Show simple item record

dc.contributor.authorJaafar Ruiz-Castellanos, Miriam 
dc.contributor.authorIglesias-Freire, Oscar
dc.contributor.authorSerrano-Ramón, Luis
dc.contributor.authorIbarra, Manuel Ricardo
dc.contributor.authorde Teresa, Jose Maria
dc.contributor.authorAsenjo, Agustina
dc.contributor.otherUAM. Departamento de Física de la Materia Condensadaes_ES
dc.date.accessioned2015-09-03T10:05:37Z
dc.date.available2015-09-03T10:05:37Z
dc.date.issued2011-10-25
dc.identifier.citationBeilstein Journal of Organic Chemistry 2.1 (2011): 552-560en_US
dc.identifier.issn1860-5397 (online)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/667788
dc.description.abstractThe most outstanding feature of scanning force microscopy (SFM) is its capability to detect various different short and long range interactions. In particular, magnetic force microscopy (MFM) is used to characterize the domain configuration in ferromagnetic materials such as thin films grown by physical techniques or ferromagnetic nanostructures. It is a usual procedure to separate the topography and the magnetic signal by scanning at a lift distance of 25–50 nm such that the long range tip–sample interactions dominate. Nowadays, MFM is becoming a valuable technique to detect weak magnetic fields arising from low dimensional complex systems such as organic nanomagnets, superparamagnetic nanoparticles, carbon-based materials, etc. In all these cases, the magnetic nanocomponents and the substrate supporting them present quite different electronic behavior, i.e., they exhibit large surface potential differences causing heterogeneous electrostatic interaction between the tip and the sample that could be interpreted as a magnetic interaction. To distinguish clearly the origin of the tip–sample forces we propose to use a combination of Kelvin probe force microscopy (KPFM) and MFM. The KPFM technique allows us to compensate in real time the electrostatic forces between the tip and the sample by minimizing the electrostatic contribution to the frequency shift signal. This is a great challenge in samples with low magnetic moment. In this work we studied an array of Co nanostructures that exhibit high electrostatic interaction with the MFM tip. Thanks to the use of the KPFM/MFM system we were able to separate the electric and magnetic interactions between the tip and the sampleen_US
dc.description.sponsorshipThe authors acknowledge the financial support from the Spanish Ministerio Ciencia e Innovación through the projects CSD2010-00024, MAT2007-65420-C02-01, MAT2008-06567-C02 (including FEDER funding) and CAM grant S2009/MAT-1467. M. J. gives thanks for the JdC contractes_ES
dc.format.extent9 pag.en
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherBeilstein-Instituten_US
dc.relation.ispartofBeilstein Journal of Nanotechnologyes_ES
dc.rights© 2011 Jaafar et al; licensee Beilstein-Instituten_US
dc.subject.otherElectrostatic interactionen_US
dc.subject.otherFocused electron beam induced depositionen_US
dc.subject.otherKelvin probe force microscopyen_US
dc.subject.otherMagnetic force microscopyen_US
dc.subject.otherMagnetic nanostructuresen_US
dc.titleDistinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy- magnetic force microscopy combinationen_US
dc.typearticleen
dc.subject.ecienciaFísicaes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.3762/bjnano.2.59es_ES
dc.identifier.doi10.3762/bjnano.2.59es_ES
dc.identifier.publicationfirstpage552es_ES
dc.identifier.publicationissue1es_ES
dc.identifier.publicationlastpage560es_ES
dc.identifier.publicationvolume2es_ES
dc.relation.projectIDComunidad de Madrid. S2009/MAT-1467/NANOOBJETOSes_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.rights.ccReconocimientoes_ES
dc.rights.accessRightsopenAccessen
dc.authorUAMJaafar Ruiz-Castellanos, Miriam (264443)
dc.facultadUAMFacultad de Ciencias


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record