UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Gaussian process conditional copulas with applications to financial time series

Author
Hernández-Lobato, José Miguel; Lloyd, James R.; Hernández Lobato, Danieluntranslated
Entity
UAM. Departamento de Ingeniería Informática
Publisher
NIPS
Date
2013
Citation
NIPS 2013: Annual Conference on Neural Information Processing Systems, 26. Lake Tahoe: NIPS, 2013. 1-9.
 
 
 
ISBN
9781632660244
Funded by
We thank David López-Paz and Andrew Gordon Wilson for interesting discussions. José Miguel Hernández-Lobato acknowledges support from Infosys Labs, Infosys Limited. Daniel Hernández- Lobato acknowledges support from the Spanish Dirección General de Investigación, project ALLS (TIN2010-21575-C02-02).
Editor's Version
http://papers.nips.cc/paper/5084-gaussian-process-conditional-copulas-with-applications-to-financial-time-series
Subjects
Informática
URI
http://hdl.handle.net/10486/665697
Note
This is an electronic version of the paper presented at the Annual Conference on Neural Information Processing Systems, held in Lake Tahoe on 2013
Rights
© Los autores

Abstract

The estimation of dependencies between multiple variables is a central problem in the analysis of financial time series. A common approach is to express these dependencies in terms of a copula function. Typically the copula function is assumed to be constant but this may be innacurate when there are covariates that could have a large influence on the dependence structure of the data. To account for this, a Bayesian framework for the estimation of conditional copulas is proposed. In this framework the parameters of a copula are non-linearly related to some arbitrary conditioning variables. We evaluate the ability of our method to predict time-varying dependencies on several equities and currencies and observe consistent performance gains compared to static copula models and other time-varying copula methods.
Show full item record

Files in this item

Thumbnail
Name
gaussian_hernandez-lobato_NIPS_2013.pdf
Size
1008.Kb
Format
PDF

Refworks Export

Google™ Scholar:Hernández-Lobato, José Miguel - Lloyd, James R. - Hernández Lobato, Daniel

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [17235]

Related items

Showing items related by title, author, creator and subject.

  • Alpha-divergence minimization for deep Gaussian processes 

    Villacampa Calvo, CarlosAutoridad UAM; Hernández Muñoz, GonzaloAutoridad UAM; Hernández Lobato, DanielAutoridad UAM
    2022-08-22
  • Multi-class Gaussian Process Classification with Noisy Inputs 

    Villacampa-Calvo, CarlosAutoridad UAM; Zaldívar, Bryan; Garrido Merchán, Eduardo CésarAutoridad UAM; Hernández Lobato, DanielAutoridad UAM
    2021-01
  • Non-linear Causal Inference using Gaussianity Measures 

    Hernández Lobato, DanielAutoridad UAM; Morales Mombiela, Pablo; López-Paz, David; Suárez González, AlbertoAutoridad UAM
    2016-04-01
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad