Show simple item record

dc.contributor.authorMuñoz-Martínez, Juan F.
dc.contributor.authorRamiro, José B.
dc.contributor.authorAlcázar, Ángel
dc.contributor.authorGarcía Cabañes, Ángel 
dc.contributor.authorCarrascosa Rico, Mercedes 
dc.contributor.otherUAM. Departamento de Física de Materialeses_ES
dc.date.accessioned2017-11-14T15:27:42Z
dc.date.available2017-11-14T15:27:42Z
dc.date.issued2017-06-26
dc.identifier.citationPhysical Review Applied 7.6 (2017): 064027en_US
dc.identifier.issn2331-7019es_ES
dc.identifier.urihttp://hdl.handle.net/10486/680228
dc.description.abstractCurrently, there is increasing interest from many scientific disciplines in the development of systems that are able to sort and arrange many objects in parallel at the nano-and micrometric scale. Among others, photovoltaic tweezers (PVT) are an optoelectronic technique for trapping and patterning nano-and micro-objects in accordance with an arbitrary light profile. In this work, the differential features of electro-and dielectrophoretic (EP and DEP) nanoparticle (NP) patterning using PVT are deeply investigated. The study is carried out through theory and experiments. The developed theory extends the applicability of a previously reported model to be able to compute EP potentials and to obtain numerical values for the EP and DEP potential energies. Two-dimensional patterns of charged and neutral aluminum NPs are fabricated on top of Fe:LiNbO3 crystals, and different light distributions and other experimental parameters (crystal thickness and NP concentration) are compared. Patterns of charged and neutral NPs show remarkable differences in both particle density distribution and fidelity to the original light profile. The observed different features between EP and DEP trapping are satisfactorily explained by the theoretical analysis. The results provide routes for the optimization of the NP arrangements for both regimes.en_US
dc.description.sponsorshipThis work is supported by the Spanish Ministerio de Economía y Competitividad under Grant No. MAT201457704-C3. J.F.M.-M. is partially supported by a fellowship of the Universidad Politécnica de Madrid (Grant No. RR01/2016)en_US
dc.format.extent9 pág.es_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherAmerican Physical Societyen_US
dc.relation.ispartofPhysical Review Applieden_US
dc.rights© 2017 American Physical Societyen_US
dc.subject.otherOptoelectronicen_US
dc.subject.otherNanoparticleen_US
dc.subject.otherPhotovoltaic tweezersen_US
dc.subject.otherNeutral aluminumen_US
dc.titleElectrophoretic versus dielectrophoretic nanoparticle patterning using optoelectronic tweezersen_US
dc.typearticleen
dc.subject.ecienciaFísicaes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1103/PhysRevApplied.7.064027es_ES
dc.identifier.doi10.1103/PhysRevApplied.7.064027es_ES
dc.identifier.publicationfirstpage1es_ES
dc.identifier.publicationissue6es_ES
dc.identifier.publicationlastpage9es_ES
dc.identifier.publicationvolume7es_ES
dc.relation.projectIDGobierno de España. MAT201457704-C3es_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.rights.accessRightsopenAccessen
dc.authorUAMCarrascosa Rico, Mercedes (259627)
dc.facultadUAMFacultad de Ciencias


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record