UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Universidad Autónoma de Madrid
Biblos-e Archivo
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workI want to submit my doctoral thesisFrequently Asked QuestionsCopyrightsFinancial Agencies and OA policy

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 2 - Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • View Item
  •   Biblos-e Archivo
  • 2 - Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • View Item

Modelling spin correlations in graphene and chiral molecules

Author
González Árraga, Luis Alberto
Advisor
Guinea López, Francisco; San José, Pablo
Entity
UAM. Departamento de Física de la Materia Condensada
Date
2018-05-11
Subjects
Grafenos - Tesis doctorales; Magnetismo - Tesis doctorales; Elasticidad - Tesis doctorales; Física
URI
http://hdl.handle.net/10486/684222
Note
Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física de la Materia Condensada. Fecha de lectura: 11-05-2018

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Abstract

We first develop an analytical model to explain the spin-selectivity in experiments that measure conductance through DNA molecules attached to a Ni substrate and a gold electrode. Our model involves an electron con- ned to a helix potential; the spin-orbit due to the carbon atomic cores is modeled by a Rashba term. We calculate the eigenstates of the electron in the SO-active helix and by calculating the expectation value of the currents for eigenstates of di erent spins, we nd that electrons of di erent spins propagate with di erent velocities, thus generating the spin- ltering seen in the experiments. Moving on to graphene, we begin by studying superlattices of periodically hydrogenated graphene in a dilute regime. We include in our model the adatom-induced magnetism and spin-orbit couplings, and we investigate the topological properties of the band structure via a Berry curvature analysis. A direct visualization of the edge states is also carried out by calculating the spatial distribution of midgap states in the hydrogenated nanoribbon structure, and by looking at the DOS at the edge of semi-in nite structure. We also investigate the magnetic anisotropy induced by the spin-orbit coupling within a Hubbard model at the mean- eld approximation. Next, we consider pairwise interactions between adatoms in graphene. For distances in which their orbitals do not overlap, the adatoms may yet have indirect interactions mediated by the electrons of graphene. We calculate the total interaction energy via a two-impurity Anderson model. In unstrained graphene the interactions oscillate according to cos2( K 2 :r) a type of periodicity that is referred to in the literature as Hidden Kekul e ordering. We investigate how elastic strains in graphene modulate the pair-wise interactions between adatoms. We include in our description the e ects of adatom magnetization and consider also the interactions between adatoms in the hollow position and benzene-like adsorbates. Lastly, the e ect of electron-electron interactions in twisted bilayer graphene are investigated. The Fermi velocity is reduced for small twisting angles, leading to nearly at bands (strongly localized in the regions of AA-stacking) around the Fermi level for some twisting angles. We calculate the magnetic order within one unit cell using a collinear mean- eld approximation for the Hubbard term and we obtain that the semimetal-Mott insulator transition is facilitated by the reduction of the Fermi velocity. Unlike the antiferromagnetic phase in the monolayer honeycomb, this antiferromagnetism is strongly localized in the AA regions. We also take into account the e ect of an applied interlayer bias, which in the non-interacting limit enhances the electron-con nement. This enhanced con nement turns the moir e pattern of TBLG into a triangular superlattice of electrons con ned in AA-regions, and we nd that under interlayer bias the ground state becomes a 120 N eel state
Show full item record

Files in this item

Thumbnail
Name
gonzalez_arraga_luis_alberto.pdf
Size
16.34Mb
Format
PDF
Description
Texto de la Tesis Doctoral

Refworks Export

Delicious Save this on Delicious

Google™ Scholar:González Árraga, Luis Alberto

This item appears in the following Collection(s)

  • Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.) [19127]

Related items

Showing items related by title, author, creator and subject.

  • Electron correlation in the ionization continuum of molecules: Photoionization of N2 in the vicinity of the Hopfield series of autoionizing states 

    Klinker, MarkusAutoridad UAM; Marante, Carlos; Argenti, Luca; González-Vázquez, Jesús; Martín García, FernandoAutoridad UAM
    2018-02-15
  • The two-dimensional twisted reduced principal chiral model revisited 

    González-Arroyo, Antonio; Okawa, Masanori
    2018-06-01
  • Single ionization of the hydrogen molecule induced by pump - probe techniques with ultrashort laser pulses 

    González Castrillo, Alberto
    2015-05-15
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram
 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram