UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 2 - Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • View Item
  •   Biblos-e Archivo
  • 2 - Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • View Item

Proximal methods for structured group features and correlation matrix nearness

Author
Alaiz Gudín, Carlos Maríauntranslated
Advisor
Dorronsoro Ibero, José Ramónuntranslated
Entity
UAM. Departamento de Ingeniería Informática
Date
2014-06
Subjects
Optimización, Modelos de - Tesis doctorales; Matrices - Tesis doctorales; Informática
URI
http://hdl.handle.net/10486/662737
Note
Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informática. Fecha de lectura: junio de 2014

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Abstract

Optimization is ubiquitous in real life as many of the strategies followed both by nature and by humans aim to minimize a certain cost, or maximize a certain benefit. More specifically, numerous strategies in engineering are designed according to a minimization problem, although usually the problems tackled are convex with a di erentiable objective function, since these problems have no local minima and they can be solved with gradient-based techniques. Nevertheless, many interesting problems are not di erentiable, such as, for instance, projection problems or problems based on non-smooth norms. An approach to deal with them can be found in the theory of Proximal Methods (PMs), which are based on iterative local minimizations using the Proximity Operator (ProxOp) of the terms that compose the objective function. This thesis begins with a general introduction and a brief motivation of the work done. The state of the art in PMs is thoroughly reviewed, defining the basic concepts from the very beginning and describing the main algorithms, as far as possible, in a simple and self-contained way. After that, the PMs are employed in the field of supervised regression, where regularized models play a prominent role. In particular, some classical linear sparse models are reviewed and unified under the point of view of regularization, namely the Lasso, the Elastic–Network, the Group Lasso and the Group Elastic–Network. All these models are trained by minimizing an error term plus a regularization term, and thus they fit nicely in the domain of PMs, as the structure of the problem can be exploited by minimizing alternatively the di erent expressions that compose the objective function, in particular using the Fast Iterative Shrinkage–Thresholding Algorithm (FISTA). As a real-world application, it is shown how these models can be used to forecast wind energy, where they yield both good predictions in terms of the error and, more importantly, valuable information about the structure and distribution of the relevant features. Following with the regularized learning approach, a new regularizer is proposed, called the Group Total Variation, which is a group extension of the classical Total Variation regularizer and thus it imposes constancy over groups of features. In order to deal with it, an approach to compute its ProxOp is derived. Moreover, it is shown that this regularizer can be used directly to clean noisy multidimensional signals (such as colour images) or to define a new linear model, the Group Fused Lasso (GFL), which can be then trained using FISTA. It is also exemplified how this model, when applied to regression problems, is able to provide solutions that identify the underlying problem structure. As an additional result of this thesis, a public software implementation of the GFL model is provided. The PMs are also applied to the Nearest Correlation Matrix problem under observation uncertainty. The original problem consists in finding the correlation matrix which is nearest to the true empirical one. Some variants introduce weights to adapt the confidence given to each entry of the matrix; with a more general perspective, in this thesis the problem is explored directly considering uncertainty on the observations, which is formalized as a set of intervals where the measured matrices lie. Two di erent variants are defined under this framework: a robust approach called the Robust Nearest Correlation Matrix (which aims to minimize the worst-case scenario) and an exploratory approach, the Exploratory Nearest Correlation Matrix (which focuses on the best-case scenario). It is shown how both optimization problems can be solved using the Douglas–Rachford PM with a suitable splitting of the objective functions. The thesis ends with a brief overall discussion and pointers to further work.
 
La optimización está presente en todas las facetas de la vida, de hecho muchas de las estrategias tanto de la naturaleza como del ser humano pretenden minimizar un cierto coste, o maximizar un cierto beneficio. En concreto, multitud de estrategias en ingeniería se diseñan según problemas de minimización, que habitualmente son problemas convexos con una función objetivo diferenciable, puesto que en ese caso no hay mínimos locales y los problemas pueden resolverse mediante técnicas basadas en gradiente. Sin embargo, hay muchos problemas interesantes que no son diferenciables, como por ejemplo problemas de proyección o basados en normas no suaves. Una aproximación para abordar estos problemas son los Métodos Proximales (PMs), que se basan en minimizaciones locales iterativas utilizando el Operador de Proximidad (ProxOp) de los términos de la función objetivo. La tesis comienza con una introducción general y una breve motivación del trabajo hecho. Se revisa en profundidad el estado del arte en PMs, definiendo los conceptos básicos y describiendo los algoritmos principales, dentro de lo posible, de forma simple y auto-contenida. Tras ello, se emplean los PMs en el campo de la regresión supervisada, donde los modelos regularizados tienen un papel prominente. En particular, se revisan y unifican bajo esta perspectiva de regularización algunos modelos lineales dispersos clásicos, a saber, Lasso, Elastic–Network, Lasso Grupal y Elastic–Network Grupal. Todos estos modelos se entrenan minimizando un término de error y uno de regularización, y por tanto encajan perfectamente en el dominio de los PMs, ya que la estructura del problema puede ser aprovechada minimizando alternativamente las diferentes expresiones que componen la función objetivo, en particular mediante el Algoritmo Fast Iterative Shrinkage–Thresholding (FISTA). Como aplicación al mundo real, se muestra que estos modelos pueden utilizarse para predecir energía eólica, donde proporcionan tanto buenos resultados en términos del error como información valiosa sobre la estructura y distribución de las características relevantes. Siguiendo con esta aproximación, se propone un nuevo regularizador, llamado Variación Total Grupal, que es una extensión grupal del regularizador clásico de Variación Total y que por tanto induce constancia sobre grupos de características. Para aplicarlo, se desarrolla una aproximación para calcular su ProxOp. Además, se muestra que este regularizador puede utilizarse directamente para limpiar señales multidimensionales ruidosas (como imágenes a color) o para definir un nuevo modelo lineal, el Fused Lasso Grupal (GFL), que se entrena con FISTA. Se ilustra cómo este modelo, cuando se aplica a problemas de regresión, es capaz de proporcionar soluciones que identifican la estructura subyacente del problema. Como resultado adicional de esta tesis, se publica una implementación software del modelo GFL. Asimismo, se aplican los PMs al problema de Matriz de Correlación Próxima (NCM) bajo incertidumbre. El problema original consiste en encontrar la matriz de correlación más cercana a la empírica verdadera. Algunas variantes introducen pesos para ajustar la confianza que se da a cada entrada de la matriz; con un carácter más general, en esta tesis se explora el problema considerando incertidumbre en las observaciones, que se formaliza como un conjunto de intervalos en el que se encuentran las matrices medidas. Bajo este marco se definen dos variantes: una aproximación robusta llamada NCM Robusta (que minimiza el caso peor) y una exploratoria, NCM Exploratoria (que se centra en el caso mejor). Ambos problemas de optimización pueden resolverse con el PM de Douglas–Rachford y una partición adecuada de las funciones objetivo. La tesis concluye con una discusión global y referencias a trabajo futuro
 
Show full item record

Files in this item

Thumbnail
Name
alaiz_gudin_carlos_maria.pdf
Size
4.063Mb
Format
PDF
Description
Texto de la Tesis Doctoral

Refworks Export

Google™ Scholar:Alaiz Gudín, Carlos María

This item appears in the following Collection(s)

  • Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.) [19713]

Related items

Showing items related by title, author, creator and subject.

  • Visualization of the Feature Space of Neural Networks 

    Alaíz Gudin, Carlos MaríaAutoridad UAM; Fernández Pascual, ÁngelaAutoridad UAM; Dorronsoro Ibero, José RamónAutoridad UAM
    2020-10-04
  • Diffusion methods for wind power ramp detection 

    Fernández Pascual, ÁngelaAutoridad UAM; Alaiz Gudín, Carlos MaríaAutoridad UAM; González, Ana M.; Díaz García, JuliaAutoridad UAM; Dorronsoro Ibero, José RamónAutoridad UAM
    2013
  • Advanced methods for recurrent neural networks design 

    Alaiz Gudín, Carlos MaríaAutoridad UAM
    2010
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad