Show simple item record

dc.contributor.authorVera Rodríguez, Rubén 
dc.contributor.authorTomé González, Pedro
dc.contributor.authorOrtega García, Javier 
dc.contributor.authorFiérrez Aguilar, Julián 
dc.contributor.otherUAM. Departamento de Tecnología Electrónica y de las Comunicacioneses_ES
dc.date.accessioned2015-01-20T18:36:11Z
dc.date.available2015-01-20T18:36:11Z
dc.date.issued2010
dc.identifier.citationDistributed Computing and Artificial Intelligence: 7th International Symposium. Advances in Intelligent and Soft Computing, Volumen 79. Springer, 2010. 341-348en_US
dc.identifier.isbn978-3-642-14882-8 (print)en_US
dc.identifier.isbn978-3-642-14883-5 (online)en_US
dc.identifier.issn1867-5662
dc.identifier.urihttp://hdl.handle.net/10486/663231
dc.descriptionThe final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-14883-5_44en_US
dc.descriptionProceedings of the International Symposium of Distributed Computing and Artificial Intelligence held in Valencia (Spain).en_US
dc.description.abstractFace recognition is the most popular biometric used in applications at a distance, which range from high security scenarios such as border control to others such as video games. This is a very challenging task since there are many varying factors (illumination, pose, expression, etc.) This paper reports an experimental analysis of three acquisition scenarios for face recognition at a distance, namely: close, medium, and far distance between camera and query face, the three of them considering templates enrolled in controlled conditions. These three representative scenarios are studied using data from the NIST Multiple Biometric Grand Challenge, as the first step in order to understand the main variability factors that affect face recognition at a distance based on realistic yet workable and widely available data. The scenario analysis is conducted quantitatively in two ways. First, an analysis of the information content in segmented faces in the different scenarios. Second, an analysis of the performance across scenarios of three matchers, one commercial, and two other standard approaches using popular features (PCA and DCT) and matchers (SVM and GMM). The results show to what extent the acquisition setup impacts on the verification performance of face recognition at a distance.en_US
dc.description.sponsorshipThis work has been supported by project Contexts (S2009/TIC-1485).en_US
dc.format.extent9 pág.es_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.ispartofAdvances in Intelligent and Soft Computingen_US
dc.rights© Springer-Verlag Berlin Heidelberg 2010en_US
dc.subject.otherComputational Intelligenceen_US
dc.subject.otherArtificial Intelligenceen_US
dc.subject.otherRoboticsen_US
dc.titleFace recognition at a distance: Scenario analysis and applicationsen_US
dc.typeconferenceObjecten
dc.typebookParten
dc.subject.ecienciaTelecomunicacioneses_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1007/978-3-642-14883-5_44
dc.identifier.doi10.1007/978-3-642-14883-5_44
dc.identifier.publicationfirstpage341
dc.identifier.publicationlastpage348
dc.identifier.publicationvolume79
dc.relation.eventdateSeptember 7-10, 2010en_US
dc.relation.eventnumber7
dc.relation.eventplaceValencia (Spain)en_US
dc.relation.eventtitle7th International Symposium on Distributed Computing and Artificial Intelligence DCAI 2010 within the Congreso Español de Informática CEDI 2010en_US
dc.relation.projectIDComunidad de Madrid. S2009/TIC-1485/CONTEXTSes_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dc.contributor.groupAnálisis y Tratamiento de Voz y Señales Biométricas (ING EPS-002)es_ES
dc.rights.accessRightsopenAccessen
dc.authorUAMFierrez Aguilar, Julián (261834)
dc.authorUAMTome González, Pedro (263802)
dc.facultadUAMEscuela Politécnica Superior


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record