Application of the gradient method to Hartree-Fock-Bogoliubov theory
Entidad
UAM. Departamento de Física TeóricaEditor
American Physical SocietyFecha de edición
2011-07-13Cita
10.1103/PhysRevC.84.014312
Physical Review C 84.1 (2011): 014312
ISSN
0556-2813 (print); 1089-490X (online)DOI
10.1103/PhysRevC.84.014312Financiado por
This work (G.F.B.) was supported in part by the US Department of Energy under Grant No. DE-FG02-00ER41132, and by the National Science Foundation under Grant No. PHY-0835543. The work of L.M.R. was supported by MICINN (Spain) under Grants No. FPA2009-08958 and No. FIS2009-07277, as well as by Consolider-Ingenio 2010 Programs CPAN No. CSD2007-00042 and MULTIDARK No. CSD2009-00064Proyecto
Gobierno de España. FPA2009-08958; Gobierno de España. FIS2009-07277; Gobierno de España. CSD2007-00042; Gobierno de España. CSD2009-00064Versión del editor
http://dx.doi.org/10.1103/PhysRevC.84.014312Materias
FísicaDerechos
© 2011 American Physical SocietyResumen
A computer code is presented for solving the equations of the Hartree-Fock-Bogoliubov (HFB) theory by the gradient method, motivated by the need for efficient and robust codes to calculate the configurations required by extensions of the HFB theory, such as the generator coordinate method. The code is organized with a separation between the parts that are specific to the details of the Hamiltonian and the parts that are generic to the gradient method. This permits total flexibility in choosing the symmetries to be imposed on the HFB solutions. The code solves for both even and odd particle-number ground states, with the choice determined by the input data stream. Application is made to the nuclei in the sd shell using the universal sd-shell interaction B (USDB) shell-model Hamiltonian
Lista de ficheros
Google Scholar:Robledo Martín, Luis Miguel
-
Bertsch, G. F.
Lista de colecciones del ítem
Registros relacionados
Mostrando ítems relacionados por título, autor, creador y materia.