UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Sociodemographic indicators of health status using a machine learning approach and data from the english longitudinal study of aging (ELSA)

Author
Engchuan, Worrawat; Dimopoulos, Alexandros C.; Tyrovolas, Stefanos; Caballero Díaz, Francisco Félixuntranslated; Sanchez-Niubo, Albert; Arndt, Holger; Ayuso-Mateos, Jose Luis; Haro, Josep Maria; Chatterji, Somnath; Panagiotakos, Demosthenes B.
Entity
UAM. Departamento de Medicina Preventiva y Salud Pública y Microbiología; UAM. Departamento de Psiquiatría
Publisher
Medical Science International Publishing
Date
2019-03-17
Citation
10.12659/MSM.913283
Medical Science Monitor 25 (2019): 1994-2001
 
 
 
ISSN
1234-1010 (print)
DOI
10.12659/MSM.913283
Funded by
The ATHLOS project has received funding from the European Union Horizon 2020 Research and Innovation Program under grant agreement No. 635316 (EU HORIZON2020-PHC-635316)
Project
info:eu-repo/grantAgreement/EC/H2020/635316/EU//ATHLOS
Editor's Version
https://doi.org/10.12659/MSM.913283
Subjects
Artificial intelligence; Data interpretation, statistical; Decision support techniques; Socioeconomic factors; Medicina
URI
http://hdl.handle.net/10486/688605
Rights
© Med Sci Monit, 2019

Abstract

Background: Studies on the effects of sociodemographic factors on health in aging now include the use of statistical models and machine learning. The aim of this study was to evaluate the determinants of health in aging using machine learning methods and to compare the accuracy with traditional methods. Material/Methods: The health status of 6,209 adults, age <65 years (n=1,585), 65–79 years (n=3,267), and >80 years (n=1,357) were measured using an established health metric (0–100) that incorporated physical function and activities of daily living (ADL). Data from the English Longitudinal Study of Ageing (ELSA) included socio-economic and sociodemographic characteristics and history of falls. Health-trend and personal-fitted variables were generated as predictors of health metrics using three machine learning methods, random forest (RF), deep learning (DL) and the linear model (LM), with calculation of the percentage increase in mean square error (%IncMSE) as a measure of the importance of a given predictive variable, when the variable was removed from the model. Results: Health-trend, physical activity, and personal-fitted variables were the main predictors of health, with the%incMSE of 85.76%, 63.40%, and 46.71%, respectively. Age, employment status, alcohol consumption, and household income had the%incMSE of 20.40%, 20.10%, 16.94%, and 13.61%, respectively. Performance of the RF method was similar to the traditional LM (p=0.7), but RF significantly outperformed DL (p=0.006). Conclusions: Machine learning methods can be used to evaluate multidimensional longitudinal health data and may provide accurate results with fewer requirements when compared with traditional statistical modeling.
Show full item record

Files in this item

Thumbnail
Name
sociodemographic_engchuan_MSM_2019.pdf
Size
1.320Mb
Format
PDF

Refworks Export

Google™ Scholar:Engchuan, Worrawat - Dimopoulos, Alexandros C. - Tyrovolas, Stefanos - Caballero Díaz, Francisco Félix - Sanchez-Niubo, Albert - Arndt, Holger - Ayuso-Mateos, Jose Luis - Haro, Josep Maria - Chatterji, Somnath - Panagiotakos, Demosthenes B.

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [16807]

Related items

Showing items related by title, author, creator and subject.

  • Alcohol drinking and health in ageing: A global scale analysis of older individual data through the harmonised dataset of ATHLOS 

    Tyrovolas, Stefanos; Panaretos, Dimitris; Daskalopoulou, Christina; Gine-Vazquez, Iago; Niubo, Albert Sanchez; Olaya, Beatriz; Bobak, Martin; Prince, Martin; Prina, Matthew; Ayuso-Mateos, Jose Luis; Caballero Díaz, Francisco FélixAutoridad UAM; García García-Esquinas, EstherAutoridad UAM; Holger, Arndt; Scherbov, Sergei; Sanderson, Warren; Gheno, Ilenia; Koupil, Ilona; Bickenbach, Jerome; Chatterji, Somnath; Koskinen, Seppo; Raggi, Alberto; Pajak, Andrzej; Tobiasz-Adamczyk, Beata; Haro, Josep Maria; Panagiotakos, Demosthenes
    2020-06-11
  • Predictors of pain in general ageing populations: Results from a multi-country analysis based on ATHLOS harmonized database 

    Raggi, Alberto; Leonardi, Matilde; Mellor-Marsá, Blanca; Moneta, Maria V.; Sanchez-Niubo, Albert; Tyrovolas, Stefanos; Giné-Vázquez, Iago; Haro, Josep M.; Chatterji, Somnath; Bobak, Martin; Ayuso-Mateos, Jose L.; Arndt, Holger; Hossin, Muhammad Z.; Bickenbach, Jerome; Koskinen, Seppo; Tobiasz-Adamczyk, Beata; Panagiotakos, Demosthenes; Corso, Barbara
    2020-05-06
  • Pain rates in general population for the period 1991-2015 and 10-years prediction: Results from a multi-continent age-period-cohort analysis 

    Guido, Davide; Leonardi, Matilde; Mellor-Marsá, Blanca; Moneta, Maria V.; Sanchez-Niubo, Albert; Tyrovolas, Stefanos; Giné-Vázquez, Iago; Haro, Josep M.; Chatterji, Somnath; Bobak, Martin; Ayuso-Mateos, Jose L.; Arndt, Holger; Koupil, Ilona; Bickenbach, Jerome; Koskinen, Seppo; Tobiasz-Adamczyk, Beata; Panagiotakos, Demosthenes; Raggi, Alberto
    2020-05-13
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad