Show simple item record

dc.contributor.authorRozas, E.
dc.contributor.authorMartín, M. D.
dc.contributor.authorTejedor de Paz, Carlos 
dc.contributor.authorViña Liste, Luis M. 
dc.contributor.authorDeligeorgis, G.
dc.contributor.authorHatzopoulos, Z.
dc.contributor.authorSavvidis, P. G.
dc.contributor.otherUAM. Departamento de Física de Materialeses_ES
dc.contributor.otherUAM. Departamento de Física Teórica de la Materia Condensadaes_ES
dc.contributor.otherUAM. Centro de Investigación en Fisica de la Materia Condensada (IFIMAC)es_ES
dc.contributor.otherUAM. Instituto Universitario de Ciencia de Materiales Nicolás Cabrera (INC)es_ES
dc.date.accessioned2018-10-05T17:12:24Z
dc.date.available2018-10-05T17:12:24Z
dc.date.issued2018-02-28
dc.identifier.citationPhysical Review B 97.7 (2018): 075442en_US
dc.identifier.issn2469-9950 (print)es_ES
dc.identifier.issn2469-9969 (online)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/685271
dc.description.abstractWe present a time-resolved experimental study of the temperature effect on the coherence of traveling polariton condensates. The simultaneous detection of their emission both in real and reciprocal space allows us to fully monitor the condensates' dynamics. We obtain fringes in reciprocal space as a result of the interference between polariton wave packets (WPs) traveling with the same speed. The periodicity of these fringes is inversely proportional to the spatial distance between the interfering WPs. In a similar fashion, we obtain interference fringes in real space when WPs traveling in opposite directions meet. The visibility of both real- and reciprocal-space interference fringes rapidly decreases with increasing temperature and vanishes. A theoretical description of the phase transition, considering the coexistence of condensed and noncondensed particles, for an out-of-equilibrium condensate such as ours is still missing, yet a comparison with theories developed for atomic condensates allows us to infer a critical temperature for the BEC-like transition when the visibility goes to zeroen_US
dc.description.sponsorshipE.R. acknowledges financial support from a Spanish FPI scholarship No. BES-2015-074708. This work was partially supported by the Spanish MINECO grants No. MAT2014-53119-C2-1-R and No. MAT2017-83722-R. P.G.S. acknowledges support from ITMO Fellowship Program and megaGrant No. 14.Y26.31.0015 of the Ministry of Education and Science of Russian Federationen_US
dc.format.extent9 pag.es_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherAmerican Physical Societyen_US
dc.relation.ispartofPhysical Review Ben_US
dc.rights© 2018 American Physical Societyen_US
dc.subject.otherTemperatureen_US
dc.subject.otherCoherenceen_US
dc.subject.otherPolariton condensatesen_US
dc.subject.otherCondensed and noncondensed particlesen_US
dc.subject.otherZeroen_US
dc.titleTemperature dependence of the coherence in polariton condensatesen_US
dc.typearticleen
dc.subject.ecienciaFísicaes_ES
dc.relation.publisherversionhttp://doi.org/10.1103/PhysRevB.97.075442es_ES
dc.identifier.doi10.1103/PhysRevB.97.075442es_ES
dc.identifier.publicationfirstpage075442-1es_ES
dc.identifier.publicationissue7es_ES
dc.identifier.publicationlastpage075442-8es_ES
dc.identifier.publicationvolumePhysical Review Ben_US
dc.relation.projectIDGobierno de España. BES-2015-074708es_ES
dc.relation.projectIDGobierno de España. MAT2014-53119-C2-1-Res_ES
dc.relation.projectIDGobierno de España. MAT2017-83722-Res_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dc.rights.accessRightsopenAccessen
dc.authorUAMViña Liste, Luis M. (258985)
dc.facultadUAMFacultad de Ciencias
dc.institutoUAMInstituto Universitario de Ciencia de Materiales Nicolás Cabrera (INC)
dc.institutoUAMCentro de Investigación en Física de la Materia Condensada (IFIMAC)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record