Show simple item record

dc.contributor.authorMuñoz-Martínez, Juan F.
dc.contributor.authorJubera, M.
dc.contributor.authorMatarrubia, J.
dc.contributor.authorGarcía Cabañes, Ángel 
dc.contributor.authorAgulló López, Fernando 
dc.contributor.authorCarrascosa Rico, Mercedes 
dc.contributor.otherUAM. Departamento de Física de Materialeses_ES
dc.date.accessioned2016-02-15T09:39:26Z
dc.date.available2016-02-15T09:39:26Z
dc.date.issued2016-01-15
dc.identifier.citationOptics Letters 41.2 (2016): 432-435en_US
dc.identifier.issn0146-9592 (print)es_ES
dc.identifier.issn1539-4794 (online)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/669659
dc.description© 2015 Optical Society of America.]. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibiteden_US
dc.description.abstractOne and two-dimensional diffractive optical devices have been fabricated by light assisted trapping and patterning of nanoparticles. The method is based on the dielectrophoretic forces appearing in the vicinity of a photovoltaic crystal, such as Fe:LiNbO3, during or after illumination. By illumination with the appropriate light distribution, the nanoparticles are organized along patterns designed at will. One- and two-dimensional diffractive components have been achieved on X- and Z-cut Fe:LiNbO3 crystals, with their polar axes parallel and perpendicular to the crystal surface, respectively. Diffraction gratings with periods down to around a few micrometers have been produced using metal (Al, Ag) nanoparticles with radii in the range of 70-100 nm. Moreover, several 2D devices, such as Fresnel zone plates, have been also produced showing the potential of the method. The diffractive particle patterns remain stable when light is removed. A method to transfer the diffractive patterns to other non-photovoltaic substrates, such as silica glass, has been also reporteden_US
dc.description.sponsorshipThis work was supported by Spanish projects MAT2011- 28379-C03 and MAT2014-57704-C03en
dc.format.extent4 pag.en
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherOptical Society of Americaen_US
dc.relation.ispartofOptics Lettersen_US
dc.rights© 2015 Optical Society of Americaen_US
dc.subject.otherMicrostructure fabricationen_US
dc.subject.otherDiffraction gratingsen_US
dc.subject.otherDiffractive lensesen_US
dc.subject.otherDiffractive opticsen_US
dc.subject.otherPhotorefractive materialsen_US
dc.subject.otherOptical tweezers or optical manipulationen_US
dc.titleDiffractive optical devices produced by light-assisted trapping of nanoparticlesen_US
dc.typearticleen
dc.subject.ecienciaFísicaes_ES
dc.date.embargoend2017-01-16
dc.relation.publisherversionhttp://dx.doi.org/10.1364/OL.41.000432es_ES
dc.identifier.doi10.1364/OL.41.000432es_ES
dc.identifier.publicationfirstpage432es_ES
dc.identifier.publicationissue2es_ES
dc.identifier.publicationlastpage435es_ES
dc.identifier.publicationvolume41es_ES
dc.relation.projectIDGobierno de España. MAT2011- 28379-C03es_ES
dc.relation.projectIDGobierno de España. MAT2014-57704-C03es_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.rights.accessRightsopenAccessen
dc.authorUAMAgullo López, Fernando (258914)
dc.facultadUAMFacultad de Ciencias
dc.institutoUAMCentro de Micro-Análisis de Materiales (CMAM)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record