Show simple item record

dc.contributor.authorPino, Javier del
dc.contributor.authorSchröder, Florian A.Y.N.
dc.contributor.authorChin, Alex W.
dc.contributor.authorFeist, Johannes
dc.contributor.authorGarcía Vidal, Fco. José 
dc.contributor.editorAmerican Physical Societyen_US
dc.contributor.otherUAM. Departamento de Física Teórica de la Materia Condensadaes_ES
dc.contributor.otherUAM. Centro de Investigación en Fisica de la Materia Condensada (IFIMAC)es_ES
dc.date.accessioned2018-11-27T17:28:52Z
dc.date.available2018-11-27T17:28:52Z
dc.date.issued2018-10-12
dc.identifier.citationPhysical Review B 98.16 (2018): 165416en_US
dc.identifier.issn2469-9950 (print)es_ES
dc.identifier.issn2469-9969 (online)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/685751
dc.description.abstractIn the regime of strong coupling between molecular excitons and confined optical modes, the intramolecular degrees of freedom are profoundly affected, leading to a reduced vibrational dressing of polaritons compared to bare electronically excited states. However, existing models only describe a single vibrational mode in each molecule, while actual molecules possess a large number of vibrational degrees of freedom and additionally interact with a continuous bath of phononic modes in the host medium in typical experiments. In this work, we investigate a small ensemble of molecules with an arbitrary number of vibrational degrees of freedom under strong coupling to a microcavity mode. We demonstrate that reduced vibrational dressing is still present in this case, and show that the influence of the phononic environment on most electronic and photonic observables in the lowest excited state can be predicted from just two collective parameters of the vibrational modes. Besides, we explore vibrational features that can be addressed exclusively by our extended model and could be experimentally tested. Our findings indicate that vibronic coupling is more efficiently suppressed for environments characterized by low-frequency (sub-Ohmic) modesen_US
dc.description.sponsorshipThis work has been funded by the European Research Council (Grants No. ERC-2011-AdG-290981 and No. ERC-2016-STG-714870), and the Spanish MINECO under Contract No. MAT2014-53432-C5-5-R and the “María de Maeztu” programme for Units of Excellence in R&D (MDM- 2014-0377). F.A.Y.N.S. and A.W.C. gratefully acknowledge the support of the Winton Programme for the Physics of Sustainability and EPSRCen_US
dc.format.extent13 pag.es_ES
dc.format.mimetypeapplication/pdfen
dc.language.isospaen
dc.relation.ispartofPhysical Review Ben_US
dc.rights© 2018 American Physical Societyen_US
dc.subject.otherTensor networken_US
dc.subject.otherVibrational degreesen_US
dc.subject.otherElectronic and photonicen_US
dc.subject.otherLow-frequencyen_US
dc.titleTensor network simulation of polaron-polaritons in organic microcavitiesen_US
dc.typearticleen
dc.subject.ecienciaFísicaes_ES
dc.relation.publisherversionhttps://doi.org/10.1103/PhysRevB.98.165416es_ES
dc.identifier.doi10.1103/PhysRevB.98.165416en_US
dc.identifier.publicationfirstpage165416-1es_ES
dc.identifier.publicationissue16es_ES
dc.identifier.publicationlastpage165416-13es_ES
dc.identifier.publicationvolume98es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/290881es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/714870es_ES
dc.relation.projectIDGobierno de España. MAT2014-53432-C5-5-Res_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.rights.accessRightsopenAccessen
dc.authorUAMFeist, Johannes Maximilian (264839)
dc.facultadUAMFacultad de Ciencias
dc.institutoUAMCentro de Investigación en Física de la Materia Condensada (IFIMAC)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record