Show simple item record

dc.contributor.advisorRío Galdo, Paula
dc.contributor.advisorBueren Roncero, Juan Antonio
dc.contributor.authorRomán Rodríguez, Francisco José
dc.contributor.otherUAM. Departamento de Biología Moleculares_ES
dc.contributor.otherCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)es_ES
dc.contributor.otherCentro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)es_ES
dc.contributor.otherInstituto de Investigación Sanitaria de la Fundación Jiménez Díazes_ES
dc.date.accessioned2019-02-07T12:13:58Z
dc.date.available2019-02-07T12:13:58Z
dc.date.issued2018-11-27
dc.identifier.urihttp://hdl.handle.net/10486/686629
dc.descriptionTesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 27-11-2018es_ES
dc.descriptionEsta tesis tiene embargado el acceso al texto completo hasta el 27-05-2020es_ES
dc.description.abstractPreclinical as well as clinical studies suggest that gene therapy based on the infusion of autologous hematopoietic progenitor and stem cells (HSPCs) previously corrected with lentiviral vectors may constitute a future alternative for treating Fanconi anemia (FA) patients. In this context, gene editing appears to be a new step in the development of safe and precise gene therapy approaches. Since non-homologous end-joining (NHEJ) is the preferred mechanism to repair DNA double-strand breaks in quiescent cells, such as HSPCs, and given that this pathway has been reported to be enhanced in FA cells, we have tested the feasibility of using NHEJ to generate compensatory mutations that may restore the function of FANCA protein, thus mimicking the spontaneous reversions reported in some FA mosaic patients. Our hypothesis was initially tested in two FA-A patient-derived lymphoblastic cell lines carrying different mutations in FANCA using the CRISPR/Cas9 system. Analyses of the targeted sites by next generation sequencing (NGS) revealed the presence of cells harbouring potentially therapeutic repair events whose frequency increased over time. Functional analyses confirmed the re-expression of a new functional FANCA protein capable of correcting the FA cell phenotype. Importantly, transplantation of healthy donor HSPCs after NHEJ-editing in immunodeficient (NSG) mice showed the feasibility of efficiently targeting long-term repopulating HSCs. Moreover, when FA-A patient HSPCs were targeted by our CRISPR/Cas9 nuclease, therapeutic NHEJ-repair events were identified by NGS, showing up to 50-fold in vitro expansion after only 9 days in culture. Furthermore, the transplantation of limited numbers of FA-edited hCD34+ cells into an NSG mouse showed a remarkable in vivo expansion of corrected cells. Additionally, corrected cells showed the reversion of the hypersensitivity to mitomycin C, defined as a hallmark of FA cells. All together, these results demonstrate for the first time the NHEJ-mediated phenotypic correction of FA HSPCs. The NGS analyses of the topfive in silico predicted off-target loci in edited FA HSPCs showed no unspecific activity, confirming the safety of this new approach. Moving forward to in vivo applications of NHEJ-mediated repair approaches, serotype 6 adeno-associated viral vectors (AAVs) were tested in vitro and also in vivo, demonstrating the possibility of transducing hematopoietic progenitor cells in both settings. Moreover, the delivery of the CRISPR/Cas9 system via an all-in-one AAV confirmed the feasibly of these vectors to edit human HSPCs, opening the possibility of future in vivo NHEJ-mediated gene editing approaches in FAen_US
dc.description.sponsorshipEl trabajo de investigación descrito en esta memoria ha sido realizado en la División de Terapias Innovadoras en el Sistema Hematopoyético del Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) / Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) / Unidad Mixta de Terapias Avanzadas CIEMAT/Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD). Para su ejecución, esta tesis doctoral ha contado con la colaboración de los siguientes Programas de Investigación:  Ministerio de Economía, Comercio y Competitividad y Fondo Europeo de Desarrollo Regional (FEDER) (SAF2015-68073-R y SAF2015-64152-R).  Séptimo Programa Marco de la Comisión Europea (HEALTH-F5-2012-305421; EUROFANCOLEN).  Ministerio de Sanidad, Servicios Sociales e Igualdad (EC11/060 y EC11/550)  Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III (RD12/0019/0023).  Programa de transferencia de tecnología en el campo de la terapia génica de la Fundación Botín. Francisco José Román Rodríguez ha disfrutado de una beca de Formación de Personal Investigador (FPI) del Ministerio de Economía y Competitividad (BES-2013-063397) vinculada al proyecto SAF2012-39834: “Terapia celular y génica dirigida en Anemia de Fanconi: un paso adelante”, y de un contrato del CIBERER.es_ES
dc.format.extent168 pag.es_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.subject.otherAnemia - Terapia génica - Tesis doctoraleses_ES
dc.subject.otherIngeniería genética - Tesis doctoraleses_ES
dc.titleGene editing mediated by non-homologous end-joining: a versatile approach for the gene therapy of hematopoietic stem cells from fanconi anemia patientsen_US
dc.typedoctoralThesisen
dc.subject.ecienciaBiología y Biomedicina / Biologíaes_ES
dc.date.embargoend2020-05-27
dc.rights.ccReconocimiento – NoComercial – SinObraDerivadaes_ES
dc.rights.accessRightsopenAccessen
dc.facultadUAMFacultad de Ciencias


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record