UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Cavity Casimir-Polder Forces and Their Effects in Ground-State Chemical Reactivity

Author
Galego, Javier; Climent, Clàudia; Garcia-Vidal, Francisco J.; Feist, Johannes
Entity
UAM. Departamento de Física Teórica de la Materia Condensada
Publisher
American Physical Society
Date
2019-06-21
Citation
10.1103/PhysRevX.9.021057
Physical Review X 9.2 (2019): 021057
 
 
 
ISSN
2160-3308
DOI
10.1103/PhysRevX.9.021057
Funded by
This work has been funded by the European Research Council (ERC-2016-STG-714870) and the Spanish MINECO under Contract No. MAT2014-53432-C5-5-R and the “María de Maeztu” program for Units of Excellence in R&D (MDM-2014-0377), as well as through a Ramón y Cajal grant (J. F.)
Project
Gobierno de España. MAT2014-53432-C5-5-R; Gobierno de España. MDM-2014-0377; info:eu-repo/grantAgreement/EC/H2020/714870/EU//MMUSCLES
Editor's Version
https://doi.org/10.1103/PhysRevX.9.021057
Subjects
Atomic and Molecular Physics; Chemical Physics; Photonics; Cavity quantum electrodynamics; Chemical reactions; Polaritons; Organic microcavities; Quantum chemistry methods; Física
URI
http://hdl.handle.net/10486/688401
Rights
© 2019 authors. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.

Abstract

Here, we present a fundamental study on how the ground-state chemical reactivity of a single molecule can be modified in a QED scenario, i.e., when it is placed inside a nanoscale cavity and there is strong coupling between the cavity field and vibrational modes within the molecule. We work with a model system for the molecule (Shin-Metiu model) in which nuclear, electronic, and photonic degrees of freedom are treated on the same footing. This simplified model allows the comparison of exact quantum reaction rate calculations with predictions emerging from transition state theory based on the cavity Born-Oppenheimer approach. We demonstrate that QED effects are indeed able to significantly modify activation barriers in chemical reactions and, as a consequence, reaction rates. The critical physical parameter controlling this effect is the permanent dipole of the molecule and how this magnitude changes along the reaction coordinate. We show that the effective coupling can lead to significant single-molecule energy shifts in an experimentally available nanoparticle-on-mirror cavity. We then apply the validated theory to a realistic case (internal rotation in the 1,2-dichloroethane molecule), showing how reactions can be inhibited or catalyzed depending on the profile of the molecular dipole. Furthermore, we discuss the absence of resonance effects in the present scenario, which can be understood through its connection to Casimir-Polder forces. Finally, we treat the case of many-molecule strong coupling and find collective modifications of reaction rates if the molecular permanent dipole moments are oriented with respect to the cavity field
Show full item record

Files in this item

Thumbnail
Name
cavity_feist_phrx_2019.pdf
Size
3.735Mb
Format
PDF

Refworks Export

Google™ Scholar:Galego, Javier - Climent, Clàudia - Garcia-Vidal, Francisco J. - Feist, Johannes

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [16828]

Related items

Showing items related by title, author, creator and subject.

  • Plasmonic Nanocavities Enable Self-Induced Electrostatic Catalysis 

    Climent, Clàudia; Galego, Javier; Garcia-Vidal, Francisco J.; Feist, Johannes
    2019-06-13
  • Impact of vibrational modes in the plasmonic purcell effect of organic molecules 

    Zhao, Dongxing; Silva, Rui E.F.; Climent, Clàudia; Feist, Johannes; Fernández Domínguez, Antonio IsaacAutoridad UAM; García-Vidal, Francisco J.
    2020-12-29
  • Polaritonic Chemistry with organic molecules 

    Feist, Johannes; Galego, Javier; Garcia-Vidal, Francisco J.
    2018-01-17
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad