Predictive value of angiogenesis-related gene profiling in patients with HER2-negative metastatic breast cancer treated with bevacizumab and weekly paclitaxel
Entity
UAM. Departamento de Anatomía Patológica; UAM. Departamento de Medicina; Instituto de Investigación Sanitaria Hospital Universitario de La Paz (IdiPAZ)Publisher
Impact Journals LLCDate
2016-03-16Citation
Oncotarget 7.17 (2016): 24217-24227ISSN
1949-2553Funded by
This work was supported by a grant from the Independent Clinical Research Program (EC10-342), Independent Clinical Research Program (EC10-342), ISCIII (Instituto de Salud Carlos III), Spanish Ministry of Health, and funded also from Roche Farma S.A.U.Subjects
Metastatic breast carcinoma; Bevacizumab and weekly paclitaxel; Predictive; Angiogenesis; Gene expression; MedicinaAbstract
Bevacizumab plus weekly paclitaxel improves progression-free survival (PFS)
in HER2-negative metastatic breast cancer (mBC), but its use has been questioned
due to the absence of a predictive biomarker, lack of benefit in overall survival (OS)
and increased toxicity. We examined the baseline tumor angiogenic-related gene
expression of 60 patients with mBC with the aim of finding a signature that predicts
benefit from this drug.
Multivariate analysis by Lasso-penalized Cox regression generated two predictive
models: one, named G-model, including 11 genes, and the other one, named GCmodel,
including 13 genes plus 5 clinical covariates. Both models identified patients
with improved PFS (HR (Hazard Ratio) 2.57 and 4.04, respectively) and OS (HR 3.29
and 3.43, respectively). The G-model distinguished low and high risk patients in the
first 6 months, whereas the GC-model maintained significance over time
Files in this item

Google Scholar:Mendiola, Marta
-
Martínez-Marín, Virginia
-
Herranz, Jesús
-
Heredia, Victoria
-
Yébenes, Laura
-
Zamora, Pilar
-
Castelo, Beatriz
-
Pinto, Álvaro
-
Miguel, María
-
Díaz, Esther
-
Gámez, Angelo
-
Fresno, Juan Ángel
-
Ramírez de Molina, Ana
-
Hardisson, David
-
Espinosa, Enrique
-
Redondo, Andrés
This item appears in the following Collection(s)
Related items
Showing items related by title, author, creator and subject.
-
Comparison of risk classification between EndoPredict and MammaPrint in ER-positive/HER2-negative primary invasive breast cancer
Peláez-García, Alberto; Yébenes, Laura; Berjón, Alberto; Angulo, Antonia; Zamora, Pilar; Sánchez-Mendez, José Ignacio; Espinosa, Enrique; Redondo, Andrés; Heredia-Soto, Victoria; Mendioala, Marta; Feliú, Jaime; Hardisson, David
2017-09-08 -
Functional proteomics outlines the complexity of breast cancer molecular subtypes
Gámez Pozo, Angelo; Trilla-Fuertes, Lucía; Berges-Soria, Julia; Selevsek, Nathalie; López-Vacas, Rocío; Díaz-Almirón, Mariana; Nanni, Paolo; Arevalillo, Jorge M.; Navarro, Hilario; Grossmann, Jonas; Gayá Moreno, Francisco; Gómez Rioja, Rubén; Prado- Vázquez, Guillermo; Zapater-Moros, Andrea; Main, Paloma; Feliú, Jaime; Martínez del Prado, Purificación; Zamora, Pilar; Ciruelos, Eva; Espinosa, Enrique; Fresno Vara, Juan Ángel
2017-08-30 -
Proteomic analysis of low-grade, early-stage endometrial carcinoma reveals new dysregulated pathways associated with cell death and cell signaling
López-Janeiro, Álvaro; Ruz-Caracuel, Ignacio; Ramón-Patino, Jorge L.; Ríos, Vivian De Los; Esparza, María Villalba; Berjón, Alberto; Yébenes, Laura; Hernández, Alicia; Masetto, Ivan; Kadioglu, Ece; Goubert, Virginie; Heredia-Soto, Victoria; Barderas, Rodrigo; Casal, José Ignacio; de Andrea, Carlos E.; Redondo, Andrés; Mendiola, Marta; Peláez-García, Alberto; Hardisson, David
2021-02-14