Show simple item record

dc.contributor.authorCatalán-Gómez, S.
dc.contributor.authorRedondo-Cubero, A.
dc.contributor.authorPalomares, F. J.
dc.contributor.authorNucciarelli, F.
dc.contributor.authorPau Vizcaíno, José Luis 
dc.contributor.otherUAM. Departamento de Física Aplicadaes_ES
dc.date.accessioned2019-04-04T08:20:10Z
dc.date.available2019-04-04T08:20:10Z
dc.date.issued2017-09-11
dc.identifier.citationNanotechnology 28.40 (2017): 405705en_US
dc.identifier.issn0957-4484 (print)en_US
dc.identifier.issn1361-6528 (online)en_US
dc.identifier.urihttp://hdl.handle.net/10486/687204
dc.descriptionThis Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period provided that all the terms of the licence are adhered toen_US
dc.description.abstractThe effect of the oxidation of gallium nanoparticles (Ga NPs) on their plasmonic properties is investigated. Discrete dipole approximation has been used to study the wavelength of the out-of-plane localized surface plasmon resonance in hemispherical Ga NPs, deposited on silicon substrates, with oxide shell (Ga2O3) of different thickness. Thermal oxidation treatments, varying temperature and time, were carried out in order to increase experimentally the Ga2O3 shell thickness in the NPs. The optical, structural and chemical properties of the oxidized NPs have been studied by spectroscopic ellipsometry, scanning electron microscopy, grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy. A clear redshift of the peak wavelength is observed, barely affecting the intensity of the plasmon resonance. A controllable increase of the Ga2O3 thickness as a consequence of the thermal annealing is achieved. In addition, simulations together with ellipsometry results have been used to determine the oxidation rate, whose kinetics is governed by a logarithmic dependence. These results support the tunable properties of the plasmon resonance wavelength in Ga NPs by thermal oxidation at low temperatures without significant reduction of the plasmon resonance intensityen_US
dc.description.sponsorshipThis research is supported by the MINECO (CTQ2014-53334-C2-2-R and MAT2016-80394-R) and Comunidad de Madrid (NANOAVANSENS ref. S2013/MIT-3029) projects. ARC acknowledges Ramón y Cajal program (under contract number RYC-2015-18047). FN acknowledges support from Marie Sklodowska-Curie grant agreement No 641899 from the European Union’s Horizon 2020 research and innovation programmeen_US
dc.format.extent29 pag.en_US
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherIOP Publishingen_US
dc.relation.ispartofNanotechnologyen_US
dc.rights© 2017 IOP Publishing Ltden_US
dc.subject.otherEllipsometryen_US
dc.subject.otherGalliumen_US
dc.subject.otherNanoparticlesen_US
dc.subject.otherOxidationen_US
dc.subject.otherPlasmonicsen_US
dc.titleTunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperaturesen_US
dc.typearticleen
dc.subject.ecienciaFísicaes_ES
dc.date.embargoend2018-09-11
dc.relation.publisherversionhttps://doi.org/10.1088/1361-6528/aa8505es_ES
dc.identifier.doi10.1088/1361-6528/aa8505es_ES
dc.identifier.publicationfirstpage405705-1es_ES
dc.identifier.publicationissue40es_ES
dc.identifier.publicationlastpage405705-11es_ES
dc.identifier.publicationvolume28es_ES
dc.relation.projectIDGobierno de España. CTQ2014-53334-C2-2-Res_ES
dc.relation.projectIDGobierno de España. MAT2016-80394-Res_ES
dc.relation.projectIDComunidad de Madrid. S2013/MIT-3029/NANOAVANSENSes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/641899/EU//PROMISen_US
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dc.contributor.groupElectrónica y Semiconductores (EXP C-032)es_ES
dc.rights.ccReconocimiento – NoComercial – SinObraDerivadaes_ES
dc.rights.accessRightsopenAccessen
dc.authorUAMPau Vizcaíno, José Luis (261992)
dc.facultadUAMFacultad de Ciencias


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record