UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Bayesian dimensionality assessment for the multidimensional nominal response model

Author
Revuelta Menéndez, Javieruntranslated; Ximénez, Carmen
Entity
UAM. Departamento de Psicología Social y Metodología
Publisher
Frontiers Media
Date
2017-06-16
Citation
10.3389/fpsyg.2017.00961
Frontiers in Psychology 8 (2017): 961
 
 
 
ISSN
1664-1078 (online)
DOI
10.3389/fpsyg.2017.00961
Funded by
This research was partially supported by grants PSI2012-31958 and PSI2015-66366-P from the Ministerio de Economía y Competitividad (Spain)
Project
Gobierno de España. PSI2015-66366-P; Gobierno de España. PSI2012-31958
Subjects
Multidimensional nominal response model; Multidimensional item response theory; Standardized generalized discrepancy measure; WAICC; LOO; Bayesian inference; Psicología
URI
http://hdl.handle.net/10486/680849

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.

Abstract

This article introduces Bayesian estimation and evaluation procedures for the multidimensional nominal response model. The utility of this model is to perform a nominal factor analysis of items that consist of a finite number of unordered response categories. The key aspect of the model, in comparison with traditional factorial model, is that there is a slope for each response category on the latent dimensions, instead of having slopes associated to the items. The extended parameterization of the multidimensional nominal response model requires large samples for estimation. When sample size is of a moderate or small size, some of these parameters may be weakly empirically identifiable and the estimation algorithm may run into difficulties. We propose a Bayesian MCMC inferential algorithm to estimate the parameters and the number of dimensions underlying the multidimensional nominal response model. Two Bayesian approaches to model evaluation were compared: discrepancy statistics (DIC, WAICC, and LOO) that provide an indication of the relative merit of different models, and the standardized generalized discrepancy measure that requires resampling data and is computationally more involved. A simulation study was conducted to compare these two approaches, and the results show that the standardized generalized discrepancy measure can be used to reliably estimate the dimensionality of the model whereas the discrepancy statistics are questionable. The paper also includes an example with real data in the context of learning styles, in which the model is used to conduct an exploratory factor analysis of nominal data
Show full item record

Files in this item

Thumbnail
Name
bayesian_revuelta_fp_2017.pdf
Size
1021.Kb
Format
PDF

Refworks Export

Google™ Scholar:Revuelta Menéndez, Javier - Ximénez, Carmen

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [17143]

Related items

Showing items related by title, author, creator and subject.

  • Multidimensional ítem response model for nominal variables 

    Revuelta Menéndez, JavierAutoridad UAM
    2014-06-17
  • A Bayesian generalized explanatory item response model to account for learning during the test 

    Lozano, José H.; Revuelta, Javier
    2021-08-30
  • Estimación bayesiana de un modelo psicométrico multinivel con efectos aleatorios 

    Revuelta Menéndez, JavierAutoridad UAM; Ximénez, Carmen
    2014
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad