UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Adaptive K-means algorithm for overlapped graph clustering

Author
Bello Orgaz, Gemauntranslated; Menéndez, Héctor D.; Camacho, David
Entity
UAM. Departamento de Ingeniería Informática
Publisher
World Scientific Publishing Co. Pte. Ltd.
Date
2012-08-23
Citation
10.1142/S0129065712500189
International Journal of Neural Systems 22.5 (2012): 1250018
 
 
 
ISSN
0129-0657 (print); 1793-6462 (online)
DOI
10.1142/S0129065712500189
Funded by
This work has been partly supported by: Spanish Ministry of Science and Education under project TIN2010-19872 and the grant BES-2011-049875 from the same Ministry.
Editor's Version
http://dx.doi.org/10.1142/S0129065712500189
Subjects
Clustering coefficient; Community finding; Genetic algorithms; Graph clustering; Overlapped clustering; Social networks; Informática
URI
http://hdl.handle.net/10486/666552
Note
Electronic version of an article published as International Journal of Neural Systems 2, 5, 2012, DOI: 10.1142/S0129065712500189 © 2012 copyright World Scientific Publishing Company
Rights
© World Scientific Publishing Company 2012

Abstract

The graph clustering problem has become highly relevant due to the growing interest of several research communities in social networks and their possible applications. Overlapped graph clustering algorithms try to find subsets of nodes that can belong to different clusters. In social network-based applications it is quite usual for a node of the network to belong to different groups, or communities, in the graph. Therefore, algorithms trying to discover, or analyze, the behavior of these networks needed to handle this feature, detecting and identifying the overlapped nodes. This paper shows a soft clustering approach based on a genetic algorithm where a new encoding is designed to achieve two main goals: first, the automatic adaptation of the number of communities that can be detected and second, the definition of several fitness functions that guide the searching process using some measures extracted from graph theory. Finally, our approach has been experimentally tested using the Eurovision contest dataset, a well-known social-based data network, to show how overlapped communities can be found using our method.
Show full item record

Files in this item

Thumbnail
Name
adaptive_bello-orgaz_IJNS_2012_ps.pdf
Size
1.079Mb
Format
PDF

Refworks Export

Google™ Scholar:Bello Orgaz, Gema - Menéndez, Héctor D. - Camacho, David

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [16807]

Related items

Showing items related by title, author, creator and subject.

  • Adaptive K-means algorithm for overlapping graph clustering 

    Bello Orgaz, GemaAutoridad UAM
    2012
  • Using the clustering coefficient to guide a genetic-based communities finding algorithm 

    Bello Orgaz, GemaAutoridad UAM; Menéndez, Héctor D.; Camacho, David
    2011-09-26
  • A multi-objective genetic graph-based clustering algorithm with memory optimization 

    Menéndez, Héctor D.; Barrero, David F.; Camacho, David
    2013
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad