Show simple item record

dc.contributor.authorGalego, Javier
dc.contributor.authorCliment, Clàudia
dc.contributor.authorGarcia-Vidal, Francisco J.
dc.contributor.authorFeist, Johannes
dc.contributor.otherUAM. Departamento de Física Teórica de la Materia Condensadaes_ES
dc.date.accessioned2019-08-22T09:47:43Z
dc.date.available2019-08-22T09:47:43Z
dc.date.issued2019-06-21
dc.identifier.citationPhysical Review X 9.2 (2019): 021057es_ES
dc.identifier.issn2160-3308es_ES
dc.identifier.urihttp://hdl.handle.net/10486/688401
dc.description.abstractHere, we present a fundamental study on how the ground-state chemical reactivity of a single molecule can be modified in a QED scenario, i.e., when it is placed inside a nanoscale cavity and there is strong coupling between the cavity field and vibrational modes within the molecule. We work with a model system for the molecule (Shin-Metiu model) in which nuclear, electronic, and photonic degrees of freedom are treated on the same footing. This simplified model allows the comparison of exact quantum reaction rate calculations with predictions emerging from transition state theory based on the cavity Born-Oppenheimer approach. We demonstrate that QED effects are indeed able to significantly modify activation barriers in chemical reactions and, as a consequence, reaction rates. The critical physical parameter controlling this effect is the permanent dipole of the molecule and how this magnitude changes along the reaction coordinate. We show that the effective coupling can lead to significant single-molecule energy shifts in an experimentally available nanoparticle-on-mirror cavity. We then apply the validated theory to a realistic case (internal rotation in the 1,2-dichloroethane molecule), showing how reactions can be inhibited or catalyzed depending on the profile of the molecular dipole. Furthermore, we discuss the absence of resonance effects in the present scenario, which can be understood through its connection to Casimir-Polder forces. Finally, we treat the case of many-molecule strong coupling and find collective modifications of reaction rates if the molecular permanent dipole moments are oriented with respect to the cavity fieldes_ES
dc.description.sponsorshipThis work has been funded by the European Research Council (ERC-2016-STG-714870) and the Spanish MINECO under Contract No. MAT2014-53432-C5-5-R and the “María de Maeztu” program for Units of Excellence in R&D (MDM-2014-0377), as well as through a Ramón y Cajal grant (J. F.)es_ES
dc.format.extent22 pag.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.relation.ispartofPhysical Review Xes_ES
dc.rights© 2019 authors. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOIes_ES
dc.subject.otherAtomic and Molecular Physicses_ES
dc.subject.otherChemical Physicses_ES
dc.subject.otherPhotonicses_ES
dc.subject.otherCavity quantum electrodynamicses_ES
dc.subject.otherChemical reactionses_ES
dc.subject.otherPolaritonses_ES
dc.subject.otherOrganic microcavitieses_ES
dc.subject.otherQuantum chemistry methodses_ES
dc.titleCavity Casimir-Polder Forces and Their Effects in Ground-State Chemical Reactivityes_ES
dc.typearticlees_ES
dc.subject.ecienciaFísicaes_ES
dc.relation.publisherversionhttps://doi.org/10.1103/PhysRevX.9.021057es_ES
dc.identifier.doi10.1103/PhysRevX.9.021057es_ES
dc.identifier.publicationfirstpage021057-1es_ES
dc.identifier.publicationissue2es_ES
dc.identifier.publicationlastpage021057-22es_ES
dc.identifier.publicationvolume9es_ES
dc.relation.projectIDGobierno de España. MAT2014-53432-C5-5-Res_ES
dc.relation.projectIDGobierno de España. MDM-2014-0377es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/714870/EU//MMUSCLESes_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.ccReconocimientoes_ES
dc.rights.accessRightsopenAccesses_ES
dc.authorUAMCliment Font, Aurelio (259665)
dc.authorUAMFeist, Johannes Maximilian (264839)
dc.authorUAMGarcía Vidal, Fco. José (259819)es_ES
dc.facultadUAMFacultad de Ciencias
dc.institutoUAMCentro de Investigación en Física de la Materia Condensada (IFIMAC)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record