of possible significance levels with

good performance. Significance levels above 0.06 experiment an increase in

the FPR, but also the FPR range remains smaller than the theoretical one.

The differences in the performance of the algorithm for the four different

datasets are not relevant, because these differences are mainly due to ran-

dom number generation issues—we have confirmed this by applying different

transformations to the same random sample.
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Figure 3.6: FPR in datasets with no changes.

Datasets with Staggered Increments

As the aim of the algorithm is to detect changes in the load, and after con-

firming that there is a low FPR, a validation with controlled changes follows.

Consequently, we have generated two different datasets with staggered incre-

ments of duration one and three months, i.e., the distribution of the samples

remains the same for one (three) month(s), after which the mean is increased.

We note that this kind of growth is the most significant for the capacity plan-

ning task [dFV02], because linear increments are easily tracked by classical

time series analysis [BD91], consequently a forecast of upgrading times when

there is linear tendency is straightforward. This can be accomplished by

fitting a time series model to the data (for instance an Auto Regressive In-

tegrated Moving Average (ARIMA) model [PTZD05]) and then predicting

when the time series will be above a given threshold [Bru00]. However, the

staggered increments represent a sudden change of load that is worth being

investigated by the network manager.

Description of the Datasets The growth rate for the monthly staggers

is chosen such that effective annual growth is around 90%, which is in accor-

dance with popular reports about the Internet traffic growth [Odl03]. Hence,
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the monthly growth is approximately 6%. The quarterly growth has also been

set to approximately 6%, on attempts to make the obtained results compa-

rable, i.e., we have longer periods without changes in the quarterly growth

dataset, but the size of the staggers (which is relevant for our algorithm) are

the same in both time series. Accordingly, the theoretical number of changes

that should be detected with the algorithm in the Monthly Increments (MI)

dataset is 300 and in the Quarterly Increments (QI) dataset is 100.

Results In Figure 3.7(a), we show the number of detected changes on the

MI data as a function of the significance level of the performed tests. Note

that an increase in the significance level implies that the test is comparatively

less restrictive and the critical region is larger, resulting in more detected

changes. This figure shows very promising results, because the number of

detected changes is in the range 295-310, while the correct value is 300. In

addition, the number of false negatives is small for all the significances tested.
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Figure 3.7: Detected changes in the staggered increments dataset: (a)
Monthly Increments dataset; (b) Quarterly Increments dataset.

Figure 3.7(b) presents the same information but for the QI data. We note

that the algorithm performance decreases. There is no significance level at

which we detect exactly the same number of changes that are theoretically in

the dataset. In addition, the false positives have enlarged, being now greater

than 50. With significance values larger than 0.06 we detect more than 300

changes, meaning that for every theoretical change, we alert for 3 detected
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changes. We will shed light on the causes of this misidentification in the

following paragraph by inspecting the results at a fixed significance level.

Analysis at Fixed Significance Level

We now further inspect the results of the validation, but with a fixed value

for the significance level. The value selected for the significance level is

α = 0.05, as it is the most commonly used value. By making the significance

level fixed, we can apply the analysis of the Hotelling’s T 2 statistic presented

in Appendix C. In addition, we can present graph plots of the clusters found

and inspect the reported change points. On those graphs, we plot the values

of the projection in one vector component, using different color and marker

combinations to differentiate the change-free regions according to the results

of the algorithm. Furthermore, we mark with a straight horizontal line the

mean of all the values within a change-free region, which makes it for judging

the validity of the reported change points. As the amount of points generated

for each vector component is huge, we will focus on certain regions of the

plots that we have found to be relevant for the validation.

Datasets with no Changes To analyze the reported changes when the

input dataset has no changes in theory, we focus on the AE dataset.

In Figure 3.8(a), we show the change-free regions found by the algo-

rithm using different color-marker schemes in the first 300 samples of the

AE dataset. Although the samples are concentrated around the true mean

(100), the algorithm detected some change points. This happens because we

are applying a statistical test, whose confidence level can be interpreted as

the FPR in the limit.

The change points reported by the algorithm in this dataset can be due to

the following reasons: (i) The algorithm found one cluster with mean above

the theoretical value followed by a cluster with mean under the theoretical

value (or vice versa). This can be easily seen between the first two change-

free regions in Figure 3.8(a); (ii) the weighted sum of the differences in all

the vector components is above F 1−α0
p,N−p (Appendix C). To illustrate this fact,

we present in Figure 3.8(b) the same zoom area for vector component 2. The
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Figure 3.8: Time Series representation of the change-free regions for the first
300 samples: (a) 1st vector component of the AE dataset; (b) 2nd vector
component of the AE dataset.

differences between the last two change-free regions on Figure 3.8(a)–(b) (the

dots (·) around sample 200 and the circles (◦) on its right) are very small, but

the addition of these differences through all the variables produces a change

point—this is in fact an advantage of the statistical procedure used in our

algorithm: MBFP tests for differences in the mean taking into account the

variations in all the vector components at the same time.

Datasets with Staggered Increments These datasets are designed to

be invariant both in mean and variance for a fixed period of time, after which

the value of the mean is increased. Consequently, in these regions without

changes we are in the same case as in the AE dataset. We therefore inspect

each stair of the dataset from the point of view used for the dataset with no

changes.

The clusters in the final samples of the MI and QI datasets (sample

8000 and above) are easily identified by the algorithm, as the differences

between those clusters are large enough due to the increment by percentage

in each theoretical change point. Therefore, we will zoom in the beginning

of the datasets and focus on the first samples—the four first change-free

regions. Such regions are depicted in Figure 3.9(a) for the MI dataset and

Figure 3.9(b) for the QI dataset, where we have placed vertical lines in the

time instants where the theoretical change points are located.
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Figure 3.9: Zoom to the first four change-free regions of the 1st vector compo-
nent with delimitation lines for the theoretical change points: (a) MI dataset;
(b) QI dataset.

As can be seen in the figures, the variance of the samples is large enough

(compared to the mean value) to make samples in different theoretical change-

free regions (therefore with different means) to be indistinguishable in some

cases. For instance, consider the first change-free region (under sample 30)

of Figure 3.9(a). The circle (◦) samples in this region are generated with the

same mean as the dot (·) ones. However, these circle samples resemble more

to those circle samples in the second change free region (between samples

30 and 60) than to the dot ones with the same theoretical mean. This is

detected by the algorithm through the clustering technique, which divides

the first region before the theoretical change. As the difference between the

means is truly significant, the MBFP procedure detects it and a change point

is reported between these clusters. That is a visual example that shows how

the algorithm misses the true location of the change point between those

regions, which we have also observed in other instants of the dataset. This

rationale explains all the false positives detected by the algorithm, that un-

der small variance samples or with a more restrictive significance value would

have been detected in the right time instant. However, if we pay attention

to the second change-free region, we find that there are no significant differ-

ences between the two clusters found by the algorithm when inspecting them

visually. Note from C that the detected change point between these two

clusters is also due to the differences in the means of the remaining vector
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components, although apparently in this component there is no change.

In the QI dataset (Figure 3.9(b)), in each theoretical change-free region

our algorithm reported several change points. The reason for the detection

of these extra change points is the same pointed out for the AE dataset, as

the extra change points are detected within a theoretical change-free region,

where the mean and the variance remain constant. On the other hand,

there are some theoretical change points not reported by the algorithm—for

instance the one in sample 270. The explanation for this misidentification

is the same as in the MI dataset—i.e., the variance of the samples is high

compared to their mean.

Consequently, if we focus on the detected change points that cannot be

attributed to the inherent FPR of the statistical test given by its signifi-

cance, the performance of our algorithm with different kinds of datasets is

satisfactory because the number of change points detected is approximately

the same than in our ground truth datasets. There is still a little devia-

tion in the location of the change points, but such deviation is small enough

compared to the length of the change-free regions (we have location errors

smaller than 5 days, whereas the change-free regions are larger than 25 days

in average), and therefore its effect is not truly relevant for traffic engineer-

ing tasks performed by network managers. Actually, the aim of our change

point detection technique is to identify links with a changing stationary traf-

fic behavior and not sudden load increases, which are usually detected with

threshold-based management systems.

3.5 Change Point Analysis with Real

Network Measurements

In this section, we present the results of applying our change point detection

methodology (Section 3.4) to the real network measurements of Section 3.2.1.

Table 3.5 summarizes the number of tests performed and alerts generated by

our algorithm when applied to such dataset, which is three-year long. The

second column shows the number of times the MBFP testing methodology
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was applied. This is the number of times that the clustering algorithm found

potential change points. The third column shows the number of times an

alert was generated—i.e., the number of times the null hypothesis of equality

of means was not satisfied. The values on the left of the slash refer to the

incoming direction, and the ones on the right to the outgoing direction.

Table 3.5: Results of the on-line algorithm (Incoming/Outgoing).

Link
Number Number

Link
Number Number

of tests of alerts of tests of alerts

U1 68/130 12/9 U2 112/75 10/12
U3 64/84 11/11 U4 79/59 10/12
U5 62/75 13/11 U6 108/61 10/11
U7 86/57 10/11 U8 73/84 10/10
U9 68/76 13/11 U10 82/94 11/13
B1 85/89 11/10 B2 98/85 8/9
B3 56/76 11/12 B4 59/57 12/11
B5 123/88 10/11 X1 65/102 11/12
X2 67/67 11/12 X3 103/75 9/11

The advantage of our on-line algorithm to network load detection is that

it decreases the OPEX by reducing the human supervision. We remark

that our algorithm produces an alert only in case a stationary change in

the load happens. The rest of the time the link is considered normal and no

intervention from the network manager is required. Taking into account the

duration of the measurement campaign, our algorithm placed less than 13

network load change alerts requiring human supervision in a period of more

than 750 days (including holidays), which means a load change nearly every

two months in average. We also show in Table 3.6 the average values for

both the number of tests and the number of alerts in both directions, when

grouped by link type, and the total average of such quantities.

To illustrate these results, we present in Figure 3.10 the obtained clusters

using the color-markers scheme of Section 3.4.3 for different links. More

specifically, we show the results for the time interval 10:30-12:00 (variable

8), because it is the busiest interval. Figure 3.10(a)-(b) show the results for

U1 for the incoming-outgoing direction, respectively. Figure 3.10(c)-(d) show
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Table 3.6: Average of the on-line algorithm results (Incoming/Outgoing).

Link type Number of tests Number of alerts

University 80.20/79.50 11.00/11.09
Backbone 84.20/79.00 10.40/10.60
eXchange 78.33/81.33 10.33/11.66

Total 80.94/79.67 10.72/11.06

the results for B1 and finally Figure 3.10(e)-(f) show the obtained clusters

for the X1. We have selected these links because we have found them to be

representative.

As it turns out, nearly all the clusters obtained by the algorithm and

shown in the figures are reasonable. However, there are some reported clus-

ters that do not seem to have been properly detected. It is worth recalling

the rationale followed in the validation of the algorithm, i.e., that a reported

change point can be due to differences in different variables than the one

shown.

To further analyze the results of the change detection algorithm, we cre-

ated a binary time series with the change points reported by the algorithm

for each direction of each university link. Such time series has a 0 value

during a change-free region (where we have also included holidays), whereas

the change point instant is marked with a 1. For each of these time series, we

have computed the Sample Autocorrelation Function (SACF) to find possi-

ble periodicities. Furthermore, in order to assess whether an autocorrelation

coefficient ac at a given lag l0 is significant, we have also delimited the 99%

confidence interval for the null hypothesis H0 : ac(l0) = 0 with horizontal

straight lines. Therefore, those lags l with ac(l) outside this region signifi-

cantly differ from 0. We show in Figure 3.11(a) an example of the results

from link U1, as we have found it to be representative of the set of SACF.

In that figure, we see that there is some periodicity in the binary change

point time series, because there are significant autocorrelation coefficients at

lags approximately multiple of 50. However, such periodicity does not mean

that the changes in the load are periodic, but that the restrictions of the
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Figure 3.10: Change points found by the on-line algorithm on the time in-
terval 10:30-12:00: (a) Incoming direction of link U1. (b) Outgoing direction
of link U1. (c) Incoming direction of link B1. (d) Outgoing direction of link
B1. (e) Incoming direction of link X1. (f) Outgoing direction of link X1.
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algorithm (i.e., that the changes must be sustained for more than two weeks)

affect the randomness of the time between change points. Therefore, we can

conclude that the changes in the load are not subjected to certain relevant

events, like the change between months or academic seasons.

0 100 200 300 400 500 600 700
−0.2

0

0.2

0.4

0.6

0.8

Lag (days)

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

(a)

−20 −10 0 10 20
−0.2

0

0.2

0.4

0.6

0.8

Lag (days)
S

am
pl

e 
C

ro
ss

 C
or

re
la

tio
n

(b)

Figure 3.11: Correlations functions of the binary time series (including hol-
idays): (a) Sample Autocorrelation Function (SACF) of the outgoing di-
rection of U1. (b) Sample Cross-correlation Function (SXCF) between the
incoming and outgoing direction of U1.

In addition, we also computed the Sample Cross-correlation Function

(SXCF) between the incoming and outgoing directions of each university

link. The results show that only 3 out of the 18 total links have no signif-

icant cross-correlation coefficient xc within 5 lags, determined by the same

criteria used with the SACF. This means that the changes in the loads of

the incoming and outgoing directions of the same link are usually correlated,

and are detected by the algorithm within a small difference of days. Such

result is expected, as the main important facts impacting the load of a link

are traffic engineering tasks, such establishing/changing routes or upgrading

link capacities, and variations in the number of users accessing the network

or in the intensity of usage. On the other hand, we envisage that when the

changes are asymmetric (i.e., there appears a change in one direction but not

in the other one), such changes are mainly due to shifts in the way the users

access the network or their preferred applications—behavioral changes. For

instance, some Internet users are gradually moving from Peer-to-Peer (P2P)

applications, where received and sent traffic are approximately in the same
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order of magnitude, to one-click hosting services, where large amounts of

traffic are downloaded whereas the uploaded traffic is negligible for the most

of the users [AMD09]. An example of the SXCF is shown in Figure 3.11(b)

again for university U1. We show in that figure only the range of ±20 lags

from the origin, which is enough given the periodicity exhibited by the SACF

shown in Figure 3.11(a).

3.6 Network Management Based on Relevant

Events

In this section we present a network management system that uses the change

point detection algorithm—i.e., it shows the relevant events that potentially

need action by the network manager. We develop an alert color code to

differentiate the importance of the detected changes, which allows us to create

weather maps of the operator’s network showing the most conflictive links

that may be eligible for capacity planning and traffic engineering tasks. As

it turns out, when the algorithm detects a change point, it only reports its

location, but not any measure of its relevance. Obviously, the impact of

a change in the load in the busy hour is not the same as if the change is

produced in the midnight. To differentiate such changes, once our algorithm

has detected a change point, we apply a univariate normality test for the

differences in the means of each variable of the reported clusters. We do

so because the MBFP methodology does not distinguish between variables,

but takes the overall effect into account. As a consequence of the multiple

testing, we apply the Bonferroni correction [Hay05, page 386] to maintain the

familywise error rate, thus setting the corrected significance level to αc = α/p,

where α is the desired probability of Type I Error and p is the number

of tests, which in our case equals the dimension of the distribution. For

those univariate tests, we use the Welch’s t test [Wel38], which is the most

widely used approximation to the Behrens-Fisher problem in the univariate

case. These multiple tests determine which of the variables has experienced

a change. Consequently, we can establish an alert color code, depending on
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which variables are known to have a change in their means and taking into

account the daily pattern of the link (Figure 3.2).

The alert color code contains five different colors. The variables and time

intervals such colors are related to are presented in Table 3.7. Consequently,

when we detect a change point, and this is motivated by a change in the

variables where the load is higher, we mark such link with red color, we do the

same using orange when the change is in a medium load variable, and using

yellow when the load is low—during nighttime. Finally, if there is no change

point, we mark the link as green, meaning that it remains stable. When we

encounter a conflict, i.e., changes happening in two or more variables with

different color codes, we mark the link with the most restricting color—i.e.,

we use the color assigned to the change in the variable with higher load. In

addition, chances are that no significant change is detected by the Welch’s t

test with the Bonferroni correction—for instance, if the change where due to

small differences in all the vector components. If this happens, we mark the

link using a blue color.

Table 3.7: Alert color code for network surveillance.

Color Meaning Variables Time period

Red Change in a high load variable 7-9 09:00-13:30
Orange Change in a medium load variable 10-13 13:30-19:30
Yellow Change in a low load variable 1-6, 14-16 19:30-09:00

Blue
Change detected by the MBFP not

- -
found by the multiple comparisons

Green No change detected by the MBFP - -

Note that the links marked with a color different than green would require

human supervision. Once the network manager becomes aware of the alert, it

can be disabled because either the change is not considered relevant enough

to take any action or the actions have already been carried out. To illustrate

the alert based system, an example of such map is presented in Figure 3.12

using the RedIRIS network architecture showed in Figure 3.1. In this exam-

ple, one link is marked with red color, meaning that in the corresponding

link, a change in a variable with high load was detected. We also have two
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links marked with orange color, corresponding to changes in medium load

variables, and two other links marked with yellow color corresponding to

changes in low load variables. Remember that in the link marked with red

color, chances are that there were changes also in other variables, but the

red alert prevails because it is the most important. In addition, there are

two links marked with blue color. In such links, a change in the load was

detected by the MBFP procedure. However, such change was due to small

contributions of the differences in all the vector components, and no change

was found by the Welch’s t test. Finally, the remaining links are marked with

green color, meaning that there is no change detected in those links, which

are then considered to remain stable.

No change

Low load 
change

Medium 
load 

change

High load 
change

National 
IXPs

International 
IXPs

GÉANT

Figure 3.12: Sample weather map of the RedIRIS network, with some links
needing the network manager attention.

This way of visualizing the relevant events in the whole network facili-

tates large-scale network operators the surveillance of the network, allowing

them to reduce the OPEX expenditures or to move staff from the network

supervision center to link locations, in order to take action to respond to the

relevant events in a faster way.
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3.7 Summary and Conclusions

In this chapter, we have presented an on-line load change detection algorithm,

which uses clustering and statistical techniques to identify statistically sig-

nificant load changes. The algorithm is based on a multivariate fairly normal

model, which keeps track of the well-known daily pattern of the network, in

order to make the statistical inference. We have validated the suitability of

that distribution to model the daily pattern and make inferences about the

means of the distribution.

The application of our methodology to real network measurements avail-

able from the Spanish academic network shows promising results, allowing

the network operator saving OPEX expenditures by reducing the visual in-

spection of the traffic time series. Finally, we have presented an alert color

code scheme that allows to manage the network focusing only on the relevant

events detected by the algorithm. To facilitate this task, visual maps of the

network are used as visualization tool of the algorithm’s output. This efficient

way of network-wide monitoring permit the service providers to guarantee

the required levels of QoS, as established in the corresponding Service-level

Agreement (SLA).





Chapter 4

Weekly Pattern Timeseries

Detrending: The Case of VoIP

Quality of service and of experience are very important and have consequently

attracted a lot of attention from the research community, specially for Voice

over IP (VoIP) services. The most impacting performance degradation for

VoIP comes from packet losses, which are mainly due to overload periods.

Consequently, timely detection of overload periods is crucial for management

of VoIP services and allows a reduction of expenses. The monitoring of actual

measurements for detecting overload periods lacks the existence of detrend-

ing models that remove the non-stationarity from the data. In this chapter,

we propose a detrending methodology tailored for VoIP services that removes

the trend from actual measurements and permits the application of the broad

family of statistical techniques that assume stationary data. To show the per-

formance of the methodology, we have designed an outlier-friendly anomaly

detection algorithm that signals anomalies after outlier removal. Further-

more, as the residuals of the detrending methodology exhibit large correla-

tions, we have proposed an alternative measurement methodology to monitor

Poisson-nature arrival processes, such as the process of call arrivals in a

VoIP system. The proposed technique outperforms the traditional one for

heavy-tailed service times, which we have demonstrated to be the case of the

actual measurements analyzed in this chapter.

131
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4.1 Introduction

Quality of Service (QoS) and Quality of Experience (QoE) are very important

for Network Operators and Service Providers (NOSP), and have consequently

attracted a lot of attention from the research community [SJ11, MA06]. This

is specially the case of VoIP services, for which low values of QoS related

metrics (latency, packet loss and jitter) are crucial in order to enable its

deployment [KP09]. Furthermore, the users perception of these network

characteristics may foster the usage of the service, thus increasing service

providers revenue. With regards to the VoIP service, which we take as lead-

ing example in this chapter, the most impacting performance degradation

comes from packet losses [BMPR10]. Packet losses are mainly due to over-

load periods—i.e., time periods where the network devices are not able to

cope with the amount of load injected into the system. Furthermore, over-

load periods also have an impact on the latency and jitter, increasing the

values that may be observed during low occupancy periods. Consequently,

timely detection of overload periods is crucial for the management of VoIP

services [MŻ11]. Timely detection of overload periods allows anticipation of

quality degradations and enables proactive network management [CCM+11].

To this end, NOSP are investing large amounts of money in capital and

operational expenditures. Capital Expenditures (CAPEX) are in the form

of new network devices capable of coping with the ever increasing speed in

network links, mainly in the form of active and passive probes that gather

network traffic measurements at different points in the network [CCM+11],

and high performance servers able to analyze the gathered measurements in a

centralized way [CMGD+11]. On the other hand, Operational Expenditures

(OPEX) are devoted to maintain such network devices and to hire network

managers capable of detecting and troubleshooting network problems. Given

this large investment, we have proposed an automated technique to reduce

OPEX by supporting the network monitoring tasks in Chapter 3. In order to

provide this support, the automated technique relies on the statistical analy-

sis of network traffic measurements. However, network traffic measurements

are not stationary. Instead, there is typically a day-night pattern, at which
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traffic loads are large during daytime and decrease at nighttime. This traffic

patterns are a consequence of users’ behavior, whose activity is reflected in

the amount of traffic observed in the network.

The lack of stationarity in network measurements, which is a common as-

sumption in the main statistical techniques, is a serious disadvantage when

analyzing network traffic measurements. As a consequence, direct appli-

cation of such statistical techniques to network traffic measurements may

lead to erroneous conclusions [DG06], such as large amounts of false posi-

tives/negatives. Therefore, we propose an unsophisticated methodology for

removing the inherent daily pattern in network traffic measurements, tailored

for VoIP call counts data. The methodology is based on some properties of

the call arrival process, which we prove to be time-varying Poisson in our

case study. The idea behind the proposed technique is simple. We com-

pute an estimate of the average daily pattern by means of a moving average

procedure. Such procedure has been proved to be fairly accurate for pre-

diction purposes [Tay08]. After the average daily pattern is computed, it is

subtracted from the actual measurements. In the end, we standardize the

result dividing the difference by the square root average pattern—which is

the standard deviation of the measurements given the Poisson nature of the

process. The output of the methodology are standardized samples (i.e., zero

mean and unit variance) that follow a normal distribution in the case the

amount of load in the network is considerable. Accordingly, we have ob-

served that the performance of the methodology improves when the night

periods are removed from the original sample. The night period removal

has no unfavorable consequences for our goals because the chances that an

overload period happens during night are negligible. However, we observed

that there are large correlations between the output samples, which evidences

lack of independence. As independence is typically an assumption for many

statistical techniques as well, such large correlation may spoil the results of

the statistical analysis applied. We investigated further such correlations,

and designed an alternative measurement methodology that yields smaller

correlations in some cases, which depend on the nature of the call holding

time distribution, than the traditional measurement methodology for Poisson
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processes. Specifically, we show that when the call holding time distribution

follows a Pareto or log-normal distribution, there is a high probability that

our proposal outperforms the traditional one, which eventually depends on

the actual parameters of such distributions. Furthermore, we show that the

best fitting model for the call holding times is a mixture of two log-normals

and a Pareto distribution in our dataset. In addition, we present a numerical

evaluation which shows that the proposed alternative outperforms the tradi-

tional measurement methodology in terms of correlations if the call holding

time is distributed accordingly to the best fitting model.

On attempts to show the performance of the proposed trend removal tech-

nique, we propose an on-line oulier-friendly anomaly detection algorithm.

The algorithm removes outliers before signaling anomalies taking into ac-

count the likeliness of each model’s residual. The algorithm is able to detect

both shortages and overload periods, as well as shifts in users’ behavior.

The structure of the rest of the chapter is as follows: Section 4.2 presents

the related work. Mainly, we surveyed the forecasting techniques that have

been proposed for predicting call count measurements, and summarize the

models suggested in the literature to fit the arrival process and holding time

distribution of VoIP calls. Afterwards, a description of the dataset and its

daily pattern is presented in Section 4.3, along with the results of model-

ing the call arrival process and its duration distribution. After describing in

detail the proposed methodology to remove the trend from VoIP call count

measurements and assessing the validity of its theoretic assumptions in Sec-

tion 4.4, we propose the alternative measurement technique and present its

evaluation in Section 4.5. Next, we provide in Section 4.6 a description of

the anomaly detection methodology and the results of its application to the

measurement dataset after the seasonality is removed. Finally, Section 4.7

concludes the chapter.

4.2 Related Work

The traffic patterns in telecommunication systems have been analyzed for

more than a decade [TMW97], and even its evolution throughout time has
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been studied [Hee07]. Such patterns appear as a response to users’ behavior,

and are commonly referred in the literature with the term daily pattern. The

daily pattern varies depending of the kind of users that access the network,

although it can be deemed as invariant (i.e., having a similar shape from day

to day) when the kind of users is fixed. These users can be divided into two

main groups. On one hand, we have enterprise users—users that access the

network in their workplaces. The daily pattern that they produce is directly

related to the office working hours, i.e., the load is larger during working

hours, and usually there appear two clearly distinguishable peaks—before

and after lunchtime. A study of this kind of daily pattern can be found

in [MGDA10] for the Spanish Academic Network RedIRIS1 and was briefly

presented in Section 3.2.2. On the other hand, we have domestic users—users

that access the network from their residence. This pattern is also influenced

by the working hours, but in an opposite way: the load is larger after usual

working hours, when users come back from their workplaces. Such usage

pattern has been studied within the TRAMMS European project [ALK+09,

ALS+10].

This shape invariance of the network traffic measurements is also ob-

served at different timescales. For instance, if we compare measurements

in a weekly basis, we can observe that the shape of the pattern is approxi-

mately the same from Monday to Thursday. On Fridays, we observe a scaled

version of the other working days pattern—i.e., the shape is the same, but

the load is usually smaller. Finally, on weekends and holidays, we found

almost flat patterns when dealing with enterprise measurements. The main

reason for this flat pattern is that the traffic during weekends is principally

due to applications that are left running and generate traffic without user

interaction.

A similar traffic pattern can be observed when taking into account only

VoIP traffic [BMPR10, Hee07]. However, the studies of VoIP traffic have put

more effort on analyzing the call characteristics, namely the call arrival pro-

cess and the call holding time distribution, rather than focusing on the daily

or weekly patterns. Regarding the call arrival process, it is widely accepted

1http://www.rediris.es/index.php.en
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that it is fairly well modeled by a time-inhomogeneous Poisson process, which

can be considered stationary at short timescales, ranging from scores of min-

utes to hours [Hee07, BMS+04, BGM+05]. In this line, there have been

studies in the literature proposing methods for estimating the parameters of

such processes [MPW96], assessing the validity of such assumption by means

of statistical tests [BGM+05, BMS+04, BZ02], and even adapting traditional

queuing-theoretic models to this arrival process [Mas02]. In our study, we use

the test presented in [BGM+05] to validate the time-inhomogeneous Poisson

arrival process assumption in our dataset. The details of the test are de-

scribed in Section 4.3.2. Conversely, there is no consensus in which model

provides the best fit to the call holding time distribution. However, the fact

that the holding times are no longer appropriately modeled by means of expo-

nential distributions has been widely proved. The distributions proposed in

the literature are manifold. Examples of this are the hyper-exponential dis-

tribution [Hee07], the inverse Gaussian distribution [BMPR10], the Weibull

distribution [CK02], the Pareto distribution [DSM04], and the log-normal

distribution [CHL07]. In our case study presented in Section 4.3.3 we show

that the best modeling distribution is the log-normal distribution, although

higher goodness-of-fit is achieved by a mixture model composed of two log-

normal and one Pareto components.

On the context of call centers, the main research efforts have focused

on providing an accurate forecast of the time series of call arrivals [ADL04,

SH05, SH08a, SH08b, Tay08]. Avramidis et al. [ADL04] propose three dif-

ferent models for this task. The proposed models are parsimonious, in the

sense that the number of parameters is small, which make them useful for

on-line methodologies. However, the timescale of prediction is larger than

two weeks which is useful for staffing of call centers, because the agents must

know their assignment two weeks or more ahead, but not for our purposes—

we work with complete weeks, or the weekly pattern, and require one-week

lead time forecasts. Shen and Huang [SH08b, SH05, SH08a] apply Singular

Value Decomposition (SVD) to reduce dimensionality and denoise the time

series before forecasting, by leveraging on the significant singular values. The

SVD is also useful for anomaly detection as showed in Section 2.2. However,
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such anomaly detection is achieved through visual inspection of the singu-

lar values, which makes it useless for application in automated detection

methodologies, and the timescale of detection is in the range of days, which

is useful for forensic network analysis, but not for on-line and timely reac-

tion. In [SH08b], Shen and Huang improve the forecasting methodology by

dynamically updating the forecast with intraday information. Such updates

reduce the prediction error, but at the expense of larger model complexity.

A comparison of univariate time series methods is presented in [Tay08]. This

comparison includes naive methods such as moving average—which is the

approach we follow in our methodology.

All in all, the more complex methods achieve the smaller prediction error

in few-days ahead forecasting, but simpler methods such as moving average

achieve similar prediction errors for one week lead times and are computa-

tionally more tractable.

4.3 Measurement Dataset

Experiments in this chapter are using actual traffic traces collected from an

operational network. Using Tstat [FMM+11], Internet Protocol (IP) traffic

exchanged by customers was measured in a large Point of Presence (PoP) of

an NOSP in Italy where VoIP is deployed. A total of 22,000 customers were

continuously monitored for more than 4 months, starting from November

2010. Tstat is used to identify VoIP flows, i.e., voice calls, and to extract

several performance indexes for each call [BMPR10]. The measurements were

kindly donated by the Telecommunication Network Group of Politecnico di

Torino, in compliance with data privacy preserving regulations.

In particular, in the context of the present chapter we are interested in

the call arrival process and call holding time distribution. The resulting

dataset contains the log of the call arrival epochs and the corresponding du-

rations. Later in this chapter, we statistically analyze these, and use the

resulting processes/distributions to assess the performance of our methodol-

ogy. This dataset containing start and end times of the calls will be referred

to as detailed below. On the other hand, the dataset containing the count
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process of the number of calls being active is referred to as summarized in

what follows. It is used to estimate the average pattern, apply our proposed

detrending model and analyze the residuals for deviations of normality that

may signal anomalies in the network.

4.3.1 Daily and Weekly Patterns

In this section we present the average daily and weekly patterns of the VoIP

measurements we use in the following sections. As can be seen in Figure 4.1,

the daily and weekly patterns are very much alike to those of the RedIRIS

network presented in Section 3.2.2. The daily pattern exhibits two peaks,

before and after lunchtime, typical of enterprise networks. Although the

measurements come from residential networks, such behavior is expected

in VoIP data. Regarding the weekly patter, we again observe the typical

pattern of enterprise networks, having working days similar shape among

them. However, the weekends have an scaled version of the weekday pattern

instead of having a flat pattern such as the observed in enterprise networks.
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Figure 4.1: Average weekly pattern of the analyzed dataset.

4.3.2 Call Arrival Process

Classical theoretical models for voice traffic posit that the call arrival process

is Poisson distributed. Such process results when there is a large number of

users generating calls independently of each other. However, this simple
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model does not usually apply to actual measurements, commonly explained

because the users’ behavior varies during the day. To cope with such users’

behavior variation, non-homogeneous Poisson processes are used instead—

in which the intensity of call arrivals is time dependent. In practice, this

time-varying condition is relaxed, and the process rate is assumed to remain

constant for blocks of time—i.e., the process is considered to be short-term

stationary. We conjecture that the arrival process in our dataset is time-

varying Poisson in this sense, and thus the intensity remains constant for

time-blocks of length L. In our particular case, we need L ≥ 300 seconds to

prove the validity of equation (4.4).

To assess the correctness of our model, we apply to our detailed dataset

a test presented by Brown et al. in [BGM+05] specifically designed to sta-

tistically prove whether the arrival rate is constant within each given time

block. To construct the test, the interval of a day is split into disjoint blocks

of length L, resulting in a total of I blocks. With this setup, let Tij be the j
th

ordered arrival time in the ith block. Denoting with J(i) the total number of

arrivals within the ith block, we then define Ti0 = 0 and

Rij = (J(i)+1−j)
(

−log
( L− Tij

L− Ti,j−1

))

, j = 1, . . . , J(i); i = 1, . . . , I. (4.1)

The {Rij} will be independent standard exponential variables under the

null hypothesis that the arrival rate is constant within each block. We note

that the null hypothesis does not assume that the arrival rates of different

blocks have any pre-specified relationship, and refer the interested reader to

the original publication [BGM+05] for a proof of the test.

In Table 4.1 we present the results of applying the test to different block

sizes L. We use the Kolmogorov-Smirnov (KS) test to verify the null hypoth-

esis at 5% significance level—see Appendix A for a brief description of the KS

test. The results presented in the table show that the arrival process can be

regarded as fairly time inhomogeneous Poisson only at very short timescales,

say less than 10 minutes, which is enough to justify such an assumption in

our methodology.
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Table 4.1: Results of the inhomogeneous Poisson arrival process assessment.

Block length
Rejection %

Block length
Rejection %

L (min) L (min)

90 73.93 30 35.32
75 69.24 25 27.04
60 61.34 20 19.09
45 49.55 15 14.08
40 43.88 10 9.39
35 38.94 5 6.90

4.3.3 Call Holding Time Distribution

In this section we study the Call Holding Times (CHT) in our sample, aiming

at finding the model which best fits the service-time duration distribution.

The literature posits that the CHT distribution is no longer appropriately

modeled by an exponential distribution, and several alternatives have been

proposed. The majority of them are heavy-tailed distributions for the VoIP

service, which may be explained given the low (usually flat) rates at which the

service is commercialized. After a visual inspection, it turns out that a heavy-

tailed distribution is the more likely distribution to fit our detailed dataset

as well. In this visual inspection, we have used log-log plots of the empirical

Complementary Cumulative Distribution Function (CCDF) of the sample,

which allow us to gain insight in the tail of the distribution. Consequently,

we particularly restrict in our Goodness of Fit (GoF) assessment to heavy-

tailed distributions, in the sense that the distribution has heavier tails than

the normal distribution. To measure the GoF we use again the KS statistic,

although in this case testing for the null hypothesis that the sample comes

from the hypothesized distribution is not possible. As we are estimating the

parameters of the hypothesized models from the sample, the critical values

determined in this way are invalid [Dur73]. However, we still can use the KS

statistic as a measure of model discrepancy, which will allow us to select the

best fitting model.

Table 4.2 summarizes the results of the GoF study. In that table, we

present the models which evidenced better fit to the data sorted by the value
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of the KS statistic (the shorter the better), along with the MLEs of the

corresponding parameters.

Table 4.2: GoF results for different fitting models.

Distribution Parameters KS statistic

Pareto Log-normal1 Log-normal2

0.0046
Pareto p = 0.6793 p = 0.2023 p = 0.1184

+ k = 0.2749 µ = 6.0857 µ = 3.5410
2 log-normal σ = 63.1607 σ = 0.9523 σ3 = 0.5201

Log-normal1 Log-normal2 –

0.0074
2 log-normal

p = 0.1089 p = 0.8911
µ = 3.6421 µ = 4.2926
σ = 0.4810 σ = 1.5528

Weibull Log-normal –

0.0075
Weibull p = 0.0968 p = 0.9032

+ λ = 42.7199 µ = 4.2964
log-normal k = 2.4978 σ = 1.5385

Log-normal – –

0.0246
p = 1

Log-normal µ = 4.2218
σ = 1.4882

Figure 4.2(a) shows the log-log plot of the empirical CCDF of the data

along with the models presented in Table 4.2. Accordingly with the quanti-

tative results, we can observe in the figure that the best fit is provided by the

mixture of two log-normal and one Pareto distributions. This mixture model

is capable of fitting the whole body of the data, but there is a lack of fit in the

very end of the tail. Furthermore, we can observe a small oscillation in the

data tail, which is not captured by any of the fitting models. However, this

can be just an artifact provoked by the sample size. Although the number

of samples is large (>1 million of samples) for usual purposes, it may not be

enough to accurately estimate the probabilities in the tail, since those events

are rather unlikely. To shed light to this fact, we computed a distributional

envelope for the log-normal fitting model, which shows the high variability

that the log-normal distribution can have in the tail. Concretely, we gen-
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erated N = 1000 populations of size s =100K samples from a log-normal

distribution with the same parameters that provide the best fit. We com-

puted the empirical CCDFs of these populations, and plotted them jointly

with the data and the log-normal best fitting model in Figure 4.2(b). In that

figure we can observe that the actual measurements lie within the simulated

envelope. Consequently, we can conclude that the actual measurements are

a plausible realization of the best log-normal fitting. We note that in fact,

according to Table 4.2, there are models that provide even better fit to the

actual data. This means that the situation is even better if other models are

taken into account.
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Figure 4.2: Log-log plots of the data: (a) log-log plot of the data and the best
fitting models according to the KS statistic value; (b) log-log plot of the data
along with the best log-normal fit and its simulation envelope.

4.4 Detrending Methodology

In this section, we provide a methodology to remove the inherent seasonality

that exists in network traffic measurements. After its description and justifi-

cation, we present an analysis of its performance and the achievement of the

expected results.
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4.4.1 Methodology Description and Expected Results

Our methodology exploits the practical invariance of the weekly pattern to

estimate and remove the seasonality from the measurements. We assume

a set-up where the measurements are time series of traffic counters (byte

counts, number of active calls, etc.) at a given time granularity. In our

analysis, we will use a five-minute time granularity, because it is the usual

timescale for many tools that output network traffic measurements—e.g.,

the Multi Router Traffic Grapher (MRTG) tool [OR98]. We denote the

network traffic measurements as xn
i , being i = 0, 1, 2, . . . , 2015 the number

of the 5-minute interval within the week, starting on Monday midnight, and

n denoting the week number within the dataset, out of a total of N = 12

weeks. The purpose of the methodology is to provide a good estimate yn for

the measurement vector of week n, xn, using the available information from

previous weeks, xj , j < n.

We assume that the differences from week to week in the weekly pattern

are due to random deviations from an average network usage pattern, and

therefore propose the following model for the measurements

xn = α+ εn, (4.2)

where α denotes the average fixed pattern and εn are the random deviations

from such pattern. We assume that this deviations are normally distributed

with zero mean and heteroscedastic variance σ2.

The simpler approach for estimating the average pattern is to set the

prediction vector yn to a windowed average x̄n(w) of the measurements in

the previous weeks, assigning different weights Wj to different week lags,

being w the length of the window in weeks:

yn = α̂n = x̄n(w) =

w
∑

j=1

1

Wj

xn−j . (4.3)

The proposed estimation uses the arithmetic average of the measurements

in a window of size w = 5. We use this window size because it represents a
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trade-off between model accuracy and robustness to pattern shifts—meaning

that the model would be able to track variations with time on the pattern

shape. On the other hand, we use the arithmetic mean (all the weights Wj

equal to the window size w) because it minimizes the Mean Squared Error

(MSE) of the estimator. Nonetheless, we have also tested different averaging

processes (for instance exponentially decreasing or increasing weights), and

the differences in performance are negligible.

We can then remove the estimated pattern from the actual measure-

ments, obtaining theoretically zero mean residuals. However, as the errors in

the model are assumed to be heteroscedastic, so will be the residuals com-

puted after trend removal. This would suppose a drawback, because many

of the main statistical tools assume homoscedasticity besides stationarity,

and therefore calls for standardization. Such standardization implies divid-

ing each residual by its standard deviation. Consequently, we would need

to design another model for estimating the pattern standard deviation. In-

stead, we exploit the distributional properties of the measurement process

to circumvent this computation. Concretely, we showed in Section 4.3.2 that

the arrival process is time inhomogeneous Poisson. As a consequence, we can

use the property relating the mean and the variance of a Poisson process to

estimate the standard deviation—for a Poisson process, the mean equals the

variance. Hence, we obtain standardized residuals rn by removing the aver-

age pattern from the actual measurements, and then dividing by its square

root:

rn =
xn − yn

√
yn

. (4.4)

4.4.2 Model Performance Results

We have estimated the seasonality according to equation (4.3) in our summa-

rized dataset, and computed the corresponding residuals using equation (4.4).

For the shake of brevity, we only show the results for one week, which we have

found to be representative of the performance of the model. Figure 4.3(a)

shows the estimated pattern, computed from previous weeks samples, super-
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imposed on the actual samples of the week under study. It shows the GoF

of the estimated pattern to the actual measurements, mainly due to the high

stability of the weekly pattern in this kind of data. The main differences ap-

pear at the peaks of the weekly pattern, at which the samples show abrupt

variations. The corresponding residuals are shown in Figure 4.4(a). The vari-

ance of the residuals seems to be higher than expected, even appearing very

large deviations from its mean—higher than 5σ. This can be better observed

in the corresponding Gaussian Quantile-Quantile (Q-Q) plot, shown in Fig-

ure 4.5(a), at which there appears deviations in the tails from the straight

line that indicate non-normality.
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Figure 4.3: Data samples for the week under study and estimated pattern
based on previous weeks data samples: (a) nights included; (b) nights re-
moved.
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Figure 4.4: Residuals obtained after standardization with the estimated pat-
tern: (a) nights included; (b) nights removed.

The reason behind such large deviations from the hypothesized distribu-

tion is related with the night periods. During the night, the load decreases
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(a) Deviations from a straight line appear in
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removed.

Figure 4.5: Gaussian Quantile-Quantile plots of the residuals: (a) nights
included; (b) nights removed.

drastically, being nearly zero for several hours—when the majority of the

users sleep. The estimated pattern captures this behavior and causes the

residual computation to explode in the standardization step—when dividing

by the square root of the estimated pattern. To circumvent this numerical

problem, we decided to remove the night periods from the sample. Note that

for the final purpose of our methodology (i.e., detecting overload periods that

may cause system performance degradation) nights are practically irrelevant,

given that the amount of traffic is low and therefore it is difficult that sudden

changes might have an impact on the network performance.

We define the night period from midnight to 6 a.m., and remove the

related samples from the dataset—we filter out a total of 72 samples per

day. The corresponding estimated pattern and residuals are shown in Fig-

ure 4.3(b) and Figure 4.4(b), respectively. We can observe that without

nights the variance of the residuals has been reduced. This is shown also in

Figure 4.5(b), where the Gaussian Q-Q plot of the residuals without nights

is presented. As it can be observed, now the deviations in the tails are not

so large, and consequently fairly normality cannot be rejected.

However, we have observed that there is some periodical trends in the

residuals—see Figure 4.4. This may imply that there exists correlation be-

tween the residuals, violating the assumption of independence that is used in

most of the sound statistical procedures. To gain insight into this effect, we
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present in Figure 4.6 the autocorrelations of the residuals for both cases: in-

cluding and without including nights in the sample. Such figures confirm that

there is some periodic component in the residuals, because the autocorrela-

tion plots show some kind of oscillation. This turns out in a non-negligible

correlation, having more than 9% of the samples outside the 5% confidence

interval when nights are included and more than 7.5% when night periods

are filtered out. Although such values may not appear to be very large, it is

worth noting that such values are computed over the whole week, and there-

fore include large timescales that are not interesting in terms of correlations.

The corresponding values when taking into account only 2 hours (first 24

lags), are considerably larger. For the case including nights, we found that

approximately 85% of the samples are outside the 5% confidence interval,

whereas in the case without nights this value is reduced to approximately

80%.
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Figure 4.6: Autocorrelations of the residuals: (a) nights included; (b) nights
removed.

These results evidence the high correlation in the residuals, which may

imply a performance degradation when used as input for a methodology

assuming independence. We envisage that the reason behind such large cor-

relation in the residuals is due, among others, to the simplicity of our trend

estimation model, which is not able to adapt dynamically (i.e., in a short

timescale, say hours) to deviations from the pattern. As a consequence,

when actual measurements are above the estimated pattern from previous

weeks, there is a high probability that this situation would remain the same

for the next samples, and vice versa, resulting in the observed trend in the

residuals. Nonetheless, we have decided to keep the model as simpler as

possible at the expense of small performance degradations.
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4.5 Measurement Alternative

In Section 4.4 we presented and analyzed the performance of our season-

ality removal methodology. Such methodology removes the seasonal trend

from call count measurements and transform the data into correlated fairly

standard-normal samples. Such correlation is a serious drawback for the

methodology, because most of the sound statistical techniques relies on inde-

pendent samples. We believe that such high correlations are due to several

reasons, mainly (i) the simplicity of the detrending model of Section 4.4;

(ii) the potential existence of call centers in our dataset, which may group

different calls being active within a time interval into a unique network flow,

increasing the correlation between measured samples; (iii) the discrete sup-

port of the data, as we are considering number of calls instead of bytes

transferred; and (iv) the way the measurements are obtained. Traditionally,

these systems are measured counting the number of calls N present in the

system at regular time instants (e.g., N0, Nt, N2t, . . .). In this section we an-

alyze an alternative to measure call counts, and compare its performance in

terms of correlation with the traditional one. More precisely, we define

Ha = {#calls that have been present in the system during the interval [a, a + t]}.

4.5.1 Alternative Proposal

To evaluate the performance of this alternative, we compute the correlation

between two measurements at different time instants—e.g., H0 and Hkt. To

simplify the computations, we will assume in what follows that the arrival

process is Poisson with constant arrival rate—i.e., the analysis presented

here is of practical application in the timescales where the arrival rate can

be deemed invariant, as reported in Section 4.3.2. Consequently, we obtain

Corr(H0, Hkt) =
Cov(H0, Hkt)

std(H0) · std(Hkt)
=

Cov(H0, Hkt)

V ar(H0)
=

Cov(H0, Hkt)

E[H0]
,

(4.5)

where in the second equality we have used the stationarity assumption,

whereas in the last equality we have used the fact that H0 is a sum of (inde-
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pendent) Poisson processes, and consequently, it is Poisson and the variance

and the mean are equal. To compute equation (4.5), we split such processes

in the following Poisson processes:

Aa = # arrivals up to time a that depart in [a, a+ t].

Ba = # arrivals in [a, a + t] that depart in [a, a+ t].

Ca = # arrivals in [a, a+ t] that are still present at time a+ t.

Da = # arrivals up to time a that are still present at time a + t.

Therefore, we obtain the following identity:

Ha = Aa +Ba + Ca +Da, ∀a ∈ R (4.6)

However, for the correlation computation, we can simplify further, as

not all the subprocesses are dependent. On one hand, for the first count

interval, only those calls that are still present at the end of the interval can

still be there in the beginning of the latest count interval. Therefore, we can

take only into account such processes (C0 and D0) and the result will not

vary. On the other hand, for the latest count interval, only those calls that

arrived before the beginning of the interval can interact, so we can apply

the same reasoning and take only into account such processes (Akt and Dkt).

Consequently, equation (4.5) can be rewritten as follows:

Corr(H0, Hkt) =
Cov(C0 +D0, Akt +Dkt)

E[A0 +B0 + C0 +D0]
(4.7)

We could now use the bilinearity property of the covariance function to

split the covariance in equation (4.7) and simplify the computation. However,

it can be shown that the following two identities hold for all a ∈ R:

Ca +Da = Na+t, (4.8)

Aa +Da = Na. (4.9)

Therefore,

Cov(C0 +D0, Akt +Dkt) = Cov(Nt, Nkt) = ρP(Se > (k − 1)t), (4.10)
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where in the last identity we have defined ρ = λE[S], being S the service time

distribution, and Se its excess lifetime. This last result is well-known from

queueing systems theory. It is also true that Ba + Ca = Fa is the number of

arrivals in the interval [a, a + t]. This can be used to compute the mean of

Ha for all a ∈ R:

E[Ha] = E[Aa+Ba+Ca+Da] = E[Na+t+Fa] = ρ+λt = ρ
(

1+
t

E[S]

)

. (4.11)

Finally, using equations (4.10) and (4.11), we obtain the result for equa-

tion (4.5):

Corr(H0, Hkt) =
ρP(Se > (k − 1)t)

ρ(1 + t
E[S]

)
=

P(Se > (k − 1)t)

1 + t
E[S]

. (4.12)

It is worth noticing that in the previous computations we did not make

any assumption regarding the service time distribution, which means that

equation (4.12) holds for any kind of service time distribution given that the

arrival process is Poisson.

4.5.2 Correlations Study: Dependence on the Service

Time Distribution

We now proceed to evaluate the performance of our proposed alternative by

comparing the correlation appearing from our proposal versus the correlation

of the traditional call count process Nt. We make this comparison assuming

three kinds of service time distributions, namely exponential, Pareto and

log-normal. To this end, we use the following well-known result from the

queuing systems theory:

P(Se > y) =
1

E[S]

∫

∞

y

P(S > τ)dτ. (4.13)

Concretely, we want to assess whether Corr(H0, Hkt) is smaller than

Corr(N0, Nkt) in any situation.
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Exponential Distribution

In this subsection we assume that the call service time S is exponentially

distributed with parameter µ, i.e.,

P(S ≤ s) =
(

1− e−µs
)

u(x), (4.14)

where u(x) is the heaviside step function [AS72].

Consequently, the excess lifetime distribution is as follows:

P(Se > y) =
1

E[S]

∫

∞

y

P(S > τ)dτ = e−µy. (4.15)

With this result, we obtain the following inequality:

Corr(H0, Hkt) < Corr(N0, Nkt) (4.16)

eµt < 1 + µt. (4.17)

(4.18)

It is easy to verify that the inequality (4.18) is never satisfied—for instance

using the series expansion of the exponential. Therefore, there is no situation

where the correlations of interval counts are smaller, so the number of calls

present in the system measurements is preferred for exponential service times.

However, although this distribution was widely accepted to model the service

times for the traditional voice service, it has been proved that it is not suitable

for VoIP systems—Section 4.2.

Pareto Distribution

In this subsection we assume that the call service time S is Pareto distributed

with parameter α, as follows:

P(S ≤ s) = [1− (1 + s)−α]u(s). (4.19)
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The corresponding excess lifetime distribution is as follows:

P(Se > y) =
1

E[S]

∫

∞

y

P(S > τ)dτ = (1 + y)1−α, (4.20)

so we obtain:

Corr(H0, Hkt) < Corr(N0, Nkt)

f(t) =
(

1− t

1 + kt

)1−α

< 1 + (α− 1)t = g(t).

(4.21)

To find a sufficient solution for this new inequality, we will use the fact

that, if f(0) ≤ g(0), then f(t) ≤ g(t) if and only if f ′(t) ≤ g′(t) ∀t > 0. After

applying this reasoning for three times, we obtain the following sufficient

condition

Corr(H0, Hkt) < Corr(N0, Nkt)

k >
α

2
. (4.22)

(4.23)

However, we observed by numerical analysis that the condition is even

less restrictive, and there are some cases where k < α
2
and the inequality we

want to assess still holds for the Pareto distribution.

Log-normal Distribution

In this subsection we present the comparison of the correlations when the

service time distribution is assumed to be log-normal. Owing to its analytical

intractability, we will not present an analytical study of this case analogous

to the ones presented before. In contrast, we use a numerical approach to

study this distribution, because it is, in addition to the Pareto distribution,

the most common distribution used in practice for modeling CHT of VoIP

systems—Section 4.2.

We have used numerical integration to obtain the excess lifetime prob-
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ability for different values of the log-normal parameters µ and σ at differ-

ent time lags k. We use this results to compute surface plots of the differ-

ences in the correlations using the two measurement alternatives, concretely

Corr(N0, Nt)−Corr(H0, Ht). Such surface plots are presented in Figure 4.7

for the most representative values of k.
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Figure 4.7: Contour plots showing the isopleths of comparing the cor-
relations computed using both measurement alternatives (Corr(N0, Nt) −
Corr(H0, Ht)) when the service time distribution is assumed to be log-
normal. Different values of the time lag k are reported in the figures.

As we can see in Figure 4.7, there is a clear benefit when using the

traditional approach for large values of µ but small of σ at the first lags—

k=1 in Figure 4.7(a) and k = 2 in Figure 4.7(b). Concretely, for k = 1

the performance of both alternatives is almost the same, being the difference

nearly zero for all the pairs (µ, σ) except the ones mentioned above. However,

as we move to larger lags, the situation improves for the proposed alternative.
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In Figure 4.7(b) it can be observed a region at which the proposed alternative

clearly outperforms the classical alternative—for medium values of µ and

large values of σ. In addition, there is no region where the performance of

the traditional alternative improves—a region at which the difference is more

negative. In contrast, the differences in the region at which the traditional

alternative outperforms the proposed one for k = 1 are smaller as larger

values of k are taken into account. Concretely, for k = 3 (Figure 4.7(c))

such differences are almost negligible. On the contrary, the region where

the proposed alternative outperforms the traditional is wider, although the

differences have decreased—this is because the correlations decrease with

larger lags. Finally, in Figure 4.7(d) we can see that the proposed alternative

still outperforms the traditional one for k = 10, but now in a narrowed

region—at which, in fact, the differences are decreasing. In contrast, the

region where there is no difference between the alternatives has got larger,

because now there are more pairs (µ, σ) at which both correlations are equal

to zero.

All in all, we can see from Figure 4.7 that there is an overall benefit

from switching from the traditional alternative to the proposed one. This is

not only because there is a larger region at which the proposed alternative

outperforms the traditional one, but also because such difference in perfor-

mance is not negligible, and will turn out in smaller correlations, as desired.

However, we can see that there exist some regions where the traditional al-

ternative would be preferable, although for the cases analyzed these regions

are smaller than the regions at which the alternative proposal is better.

Numerical Correlation Study

Up to now, we have show that the proposed alternative methodology for

measuring call counts may outperform the traditional one in terms of cor-

relations, depending on the distribution that models the call holding time

distribution. This means that there are some cases where Corr(Ht, Hkt) is

smaller than Corr(Nt, Nkt). Consequently, one should analyze the service

time distribution in depth before deciding which kind of measurements cap-
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ture from the network.

In this subsection, we provide a in-depth comparison of both measurement

alternatives, assuming as CHT distributions the best fitting models obtained

in Section 4.3.3. Concretely, we will restrict ourselves to the simple log-

normal fit and the mixture with two log-normal and one Pareto components.

In Figure 4.8 we show the results for both models. The figure shows that

assuming these call holding time distributions, the proposed measurement

alternative outperforms the traditional one at every time lag. The difference

between both correlations reach its maximum at the first lags, which is the

timescale of interest for the purposes of the methods presented in this paper.

Consequently, we have found practical evidence using actual network mea-

surements that the proposed measurement alternative would enhance models

performance in terms of yielding lower correlations.
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Figure 4.8: Correlation comparison of both measurement alternatives assum-
ing the call holding time is distributed accordingly to the two best fitting
models as presented in Section 4.3.3.

4.6 Anomaly Detection Algorithm

In this section we present an on-line outlier-friendly algorithm to detect de-

viations from the model in the residuals. Basically, the algorithm computes
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the likeliness of observing a sample deviating more than slower times σ, the

standard deviation of the residuals, expressed in terms of the number m

of samples one would have to generate from the hypothesized distribution

(standard normal in our case) in order to observe such a deviating sample.

Then the algorithm looks back to the m samples previous to the sample un-

der test, and decides whether the test sample is an outlier or an anomaly

depending on the number of observed samples within that interval that devi-

ates as much as the sample under test. That is the reason because we call our

algorithm outlier-friendly. Instead of fixing a confidence band, our algorithm

takes into account that although samples outside the confidence band are

strange, there is high likeliness of having them in small frequency for large

datasets. Consequently, if the algorithm has not observed samples outside

the confidence band for a large enough history interval, the next sample out-

side the confidence band will be regarded as an outlier, and no alert will be

generated. In our case, the length of the history interval is determined by the

likeliness of observing such a deviating sample. A more detailed description

of the algorithm is presented in Section 4.6.1. Finally, Section 4.6.2 presents

the results of applying the algorithm to the summarized dataset of Section

4.3.

4.6.1 Description of the Algorithm

The on-line outlier-friendly algorithm that we propose aims at detecting

residuals deviating more than slower times σ, the standard deviation of the

residuals, but taking into account the possibility of a sample being an outlier

as a consequence of being isolated—i.e., it is the only sample outside the

confidence band given by slower within a reasonable interval. The length

of the interval m is determined as a function of the likeliness of observing

such a deviating sample, and it is only considered backwards, as we cannot

anticipate the future when applying our algorithm on-line. However, if we

could consider future samples as well, chances are that there is an interval

of length m containing the sample under test as the only sample outside the

confidence band, although within the m− 1 previous samples to the sample
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under test (our available history when applying the algorithm on-line) there

is at least one outside the confidence band. For this reason, we set the

algorithm to only inspect a fraction q of the interval m backwards, and give

a free interval of length (1− q) ·m in the future direction to compensate for

the unavailability of such data.

In addition, we mark all the samples deviating more than supper times σ

automatically as anomalous. This upper threshold is set in order to determine

the maximum amount of history samples the algorithm has to store. The

likeliness l of a sample under test t is l(t) = 2φ(−|t|), where the factor 2

comes from the two tailed nature of the normal distribution and φ denotes

the standard normal Cumulative Distribution Function (CDF). The length of

the backward history interval m is computed as the inverse of this likeliness,

as shown in equation (4.24).

m(t) = round
( 1

2φ(−|t|)
)

, (4.24)

where we have rounded the result to the nearest integer in order to consider

only integer-length intervals. With this relation, the thresholds slower and

supper translate into intervals of length mmin and mmax, respectively.

With these parameters set, the algorithm proceeds as follows:

1. Draw the next sample under test t and compute the length of the

interval m(t) using (4.24) and proceed to step 2.

2. If m(t) ≥ mmax, place an alert and proceed to step 1, else, proceed to

step 3.

3. Ifm(t) < mmin, the sample is normal: do not place an alert and proceed

to step 1. Else, proceed to step 4.

4. Inspect the q ·m(t) samples previous to t. If there is at least one sample

r such that |r| ≥ |t| within such interval, then place and alert. On the

contrary, the sample is not anomalous, it is just an outlier, and no alert

is placed. In any case, proceed back to step 1.
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Table 4.3: Parameters of the on-line algorithm for detecting anomalies in the
residuals.

Parameter Value

slower 3
supper 4

q 0.75
mmin 370
mmax 15,787

4.6.2 Anomaly Detection in VoIP Data

In this section we present the results of applying our algorithm described in

the previous section to the summarized dataset of Section 4.3. The parame-

ters used in the application of the algorithm are presented in Table 4.3.

We present the results of the application of the algorithm for two different

weeks of the dataset in Figure 4.9. We have selected these weeks as consid-

ering them representative of the performance of the algorithm. Figure 4.9(a)

is the same week presented in the figures of Section 4.4.2, whereas Figure

4.9(b) shows the next week in the dataset, at which one sample was regarded

as an outlier instead of an anomaly despite of being outside the confidence

band given by slower. In the figures, the residuals are plotted using a solid

green line, whereas the confidence bands given by slower are plotted using

horizontal dashed blue lines. Samples flagged as anomalous by the algorithm

are plotted using black asterisks (∗) symbols, whereas samples outside the

confidence band but not flagged as anomalous (outliers) are plotted using red

asterisks symbols. There is one of such ouliers on Tuesday of Figure 4.9(b).

Such sample is labeled as an outlier instead of an anomaly because it is the

only sample outside the confidence band given by slower since the beginning

of the week, and its deviation is not very large.

As can be seen in the figures, the anomalies are not mainly related to

day changes as a consequence of the night removal, however, there is a large

amount of them in such instants—this is better observed in figures 4.10 and

4.11 that will be described later. A more conservative (larger) night period

could be considered in order to remove some of the alerts generated in day
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Figure 4.9: Results of applying the anomaly detection algorithm to the resid-
uals obtained from the model presented in Section 4.4 (the ticks refer to the
middle of each day): (a) all the samples outside the 3σ confidence band are
reported as anomalies; (b) one sample outside the 3σ confidence band is not
reported as anomalous.

changes.

It may also be observed that some of the anomalies from one week are still

present in the next one—remember that 4.9(b) is next in time to 4.9(a). This

fact can be observed on the anomalies between Wednesday and Thursday

and some of the ones on Sunday. On the contrary, another anomalies are

only present in just one week, such as those on Monday and Tuesday. The

reason for this is related with the unlikeliness of the anomaly and the way

the average pattern is computed. Larger anomalies (i.e., anomalies that

deviate the most) take a larger impact on the average pattern as its effect

is proportional to the distance to the pattern, whereas smaller anomalies

are absorbed by the averaging process when computing the average pattern.

Consequently, larger anomalies modify the pattern, and affect the average

patterns where them are included, causing to wrongly flag as anomalous

samples that are indeed following the normal pattern—i.e., false positives.

In addition, they may hinder the detection of another anomalies that hide

behind the deviated pattern, thus provoking false negatives.

The solution to this would be to take into account the size of the anomalies

detected when computing the pattern, removing those whose deviation is
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large from the pattern computation. As a side-effect of this measure, the

model would not be able to cope with abrupt changes in the pattern, as

those are filtered out as a consequence of the anomalies they entail. To

reduce this side-effect, the model would have to decide to either compute the

pattern from the previous samples at which the anomalies are filtered out (in

the case the density of the anomalies is low in the previous weeks), or instead

forget what used to be normal and use the samples flagged as anomalous,

because it now considers that the pattern has changed abruptly, maybe as

a consequence of a shift in users’ behavior—such as those changes inspected

in Chapter 3. We would like to note that this consideration could be taken

sample by sample (i.e., for each of the 2016 samples within a week, 1512 if

nights are removed) instead of for whole weeks, which may make the pattern

estimation and anomaly detection more robust to changes in the pattern.

We observe a large density of anomalies on Sunday of Figure 4.9(b). This

is not directly related to the anomalies on the same period in the previous

week, as those anomalies are more isolated. On the contrary, we think such

high density of anomalies may evidence a shortage (given that the actual week

is below the pattern) or a shift in users’ behavior, but given the anomalies in

the previous week in the same period we believe the shift in users’ behavior

is more likely.

Finally, although Figure 4.9 is useful for analyzing the performance of our

algorithm, in order to present the results to the network manager, plots of

the actual measurements are more practical. We can use our model to detect

anomalies without computing the residuals, but translating the confidence

bands in the residuals to confidence bands for the actual measurements.

These are just plots at distances ±slower · σ from the average pattern, where

σ, as shown in Section 4.4.1, is approximated with the square root of the

pattern. Examples of these plots are shown in Figure 4.10 and Figure 4.11

for the two weeks of Figure 4.9.
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Figure 4.10: Actual measurements of Figure 4.9(a) with confidence bands.
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Figure 4.11: Actual measurements of Figure 4.9(b) with confidence bands.
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4.7 Summary and Conclusions

In this chapter, we have presented a model to detect short-term volume

anomalies (i.e., anomalies that have an impact in short time periods of ag-

gregate data) of VoIP measurements. The model uses an estimation of the

average weekly pattern to compute residuals from the model fitting that are

distributed as a standard normal distribution. Anomalies are detected taken

into account the likeliness of a high deviating residual and the amount of

residuals with such high deviation in the previous samples. Such model is

able to detect both shortages and overload periods, as well as shifts in users’

behavior. However, a considerable amount of false positives/negatives comes

as a result of not feeding the average weekly pattern estimation with the

discovered anomalies—i.e, anomalies are not filtered out when detected, and

are used also to estimate the patterns. We believe that this may be one of

the reasons for having very large correlations in the residuals, in addition to

the ones mentioned throughout the chapter. To reduce the correlations in

the residuals, we proposed an alternative measurement technique to moni-

tor Poisson-nature arrival processes, such as the process of calls arriving at

a VoIP system. Such alternative yields smaller correlations in the case the

service times of the calls in the system are heavy-tailed distributed, which is

the case for the analyzed dataset and other studies presented in the litera-

ture. Finally, the future work we envisage comprises the inclusion of feedback

from the anomaly detector module into the pattern estimation one, in order

to filter anomalies and improve the robustness of the pattern estimation to

enhance the proposed system.



Chapter 5

Conclusions

This chapter is devoted to summarize the main results of this Ph.D. thesis

(Section 5.1) and outline the envisaged directions for future work and new

research lines for continuing the contributions presented in this document

(Section 5.2).

5.1 Main Contributions

This thesis addressed the analysis of Internet link’s Quality of Service (QoS)

leveraging on minimal information measurements. Specifically, the source

of network information was count processes of network data or call counts,

which contain coarse-grained summarized statistics of the network status. To

achieve this objective, two contributions enshrined in the anomaly detection

context were proposed that accomplished the goal at different timescales: de-

tection of sustained load changes that provide useful information for capacity

planning and detection of mid-term pattern deviations that provide useful

information for abnormal behavior detection and troubleshooting. The main

conclusions from these contributions are presented at the end of their re-

spective chapters in this thesis. However, we outline them in the following

list.

1. Sustained load changes are detectable in large-scale networks

with statistical foundation by leveraging on coarse grained

163
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network link measurements: Chapter 3 demonstrated that using

an appropriate model for byte count measurements of router links it

is possible to apply sound statistical methodologies for the detection

of sustained load changes with statistical foundation. These changes

may be related with shifts in users’ behavior or may come as a re-

sult of traffic engineering decisions that modify the network topology

or routing architecture. Consequently, the detection of this kind of

load changes is useful for network capacity management and planning.

Furthermore, the usage of the proposed methodology significantly re-

duces the dedication of network managers to network measurement

time series inspection which, as it turns out, entails a large reduction

of the Network Operators and Service Providers (NOSP) Operational

Expenditures (OPEX), thus increasing the providers’ revenue. Other

contributions of this chapter are summarized in the following bullet

list:

• A multivariate fairly-Gaussian distribution is able to model the

day-night traffic pattern of sufficiently large aggregated measure-

ments using 16 components each representing 90-minutes disjoint

intervals (Section 3.3).

• An automated algorithm is able to work with the proposed model

in a on-line fashion to detect potential change points on coarse

grained measurements and assess their statistical significance (Sec-

tion 3.4).

• Change points are independent for a fixed network link, but the

change points in the incoming and outgoing directions of a given

network link are highly correlated (Section 3.5).

• Leveraging on the proposed model and detection algorithm, we

contributed with a visualization framework for the relevant dis-

covered events using a network weather map (Section 3.6).

Finally, the contributions in this chapter have led to the following pub-

lications (presented in chronological order):
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- F. Mata, J. Aracil, and J. L. Garćıa-Dorado, “Automated Detec-

tion of Load Changes in Large-Scale Networks,” in Proceedings

of International Workshop on Traffic Monitoring and Analysis,

Aachen (Germany), May 2009, pp. 34–41.

- F. Mata and J. Aracil, “Performance evaluation of an Online

Load Change Detection Algorithm,” in Proceedings of Interna-

tional Conference on Computer and Automation Engineering, vol.

1, Singapore (Republic of Singapore), February 2010, pp. 261–

266.

- F. Mata, J. L. Garćıa-Dorado and J. Aracil, “On the Suitability

of Multivariate Normal Models for Statistical Inference Based on

Traffic Measurements,” in Passive and Active Measurement con-

ference, Zurich (Switzerland), April 2010, Poster Session.

- F. Mata, J. L. Garćıa-Dorado, and J. Aracil, “Multivariate Fairly

Normal Traffic Model for Aggregate Load in Large-Scale Data

Networks,” in Proceedings of Wired/Wireless Internet Communi-

cations, Lule̊a (Sweden), June 2010, pp. 278–289.

- F. Mata, J. L. Garćıa-Dorado, and J. Aracil, “Caracterización

temporal de las demandas de ancho de banda en enlaces con alta

agregación mediante un modelo normal multivariante,” in Actas

de las IX Jornadas de Ingenieŕıa Telemática, Valladolid (Spain),

October 2010.

- F. Mata, J. L. Garćıa-Dorado, and J. Aracil, “Detection of traffic

changes in large-scale backbone networks: The case of the Spanish

academic network,” Computer Networks, 56 (2) (2012), pp. 686–

702.

2. Mid-term volume-based anomalies are detectable using pre-

diction in time series with trends leveraging on history data:

Chapter 4 demonstrated that it is possible to remove the inherent

trend existing in time series data of Voice over IP (VoIP) service mea-

surements leveraging on history data and apply statistical inference to
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detect volume-based anomalies that may be related with shortage or

overload periods. This kind of anomalies reduce the QoS of the service

drastically, so timely detection of such anomalies is of paramount im-

portance for NOSP, as it prevents the degradation of the customers’

perception of the service, thus fostering its usage. Other contributions

of this chapter are summarized in the following bullet list:

• The call arrival process in a VoIP service may be modeled using

a time-inhomogeneous Poisson process (Section 4.3.2).

• The call holding time distribution in a VoIP service is no longer

appropriately modeled by exponential distributions, and more ac-

curate models are provided by mixtures of heavy-tailed distribu-

tions (Section 4.3.3).

• The Poissonian nature of the call arrival process allows remov-

ing the inherent trend of VoIP call count measurements yielding

standard normal residuals (Section 4.4).

• Given the distributions of the call arrival process and Call Hold-

ing Times (CHT), measuring the number of calls that have been

present in the system during uniformly spaced time intervals gen-

erates lower correlated processes than measuring the number of

calls present in the system at the end of the uniformly spaced

time intervals (Section 4.5).

• Leveraging on the proposed trend removal methodology, we con-

tributed with a outlier-friendly anomaly detection algorithm that

removes outliers from the residuals before signaling large-deviating

samples as anomalous (Section 4.6).

Finally, the contributions in this chapter have led to the following pub-

lication:

- F. Mata, P. Żuraniewski, M. Mandjes and M. Mellia, “Anomaly

Detection in VoIP Traffic with Trends,” accepted for its publi-

cation in Proceedings of 24th International Teletraffic Congress,

Krakow (Poland), September 2012.
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In addition to these contributions, we also presented a comprehensive

survey of Anomaly-based Intrusion Detection (AID) systems. The survey

focused on the period 2000-2012. During this period, numerous studies pre-

sented research in new ways of discovering abnormal events using network

or host data. We believe this is the more comprehensive survey on AID

systems to date. We have presented in addition a survey of the proposed

taxonomies to classify the existing AID techniques, and proposed a new one

embracing them (Section 2.2.2). The taxonomy allowed us to present the

main techniques applied in AID in an structured manner (Section 2.2.3).

Furthermore, we analyzed the main problems affecting the AID paradigm

(Section 2.2.4), and which future trends should be addressed in order to solve

them (Section 2.2.5). We hope that this work can serve as a useful guide

through the maze of the literature, enabling the understanding of the different

approaches to allow new practitioners focusing on the AID techniques that

are prone to provide higher performance given their specific requirements.

5.2 Future Work

The results presented in this thesis open new research lines for future work

in QoS analysis with minimal information. In what follows, we suggest some

future research topics in this field:

• Load variance change detection: In this thesis we focused on the

detection of changes in the load mean. Detecting changes in the load

mean is useful for capacity management and planning, as a consequence

of the naive rule of thumb typically used to over-provision current net-

work links—this rule of thumb set the required link capacity to the

mean value of the load plus some guard band to prevent overload peri-

ods. Consequently, a change in the mean load may require the upgrade

of a link’s capacity following this rule of thumb. However, if smarter

dimensioning rules are used (e.g., [PNvdMM09, vdMMP07]), changes

in the load variance may also trigger the upgrade of a link’s capacity,

as these smarter dimensioning rules set the required link capacity to



168 Chapter 5. Conclusions

the mean value plus some standard deviations, in addition to the guard

band.

• Include feedback from the anomaly detector in the pattern

estimation and residual computation to enhance robustness:

As was mentioned in Chapter 4, the proposed methodology to remove

the trend was not informed of the anomalies detected by the anomaly

detection algorithm. This lack of feedback has the consequence of using

abnormal values to estimate the pattern, which may provoke the clas-

sification of normal instances as anomalous, in addition to allow some

anomalies to hide within the wrongly estimated pattern. Consequently,

a correct management of the detected anomalies may enhance the ro-

bustness of the proposed methodology and, moreover, it may allow the

detection of pattern shifts if large densities of anomalies are observed

in the recent history.

• Test new regression models for VoIP call count data: In our

contribution in Chapter 4, we restricted ourselves to an unsophisticated

methodology to remove the trend from the measurements, with the ob-

jective of having high results interpretation and low system complexity

to enable its on-line deployment. However, other regression models may

be used to accomplish similar objectives, and the performance of the

different solutions may be compared. Specifically, given the Poissonian

nature of the call arrival process, Poisson regression seems to be a very

promising alternative to the proposed trend removal methodology.

• Trend removal of multi-service measurements: The proposed

trend removal methodology presented in Chapter 4 is tailored to call

count data of VoIP services. This trend removal methodology exploits

the properties of the Poissonian nature of the call count process, which

is not typically observed in multi-service measurements. Therefore,

new trend removal methodologies must be designed in order to obtain

satisfactory results when removing the trend from multi-service traffic

measurements.
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Este caṕıtulo está dedicado a resumir los principales resultados de esta tesis

y a dar una visión general de las direcciones previstas para el trabajo futuro

para continuar con las contribuciones presentadas en este documento.

Contribuciones Principales

Esta tesis trata el análisis de Calidad de Experiencia (QoS, de sus siglas

en inglés) de enlaces de Internet utilizando medidas de red con información

mı́nima. Concretamente, la fuente de información de red fueron procesos

de conteo de datos de red o conteo de llamadas, que contienen estad́ısticos

resumidos con baja granularidad del estado de la red. Para alcanzar este

objetivo, se han propuesto dos contribuciones enmarcadas en el contexto de

detección de anomaĺıas, las cuales alcanzan el objetivo propuesto a diferentes

escalas de tiempo: detección de cambios sostenidos en la carga que provee

información útil para el dimensionado de la red y la detección de desvia-

ciones sobre el patrón a media escala que suministra información útil para la

detección y solución de comportamientos anómalos. Las principales conclu-

siones de estas contribuciones se han presentado al final de sus respectivos

caṕıtulos, sin embargo, son resumidas en la siguiente lista.

1. Cambios sostenidos en la carga son detectables con base esta-

d́ıstica en redes con numerosos enlaces mediante el uso de

medidas de enlaces de red con baja granularidad: El Caṕıtulo

3 demostró que usando un modelo apropiado para medidas de conteo

de bytes de enlaces de routers es posible aplicar técnicas estad́ısticas

169
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fiables para la detección con base estad́ıstica de cambios sostenidos en

la carga. Estos cambios pueden estar relacionados con cambios en el

comportamiento de los usuarios o pueden ser resultado de decisiones

de ingenieŕıa de tráfico que modifican la topoloǵıa de red o la arqui-

tectura de enrutado. Consecuentemente, la detección de este tipo de

cambios en la carga es útil para la gestión y el dimensionado de redes.

Además, el uso de la metodoloǵıa propuesta reduce significativamente

la dedicación que los gestores de red han de dedicar a la inspección de

series temporales del tráfico, lo que conlleva una gran reducción de los

Gastos Operativos (OPEX, de sus siglas en inglés) de los Proveedores

de Servicios y Operadores de Red (NOSP, de sus siglas en inglés), y por

tanto incrementa sus ingresos. Otras contribuciones de este caṕıtulo se

resumen en la siguiente lista de viñetas:

• Una distribución multivariante prácticamente Gaussiana es capaz

de modelar el patrón de tráfico d́ıa-noche de medidas de red sufi-

cientemente agregadas usando 16 componentes, cada una repre-

sentando intervalos disjuntos de 90 minutos de duración (Sección

3.3).

• Un algoritmo automático es capaz de trabajar con el modelo propuesto

en tiempo real para detectar puntos de cambio potenciales en

medidas de red con baja granularidad y verificar su significancia

estad́ıstica (Sección 3.4).

• Los puntos de cambio son independientes entre śı para un enlace

de red fijo, pero los puntos de cambio en los sentidos ascendente y

descendente de un enlace de red dado están altamente correlados

(Sección 3.5).

• Usando el modelo y algoritmo de detección propuestos, hemos

contribuido con un marco de visualización para los eventos rele-

vantes descubiertos usando un mapa del tiempo de la red (Sección

3.6).

Finalmente, las contribuciones de este caṕıtulo han dado lugar a las
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siguientes publicaciones (presentadas en orden cronológico):

- F. Mata, J. Aracil, and J. L. Garćıa-Dorado, “Automated Detec-

tion of Load Changes in Large-Scale Networks,” in Proceedings

of International Workshop on Traffic Monitoring and Analysis,

Aachen (Germany), May 2009, pp. 34–41.

- F. Mata and J. Aracil, “Performance evaluation of an Online

Load Change Detection Algorithm,” in Proceedings of Interna-

tional Conference on Computer and Automation Engineering, vol.

1, Singapore (Republic of Singapore), February 2010, pp. 261–

266.

- F. Mata, J. L. Garćıa-Dorado and J. Aracil, “On the Suitability

of Multivariate Normal Models for Statistical Inference Based on

Traffic Measurements,” in Passive and Active Measurement con-

ference, Zurich (Switzerland), April 2010, Poster Session.

- F. Mata, J. L. Garćıa-Dorado, and J. Aracil, “Multivariate Fairly

Normal Traffic Model for Aggregate Load in Large-Scale Data

Networks,” in Proceedings of Wired/Wireless Internet Communi-

cations, Lule̊a (Sweden), June 2010, pp. 278–289.

- F. Mata, J. L. Garćıa-Dorado, and J. Aracil, “Caracterización

temporal de las demandas de ancho de banda en enlaces con alta

agregación mediante un modelo normal multivariante,” in Actas

de las IX Jornadas de Ingenieŕıa Telemática, Valladolid (Spain),

October 2010.

- F. Mata, J. L. Garćıa-Dorado, and J. Aracil, “Detection of traffic

changes in large-scale backbone networks: The case of the Spanish

academic network,” Computer Networks, 56 (2) (2012), pp. 686–

702.

2. Anomaĺıas a media escala basadas en volumen son detectables

usando predicción en series temporales con tendencias basán-

dose en datos históricos: El Caṕıtulo 4 demostró que es posible

eliminar la tendencia inherente que existe en series temporales de datos
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del servicio de voz sobre IP (VoIP, de sus siglas en inglés) basándose

en datos históricos y aplicando inferencia estad́ıstica para detectar

anomaĺıas basadas en volumen, que pueden estar relacionadas con periodos

con cortes o sobrecargas de tráfico. Este tipo de anomaĺıas reduce la

QoS drásticamente, por lo que la detección oportuna de estas anomaĺıas

es de primordial importancia para los NOSP, ya que previene la degra-

dación de la imagen que los clientes tienen del servicio, fomentando aśı

su uso. Otras contribuciones de este caṕıtulo se resumen en la siguiente

lista de viñetas:

• El proceso de llegadas en el servicio de VoIP puede ser mode-

lado usando un proceso de Poisson de tasa no homogénea (Sección

4.3.2).

• La distribución del tiempo de servicio en el servicio de VoIP ya

no es correctamente modelada con distribuciones exponenciales.

Modelos más precisos se obtienen mediante combinaciones de distri-

buciones con cola pesada (Sección 4.3.3).

• La naturaleza Poissoniana del proceso de llegadas de llamadas

permite eliminar la tendencia inherente en medidas de conteo de

llamadas de VoIP, dando lugar a residuos con distribución normal

estándar (Sección 4.4).

• Dadas las distribuciones del proceso de llegadas de llamadas y del

tiempo de servicio, medir el número de llamadas que han estado

presentes en el sistema durante intervalos de tiempo equiespa-

ciados genera procesos menos correlados que medir el número de

llamadas presentes en el sistema al final de dichos intervalos de

tiempo (Sección 4.5).

• Utilizando la metodoloǵıa propuesta para eliminación de tendencias,

hemos contribuido con un algoritmo de detección de anomaĺıas

que elimina los valores at́ıpicos de los residuos antes de señalizar

muestras con grandes desviaciones como anómalas (Sección 4.6).

Finalmente, las contribuciones de este caṕıtulo han dado lugar a la
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siguiente publicación:

- F. Mata, P. Żuraniewski, M. Mandjes and M. Mellia, “Anomaly

Detection in VoIP Traffic with Trends,” aceptado para su publi-

cación en Proceedings of 24th International Teletraffic Congress,

Krakow (Poland), September 2012.

Además de estas contribuciones, también hemos presentado una exhaus-

tiva revisión de sistemas de detección de anomaĺıas. Esta revisión se centró en

el periodo 2000-2012. Durante este periodo, numerosos estudios presentaron

investigación sobre nuevas maneras de descubrir eventos anormales usando

datos de red o de equipos. Creemos que esta es la revisión más exhaustiva

sobre sistemas de detección de anomaĺıas presentada hasta la fecha. Además,

hemos presentado una revisión de las taxonomı́as propuestas para clasificar

las técnicas existentes de detección de anomaĺıas, y propusimos una nueva

que embarca a las anteriores (Sección 2.2.2). Esta taxonomı́a nos permitió

presentar las principales técnicas aplicadas en detección de anomaĺıas de

manera estructurada (Sección 2.2.3).

Además, hemos analizado los principales problemas que afectan el para-

digma de detección de anomaĺıas (Sección 2.2.4), y qué tendencias futuras

se deben tratar para resolverlas (Sección 2.2.5). Esperamos que este trabajo

pueda servir como una gúıa útil a través de la vasta literatura, posibilitando

la comprensión de los diferentes enfoques para permitir a los nuevos profe-

sionales centrarse en las técnicas de detección de anomaĺıas que son propensas

a obtener mayores rendimientos dados unos requerimientos espećıficos.

Trabajo Futuro

Los resultados presentados en esta tesis abren nuevas ĺıneas de investigación

para trabajo futuro en el análisis de QoS usando información mı́nima. En lo

que sigue, sugerimos algunos temas de investigación futura en este área:

• Detección de cambios en la varianza de la carga: En esta tesis

nos hemos centrado en la detección de cambios en la media de la
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carga. Detectar estos cambios es útil para el dimensionado de redes,

como consecuencia de las reglas simples utilizadas para sobredimen-

sionar los enlaces de red actuales (estas reglas simples establecen el

ancho de banda requerido por un enlace al valor medio de la carga

más un extra como banda de guarda para evitar periodos de sobre-

carga). Por consecuencia, un cambio en la carga media puede requerir

la actualización de la capacidad de un enlace siguiendo estas reglas.

Sin embargo, si reglas de dimensionado más inteligentes son utilizadas

(por ejemplo [PNvdMM09, vdMMP07]), los cambios en la varianza de

la carga pueden también provocar la actualización de un enlace, ya que

estas reglas de dimensionado más inteligentes establecen el ancho de

banda requerido por un enlace al valor medio de la carga más varias

desviaciones estándar, además de la banda de guarda.

• Incluir retroalimentación desde el detector de anomaĺıas al

estimador de patrones y computador de residuos para incre-

mentar la robustez del sistema: Como fue mencionado en el Caṕı-

tulo 4, la metodoloǵıa propuesta para eliminar la tendencia no teńıa

en cuenta las anomaĺıas detectadas por el algoritmo de detección de

anomaĺıas a la hora de calcular el patrón medio. La falta de esta retro-

alimentación tiene como consecuencia el uso de valores anormales a la

hora de estimar el patrón, lo que puede provocar la clasificación errónea

de instancias normales como anómalas, y además puede permitir a

algunas anomaĺıas esconderse detrás del patrón mal estimado. Por

consecuencia, una correcta gestión de las anomaĺıas detectadas puede

mejorar la robustez de la metodoloǵıa propuesta y, además, puede

permitir la detección de variaciones en el patrón si una gran densidad

de anomaĺıas se observan entre las muestras recientes.

• Probar nuevos modelos de regresión para datos de VoIP: En

nuestra contribución en el Caṕıtulo 4, nos restringimos a una metodolo-

ǵıa simple para eliminar la tendencia de las medidas con el objetivo de

tener una mayor interpretación de los resultados y menor complejidad

en el sistema para posibilitar su funcionamiento en tiempo real. Sin
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embargo, otros modelos de regresión pueden ser usados para conseguir

objetivos similares y el rendimiento de las diferentes soluciones puede

compararse. Concretamente, dada la naturaleza Poissoniana del proceso

de llegadas de llamadas, la regresión de Poisson parece ser una alter-

nativa prometedora para la metodoloǵıa de eliminación de tendencias

propuesta.

• Eliminación de tendencias en medidas multi-servicio: La meto-

doloǵıa para eliminar tendencias propuesta en el Caṕıtulo 4 está espe-

ćıficamente diseñada para datos de conteo de llamadas de servicios

de VoIP. Esta metodoloǵıa explota las propiedades Poissonianas del

proceso de llegada de llamadas al sistema, que no se dan en medidas de

otro tipo de servicios. Por tanto, nuevas metodoloǵıas de eliminación

han de ser diseñadas para obtener resultados satisfactorios cuando se

elimina la tendencia de medidas de tráfico multi-servicio.
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[GDK02] F. González, D. Dasgupta, and R. Kozma, Combining neg-

ative selection and classification techniques for anomaly

detection, Proceedings of Congress on Evolutionary Com-

putation, vol. 1, IEEE, 2002, pp. 705–710. 28
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studies, Sankhyā: The Indian Journal of Statistics, Series

B 36 (1974), no. 2, 115–128. 106, 110

[Mar75] , Assessment of multinormality and the robustness

of Hotelling’s T 2 test, Applied Statistics (1975), 163–171.

106, 110

[Mas02] W.A. Massey, The analysis of queues with time-varying

rates for telecommunication models, Telecommun. Syst.

21 (2002), no. 2, 173–204. 136

[Mat94] P. Matzinger, Tolerance, danger, and the extended family,

Annu. Rev. Immunol. 12 (1994), no. 1, 991–1045. 29

[MC00] S. McCreary and K. C. Claffy, Trends in Wide Area IP

Traffic Patterns, Tech. report, The Cooperative Associa-

tion for Internet Data Analysis (CAIDA), 2000. 3



206 References

[MC02] M.V. Mahoney and P.K. Chan, Learning nonstationary

models of normal network trafc for detecting novel attacks,

Proceedings of 8th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, ACM

Press, 2002, pp. 376–385. 39

[MC03] , Learning rules for anomaly detection of hostile

network trafc, Proceedings of 3rd IEEE International Con-

ference on Data Mining, IEEE Computer Society, 2003,

p. 601. 39

[McH00] J. McHugh, Testing intrusion detection systems: A cri-

tique of the 1998 and 1999 darpa intrusion detection

system evaluations as performed by lincoln laboratory,

ACM Transactions on Information and System Security

3 (2000), no. 4, 262–294. 86

[McH01] , Intrusion and intrusion detection, Int. J. Inf. Se-

cur. 1 (2001), no. 1, 14–35. 18

[MCS+06] J. Mai, C. N. Chuah, A. Sridharan, T. Ye, and H. Zang,

Is sampled data sufficient for anomaly detection?, Pro-

ceedings of 6th ACM SIGCOMM conference on Internet

measurement, 2006, pp. 165–176. 87
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Appendix A

Kolmogorov-Smirnov Test and

Lilliefors’ Correction

The Kolmogorov-Smirnov (KS) test is a quite general test to determine the

equality of one-dimensional probability distributions. It can be used to com-

pare two samples (two-sample KS test) or to compare a sample with a refer-

ence continuous probability distribution (one-sample KS test). In our study

we have used the one-sample KS test variant. The hypothesis of the test is

that the sample X = x1, x2, . . . , xn comes from a continuous probability dis-

tribution given by F (x). To proceed with the test the following three steps

are needed.

1. Order sample values x(1), x(2), . . . , x(n).

2. Compute the Empirical Cumulative Distribution Function (ECDF) Fn(x)

as follows

Fn(x) =











0 if x < x(1)

r
n

if x(r) ≤ x < x(r+1)

1 if x ≥ x(n)

3. Compute the maximum discrepancy between the ECDF Fn(x) and the

hypothesized one F (x) with the statistic

Dn = max|Fn(x)− F (x)| (A.1)
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which distribution, under the null hypothesis, has been tabulated [RS94].

If once fixed α, the computed Dn is greater than the tabulated value,

the null hypothesis is rejected.

However, if the theoretical distribution function F (x) is computed by esti-

mating the parameters from the sample, the distribution of Dn is only an

approximation, thus the power of the test is reduced [Ste74], and the re-

sults of the test are very conservative because the used critical values are

invalid—see [Dur73]. The Lilliefors test arises when correcting for this bias

in the normal case. So, Lilliefors [Lil67] computed the distribution of Dn

when the parameters of the normal distribution (µ, σ2) are estimated by the

sample parameters (x̄, ŝ2) and tabulated it [She04].



Appendix B

Behrens-Fisher Problem

The Behrens-Fisher problem is the statistical problem of testing whether the

means of two normally distributed populations (X(1), X(2)) are the same (null

hypothesis H0) or not (alternative hypothesis H1) when the variances of the

populations are unknown—i.e., it cannot be assumed that both variances are

equal. In this Appendix, we present the most popular solutions to this problem

in the univariate (Section B.1) and multivariate (Section B.2) cases.

B.1 Univariate Behrens-Fisher Problem

A similar problem to the Behrens-Fisher problem, but simpler, is the sta-

tistical problem of testing whether the means of two normally distributed

populations (X(1), X(2)) are the same when the variances are equal. The

solution to this problem is well-known and uses the two-sample Student’s

t-test. The assumptions are that X(i) ∼ N (µ(i), σ(i)), i = 1, 2; i.e. the sam-

ples of population i come from a univariate normal distribution with mean

µ(i) and variance σ(i). The t statistic to test whether the means are different

under the equality of variances assumption can be calculated as follows:

t =
X̄(1) − X̄(2)

sX(1)X(2)

√

1
n1

+ 1
n2

, (B.1)
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where

sX(1)X(2) =

√

(n1 − 1)s2
X(1) + (n2 − 1)s2

X(2)

n1 + n2 − 2
(B.2)

and ni, X̄(i) and s2
X(i) are respectively the sample size, sample mean and

sample variance of population X(i), i = 1, 2. The statistic (B.1) is distributed

according a Student’s t-distribution with ν = n1+n2−2 degrees of freedom.

The most popular solution to the univariate Behrens-Fisher problem is the

approximation proposed by Welch [Wel38]. This approximation, popularly

kwnon as Welch’s t-test, is an adaptation of Student’s t-test, as follows:

w =
X̄(1) − X̄(2)

√

s2
X(1)

n1
+

s2
X(2)

n2

, (B.3)

which follows a Student’s t-distribution with ν ′ degrees of freedom under the

null hypothesis. Unlike in Student’s t-test, the denominator is not based on

a pooled variance estimate. The degrees of freedom ν ′ associated with this

variance estimate is approximated using the Welch-Satterthwaite equation:

ν ′ =

(

s2
X(1)

n1
+

s2
X(2)

n2

)2

s4
X(1)

n2
1(n1−1)

+
s4
X(2)

n2
2(n2−1)

(B.4)

We use Welch’s t-test in Section 3.6 for the evaluation of changes in the

mean of each vector component individually. Once the w-statistic is com-

puted, the statistical test at level α proceeds by comparing the obtained w

value with the 1−α percentile of the Student’s t-distribution with ν ′ degrees

of freedom. We denote this percentile by t1−α
ν′ . Then, the null hypothesis is

rejected if w > t1−α
ν′ .

B.2 Multivariate Behrens-Fisher Problem

The generalization of the Behrens-Fisher Problem to multivariate data is

known as the Multivariate Behrens-Fisher Problem (MBFP) [And58], which
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we use in the methodology presented in Chapter 3. The assumptions are that

X(i) ∼ Np(µ
(i),Σ(i)), i = 1, 2; i.e. the samples of population i come from a

p-variate normal distribution with mean vector µ(i) and covariance matrix

Σ(i), where in our case p = 161. To solve this problem the Hotelling’s T 2

statistic is used, and two different cases arise depending on the sizes of the

populations. If both populations have the same number of samples n, and

the numbering of the samples does not depend on the samples themselves,

the procedure is to form a new random variable Y that is the difference of

the initial populations, i.e. yj = x
(1)
j − x

(2)
j , j = 1, 2, . . . , n. For this new

random variable (that under the null hypothesis has zero mean) the sample

mean vector Ȳ and the sample covariance matrix Sy are computed. The

T 2-statistic in this case is as follows:

T 2 = n
Ȳ S−1

y Ȳ t

n− 1

n− p

p
, (B.5)

where Ȳ t denotes the transpose vector of Ȳ . It can be shown (see chap-

ter 5 of [And58]) that under the null hypothesis T 2 follows a noncentral F

distribution with p and n−p degrees of freedom and noncentrality parameter

η = (µ(1) − µ(2))Σ−1
y (µ(1) − µ(2))t. (B.6)

Under the null hypothesis, µ(1) = µ(2), so η = 0. As the noncentrality param-

eter is zero, the distribution of equation (B.5) turns out to be a Snedecor’s

F distribution.

On the other hand, when the sizes of the populations are not equal, a

transformation is needed before computing the T 2-statistic. If the sizes of

X(1) and X(2) are respectively n1 and n2, assuming that n1 < n2 without

loss of generality, we obtain a new random variable Q through the following

1We use bold font to denote vectors, and capital letters to denote matrices except for
the Hotelling’s statistic, that we use a capital letter to indicate that it corresponds to the
multivariate version of the problem.
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transformation, as follows:

qj = x
(1)
j −

√

n1

n2
x
(2)
j +

1√
n1n2

n1
∑

k=1

x
(2)
k − 1

n2

n2
∑

l=1

x
(2)
l , j = 1, · · · , n1, (B.7)

where x
(1)
k , k = 1, 2, · · · , n1, are the samples ofX(1) and x

(2)
m ,m = 1, 2, · · · , n2,

are the samples of X(2). As shown by [And58], this new random variable

has a mean vector equal to the difference of the mean vectors of the two

populations, and the covariance matrix is given by the following equation:

Cov(qk, qm) = E[qk − E[qk]] · E[qm − E[qm]] = δk,m(Σ
(1) +

n1

n2

Σ(2)), (B.8)

where δk,m is the Dirac delta function evaluated in k − m and E is the

Expectation Operator. The T 2-statistic in this case is as follows:

T 2 = n1

Q̄S−1
q Q̄t

n1 − 1

n1 − p

p
. (B.9)

As in the previous case, equation (B.9) is distributed under the null hypoth-

esis as a Snedecor’s F distribution with p and n1 − p degrees of freedom.

Once the T 2 statistic is computed taking into account the case that applies

of the above described, the statistical test at level α proceeds by comparing

the obtained T 2 value with the 1 − α percentile of the Snedecor’s F distri-

bution with the appropriate degrees of freedom. If the degrees of freedom

are p and m, we denote this percentile by F 1−α
p,m . Then, the null hypothesis

is rejected if T 2 > F 1−α
p,m .



Appendix C

Analysis of Hotelling’s T 2

Statistic

In this appendix we present an analysis of Hotelling’s T 2 statistic, given

by equation (B.5), to further understand why a change is reported using

the Multivariate Behrens-Fisher Problem (MBFP), in order to apply our

conclusions when we deeply inspect the output of the algorithm at a fixed

significance level using synthetically generated input in Section 3.4.3. The

statistic follows a F -distribution with p and n− p degrees of freedom under

H0, where we assume that both populations have the same size n to simplify

computations.

The term YS−1
y YT is a quadratic form of the p vector components of

the random vector Y. As we are using synthetic data, we can approximate

the covariance matrix used to generate the samples as follows. Such matrix

has been chosen to be diagonal—remember that the vector components are

independent. This implies that the quadratic form is the weighted sum of the

square of all the vector components—being the weights given by the elements

of the diagonal of the covariance matrix. In the simplest case, all the vector

components have the same variance, so the covariance matrix is a multiple

of the identity matrix. Assuming all the vector components of Y are equal

to ŷ, this yields
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T 2 = n
YS−1

y YT

n− 1

n− p

p
≈ n

Y 1
σ2 IpY

T

n− 1

n− p

p
=

n

n− 1

n− p

p

p
∑

i=1

y2i
σ2

≈ n

n− 1

n− p

p

pŷ2

σ2
= n

n− p

n− 1

ŷ2

σ2
. (C.1)

If we set a fixed value for the significance level α = α0, we are comparing

the value obtained from (B.5) against a value that is a function of n—given

that the dimension of the random vector p is also fixed. This function is

the 1-α0 percentile of Snedecor’s F -distribution with p and n − p degrees

of freedom—we use F 1−α0
p,n−p to denote this percentile. We reject H0 if the T 2

statistic value is greater than the value of the function evaluated in that n,

which is equivalent to
ŷ2

σ2
>

F 1−α0
p,n−p

n

n− 1

n− p
. (C.2)

However, if we do not assume such simplifications (i.e., that the covariance

matrix is not a scaled version of the identity matrix, but it is still diagonal,

and all vector components of Y are not necessarily equal), we reach to a

more general version of condition (C.2), given that T 2 satisfies:

T 2 = n
YS−1

y YT

n− 1

n− p

p
≈ n

n− 1

n− p

p

p
∑

i=1

y2i
σ2
i

=
n

n− 1

n− p

p

p
∑

i=1

wiy
2
i , (C.3)

with the weights of vector component i, wi, being equal to the inverse of the

variance of variable i

wi =
1

σ2
i

. (C.4)

Consequently, the general form of condition (C.2) is as follows:

p
∑

i=1

wiy
2
i >

F 1−α0
p,n−p

n

n− 1

n− p
p = CV. (C.5)

If condition (C.5) is satisfied, it is possible that there exists a subset I of
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the set of index I in the summation of the left hand side such that

p
∑

i=1

wiy
2
i >

∑

i∈I

wiy
2
i >

F 1−α0
p,n−p

n

n− 1

n− p
p. (C.6)

Consequently, it is possible that a change is reported when there are

significant changes only in a subset of the vector components, i.e., if we

take into account a single variable i /∈ I, chances are that a change is not

observable in such subspace, although the test methodology reports a change

due to the differences in the vector components i ∈ I.

Table C.1: Rejecting values for the quotient between the square of the change
in one vector component and its variance.

n n− p CV n n− p CV

17 1 231.9660 22 6 0.6240
18 2 9.1768 23 7 0.4775
19 3 2.7449 24 8 0.3835
20 4 1.3880 25 9 0.3188
21 5 0.8769 26 10 0.2719

Finally, we present in Table C.1 the critical values for the first ten suitable

values of n—note that n > p is required in order to ensure the matrix Sy is

invertible.





Appendix D

Affine Transformations

In this appendix, we provide the Matlab code that we used to generate

the four different affine transformations applied to generate the controlled

datasets used in the validation of the proposed algorithm (Section 3.4.3).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Synthetic data generator

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

N = 9000; %Sample size

p = 16; %Vector dimension

X = randn(N,p); %Random sample of standard multinormal

%% all the vector components equally distributed

mu = 100*ones(N,p); %mean vector

sigma = diag(10*ones(1,p)); %covariance matrix

[B,D] = eig(sigma);

A = B*sqrt(D);

allEqual = mu+X * A’; %affine transformation

%% all vector components equally distributed but with

% different means
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mu = ones(N,1)*linspace(50,150,p); %mean vector

sigma = diag(10*ones(1,p)); %covariance matrix

[B,D] = eig(sigma);

A = B*sqrt(D);

means = mu + X * A’; %affine transformation

%% all vector components equally distributed but with

% different variance

mu = 100*ones(N,p); %mean vector

sigma = diag(10*linspace(0.5,1.5,p));%covariance matrix

[B,D] = eig(sigma);

A = B*sqrt(D);

variances = mu +X*A’; %affine transformation

%% all vector components equally distributed but with

% different mean and variance

mu = ones(N,1)*linspace(50,150,p); %mean vector

sigma = diag(10*linspace(0.5,1.5,p));%covariance matrix

[B,D] = eig(sigma);

A = B*sqrt(D);

meansVariances = mu +X*A’; %affine transformation
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