UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Small versus big-data factor extraction in Dynamic Factor Models: an empirical assessment

Author
Poncela Blanco, Pilaruntranslated; Ruiz, Esther
Entity
UAM. Departamento de Análisis Económico: Economía Cuantitativa
Date
2015
Serie/Num.
UC3M Working Papers. 15-02
Project
Gobierno de España. ECO2012-32854; Gobierno de Esapña. ECO2012-32401
Subjects
Confidence intervals; Kalman filter; Principal Components; Quasi-Maximum Likelihood; Sectorial Factors; Economía
URI
http://hdl.handle.net/10486/677688

Abstract

In the context of Dynamic Factor Models (DFM), we compare point and interval estimates of the underlying unobserved factors extracted using small and big-data procedures. Our paper differs from previous works in the related literature in several ways. First, we focus on factor extraction rather than on prediction of a given variable in the system. Second, the comparisons are carried out by implementing the procedures considered to the same data. Third, we are interested not only on point estimates but also on confidence intervals for the factors. Based on a simulated system and the macroeconomic data set popularized by Stock and Watson (2012), we show that, for a given procedure, factor estimates based on different cross-sectional dimensions are highly correlated. On the other hand, given the cross-sectional dimension, the Maximum Likelihood Kalman filter and smoother (KFS) factor estimates are highly correlated with those obtained using hybrid Principal Components (PC) and KFS procedures. The PC estimates are somehow less correlated. Finally, the PC intervals based on asymptotic approximations are unrealistically tiny.
Show full item record

Files in this item

Thumbnail
Name
BigData_Poncela_WPUC3_2015.pdf
Size
649.2Kb
Format
PDF

Refworks Export

Google™ Scholar:Poncela Blanco, Pilar - Ruiz, Esther

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [17740]

Related items

Showing items related by title, author, creator and subject.

  • Dynamic factor models: Does the specification matter? 

    Miranda Gualdrón, Karen AlejandraAutoridad UAM; Poncela Blanco, PilarAutoridad UAM; Ruiz Uceda, María EstherAutoridad UAM
    2021-11-23
  • Factor extraction using Kalman filter and smoothing: This is not just another survey 

    Poncela Blanco, PilarAutoridad UAM; Ruiz, Esther; Miranda, Karen
    2021-10-01
  • Circulant singular spectrum analysis: A new automated procedure for signal extraction 

    Bógalo, Juan; Poncela Blanco, PilarAutoridad UAM; Senra, Eva
    2021-02-01
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad