UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Machine learning by multi-feature extraction using genetic algorithms

Author
Shafti, Leila Shila; Pérez, Eduardo
Entity
UAM. Departamento de Ingeniería Informática
Publisher
Springer Berlin Heidelberg
Date
2004
Citation
10.1007/978-3-540-30498-2_25
Advances in Artificial Intelligence – IBERAMIA 2004: 9th Ibero-American Conference on AI, Puebla, Mexico, November 22-26, 2004. Proceedings. Lecture Notes in Computer Science, Volumen 3315. Springer, 2004. 246-255
 
 
 
ISSN
0302-9743 (print); 1611-3349 (online)
ISBN
978-3-540-30498-2 (online); 978-3-540-23806-5 (print)
DOI
10.1007/978-3-540-30498-2_25
Funded by
This work has been partially supported by the Spanish Interdepartmental Commission for Science and Technology (CICYT), under Grant number TIC2002-1948
Editor's Version
http://dx.doi.org/10.1007/978-3-540-30498-2_25
Subjects
Artificial Intelligence; Computation by Abstract Devices; Image Processing and Computer Vision; Informática
URI
http://hdl.handle.net/10486/664130
Note
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-540-30498-2_25
Proceedings of 9th Ibero-American Conference on AI, Puebla, Mexico, November 22-26, 2004.
Rights
© Springer-Verlag Berlin Heidelberg 2004

Abstract

Constructive Induction methods aim to solve the problem of learning hard concepts despite complex interaction in data. We propose a new Constructive Induction method based on Genetic Algorithms with a non-algebraic representation of features. The advantage of our method to some other similar methods is that it constructs and evaluates a combination of features. Evaluating constructed features together, instead of considering them one by one, is essential when number of interacting attributes is high and there are more than one interaction in concept. Our experiments show the effectiveness of this method to learn such concepts.
Show full item record

Files in this item

Thumbnail
Name
machine_shafti_LNCS_2004_ps.pdf
Size
382.3Kb
Format
PDF

Refworks Export

Google™ Scholar:Shafti, Leila Shila - Pérez, Eduardo

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [16849]

Related items

Showing items related by title, author, creator and subject.

  • Multi-feature construction based on genetic algorithms and non-algebraic feature representation to facilitate learning concepts with complex interactions 

    Shafti, Leila Shila
    2008
  • Constructive induction and genetic algorithms for learning concepts with complex interaction 

    Shafti, Leila Shila; Pérez, Eduardo
    2005
  • Genetic approach to constructive induction based on non-algebraic feature representation 

    Shafti, Leila Shila; Pérez, Eduardo
    2003
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad