Mostrar el registro sencillo del ítem

dc.contributor.authorCliment, Clàudia
dc.contributor.authorGalego, Javier
dc.contributor.authorGarcía Vidal, Fco. José 
dc.contributor.authorFeist, Johannes
dc.contributor.otherUAM. Departamento de Física Teórica de la Materia Condensadaes_ES
dc.date.accessioned2019-08-21T10:18:39Z
dc.date.available2019-08-21T10:18:39Z
dc.date.issued2019-06-13
dc.identifier.citationAngewandte Chemie - International Edition 58.26 (2019): 8698-8702en_US
dc.identifier.issn1433-7851 (print)en_US
dc.identifier.issn1521-3773 (online)en_US
dc.identifier.urihttp://hdl.handle.net/10486/688400
dc.description.abstractThe potential of strong interactions between light and matter remains to be further explored within a chemical context. Towards this end herein we study the electromagnetic interaction between molecules and plasmonic nanocavities. By means of electronic structure calculations, we show that self-induced catalysis emerges without any external stimuli through the interaction of the molecular permanent and fluctuating dipole moments with the plasmonic cavity modes. We also exploit this scheme to modify the transition temperature T1/2 of spin-crossover complexes as an example of how strong light–matter interactions can ultimately be used to control a materials responsesen_US
dc.description.sponsorshipThis work has been funded by the European Research Council (ERC‐2016‐STG‐714870) and the Spanish MINECO under contract MAT2014‐53432‐C5‐5‐R and the “María de Maeztu” programme for Units of Excellence in R&D (MDM‐2014‐0377), as well as through a Ramón y Cajal grant (JF). We also acknowledge support by the QuantERA program of the European Commission with funding by the Spanish AEI through project PCI2018‐093145en_US
dc.format.extent6 pag.en_US
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherWiley-VCH Verlagen_US
dc.relation.ispartofAngewandte Chemie - International Editionen_US
dc.rights© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheimen_US
dc.subject.otherSpin crossoveren_US
dc.subject.otherSelf-induced catalysisen_US
dc.subject.otherPlasmonic nanocavityen_US
dc.subject.otherNucleophilic substitutionen_US
dc.subject.otherHeterogeneous catalysisen_US
dc.titlePlasmonic Nanocavities Enable Self-Induced Electrostatic Catalysisen_US
dc.typearticleen
dc.subject.ecienciaFísicaes_ES
dc.date.embargoend2020-06-13
dc.relation.publisherversionhttps://doi.org/10.1002/anie.201901926es_ES
dc.identifier.doi10.1002/anie.201901926es_ES
dc.identifier.publicationfirstpage8698es_ES
dc.identifier.publicationissue26es_ES
dc.identifier.publicationlastpage8702es_ES
dc.identifier.publicationvolume58es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/714870/EU//MMUSCLESen_US
dc.relation.projectIDGobierno de España. MAT2014‐53432‐C5‐5‐Res_ES
dc.relation.projectIDGobierno de España. MDM‐2014‐0377es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/731473/EU//QuantERAen_US
dc.relation.projectIDGobierno de España. PCI2018‐093145es_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.rights.ccReconocimiento – NoComercial – SinObraDerivadaes_ES
dc.rights.accessRightsopenAccessen
dc.authorUAMCliment I Biescas, Claudia (279566)
dc.authorUAMGarcía Vidal, Fco. José (259819)
dc.authorUAMFeist, Johannes Maximilian (264839)
dc.facultadUAMFacultad de Ciencias
dc.institutoUAMCentro de Investigación en Física de la Materia Condensada (IFIMAC)


Lista de ficheros

Thumbnail

Lista de colecciones del ítem

Mostrar el registro sencillo del ítem