Parametric 2-dimensional L systems and recursive fractal images: Mandelbrot set, Julia sets and biomorphs
Entidad
UAM. Departamento de Ingeniería InformáticaEditor
ElsevierFecha de edición
2002-02-01Cita
10.1016/S0097-8493(01)00162-5
Computers & Graphics 26.1 (2002): 143 – 149
ISSN
0097-8493 (print); 1873-7684 (online)DOI
10.1016/S0097-8493(01)00162-5Versión del editor
http://dx.doi.org/10.1016/S0097-8493(01)00162-5Materias
Biomorphs; Fractals; Julia sets; L systems; Mandelbrot sets; InformáticaNota
This is the author’s version of a work that was accepted for publication in Computers & Graphics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computers & Graphics 26, 1, (2002) DOI: 10.1016/S0097-8493(01)00162-5Derechos
© 2002 Elsevier
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.
Resumen
L Systems have proved their expressive power. They have been used to represent the class of the initiator/iterator fractal curves (such as Sierpinski's gasket and von Koch's snowflake curve). Parametric L Systems, introduced by Prusinkiewicz and Lindenmayer, link real valued parameters to the symbols.
In this paper, parametric 0L systems are extended to n dimensions and used to represent a different class of classic fractals that includes objects such the Mandelbrot and Julia sets, or Pickover’s biomorphs.
Lista de ficheros
Google Scholar:Ortega de la Puente, Alfonso
-
Cruz Echeandía, Marina de la
-
Alfonseca, Manuel
Lista de colecciones del ítem
Registros relacionados
Mostrando ítems relacionados por título, autor, creador y materia.