UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Analysis of spatio-temporal representations for robust footstep recognition with deep residual neural networks

Author
Costilla Reyes, Omar; Vera Rodríguez, Rubénuntranslated; Scully, Patricia; Ozanyan, Krikor B.
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Date
2018-01-29
Citation
10.1109/TPAMI.2018.2799847
IEEE Transactions on Pattern Analysis and Machine Intelligence, 30 January (2018): 1-13
 
 
 
ISSN
0162-8828 (print); 1939-3539 (online)
DOI
10.1109/TPAMI.2018.2799847
Funded by
This work has been partially supported by Cognimetrics TEC2015-70627-R MINECO/FEDER
Project
Gobierno de España. TEC2015-70627-R
Editor's Version
http://doi.org/10.1109/TPAMI.2018.2799847
Subjects
Biological system modeling; Biometric system; Biometrics (access control); Data models; Databases; Deep learning; Floor sensor system; Footstep recognition; Hidden Markov models; Security; Sensor systems; Verification system; Informática
URI
http://hdl.handle.net/10486/684711
Note
IEEE: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.”
Rights
© 2018 IEEE

Abstract

Human footsteps can provide a unique behavioural pattern for robust biometric systems. We propose spatio-temporal footstep representations from floor-only sensor data in advanced computational models for automatic biometric verification. Our models deliver an artificial intelligence capable of effectively differentiating the fine-grained variability of footsteps between legitimate users (clients) and impostor users of the biometric system. The methodology is validated in the largest to date footstep database, containing nearly 20,000 footstep signals from more than 120 users. The database is organized by considering a large cohort of impostors and a small set of clients to verify the reliability of biometric systems. We provide experimental results in 3 critical data-driven security scenarios, according to the amount of footstep data made available for model training: at airports security checkpoints (smallest training set), workspace environments (medium training set) and home environments (largest training set). We report state-of-the-art footstep recognition rates with an optimal equal false acceptance and false rejection rate of 0.7% (equal error rate), an improvement ratio of 371% from previous state-of-the-art. We perform a feature analysis of deep residual neural networks showing effective clustering of client's footstep data and provide insights of the feature learning process.
Show full item record

Files in this item

Thumbnail
Name
analysis_costilla_IEEE_2018pre.pdf
Size
6.496Mb
Format
PDF

Refworks Export

Google™ Scholar:Costilla Reyes, Omar - Vera Rodríguez, Rubén - Scully, Patricia - Ozanyan, Krikor B.

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [17229]

Related items

Showing items related by title, author, creator and subject.

  • Spatial footstep recognition by convolutional neural networks for biometrie applications 

    Costilla-Reyes, Omar; Vera Rodríguez, RubénAutoridad UAM; Scull, Patricia; Ozanyan, Krikor B.
    2016
  • Comparative analysis and fusion of spatiotemporal information for footstep recognition 

    Vera Rodríguez, RubénAutoridad UAM; Mason, John S. D.; Fiérrez Aguilar, JuliánAutoridad UAM; Ortega García, JavierAutoridad UAM
    2012-08-02
  • An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition 

    Lozano Díez, AliciaAutoridad UAM; Zazo, Rubén; Toledano, Doroteo T.; González Rodríguez, JoaquínAutoridad UAM
    2017-08-10
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad