UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

A multi-objective genetic graph-based clustering algorithm with memory optimization

Author
Menéndez, Héctor D.; Barrero, David F.; Camacho, David
Entity
UAM. Departamento de Ingeniería Informática
Publisher
Institute of Electrical and Electronics Engineers
Date
2013
Citation
10.1109/CEC.2013.6557958
2013 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2013. 3174 - 3181
 
 
 
ISBN
978-1-4799-0452-5 (online); 978-1-4799-0453-2 (print)
DOI
10.1109/CEC.2013.6557958
Funded by
This work has been partly supported by: Spanish Ministry of Science and Education under project TIN2010-19872.
Editor's Version
http://dx.doi.org/10.1109/CEC.2013.6557958
Subjects
Data analysis; Data mining; Expectation-maximisation algorithm; Genetic algorithms; Graph theory; Informática
URI
http://hdl.handle.net/10486/664879
Note
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. H. D. Menéndez, D. F. Barrero, and D. Camacho, "A multi-objective genetic graph-based clustering algorithm with memory optimization", in 2013 IEEE Congress on Evolutionary Computation (CEC), 2013, pp. 3174 - 3181
Rights
© 2013 IEEE

Abstract

Clustering is one of the most versatile tools for data analysis. Over the last few years, clustering that seeks the continuity of data (in opposition to classical centroid-based approaches) has attracted an increasing research interest. It is a challenging problem with a remarkable practical interest. The most popular continuity clustering method is the Spectral Clustering algorithm, which is based on graph cut: it initially generates a Similarity Graph using a distance measure and then uses its Graph Spectrum to find the best cut. Memory consuption is a serious limitation in that algorithm: The Similarity Graph representation usually requires a very large matrix with a high memory cost. This work proposes a new algorithm, based on a previous implementation named Genetic Graph-based Clustering (GGC), that improves the memory usage while maintaining the quality of the solution. The new algorithm, called Multi-Objective Genetic Graph-based Clustering (MOGGC), uses an evolutionary approach introducing a Multi-Objective Genetic Algorithm to manage a reduced version of the Similarity Graph. The experimental validation shows that MOGGC increases the memory efficiency, maintaining and improving the GGC results in the synthetic and real datasets used in the experiments. An experimental comparison with several classical clustering methods (EM, SC and K-means) has been included to show the efficiency of the proposed algorithm.
Show full item record

Files in this item

Thumbnail
Name
multi-objective_menedez_CEC_2013_ps.pdf
Size
480.7Kb
Format
PDF

Refworks Export

Google™ Scholar:Menéndez, Héctor D. - Barrero, David F. - Camacho, David

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [16865]

Related items

Showing items related by title, author, creator and subject.

  • Adaptive K-means algorithm for overlapped graph clustering 

    Bello Orgaz, GemaAutoridad UAM; Menéndez, Héctor D.; Camacho, David
    2012-08-23
  • Using the clustering coefficient to guide a genetic-based communities finding algorithm 

    Bello Orgaz, GemaAutoridad UAM; Menéndez, Héctor D.; Camacho, David
    2011-09-26
  • Genetic graph-based in clustering applied to static and streaming data analysis 

    Menéndez, Héctor D.
    2014-12
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad