Probing the Dark Universe with Gravitational Waves
Author
Ezquiaga Bravo, José MaríaAdvisor
García-Bellido Capdevila, Juan
Entity
UAM. Departamento de Física TeóricaDate
2019-09-09Subjects
Cosmogonía - Tesis doctorales; Cosmología - Tesis doctorales; Relatividad, Teoría de la - Tesis doctorales; FísicaNote
Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física Teórica. Fecha de lectura: 09-09-2019
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.
Abstract
Gravitational wave (GW) astronomy opens new opportunities to explore the universe
and its fundamental laws. This thesis focuses on probing the pillars of the standard
cosmological model with GWs, specially its most puzzling components: dark energy (DE)
and dark matter (DM). We propose and apply new tests of DE and General Relativity
(GR) with the propagation of GWs. We also investigate the formation of black-holes
(BHs) in the early universe, which has strong implications on their contribution to the
DM and on their GW signatures.
Just as electromagnetic radiation can scan materials, GWs can probe the medium
in which they propagate. DE models beyond Einstein’s gravity generically modify the
propagation of GWs. We identify the speed of GWs as a key test of gravity and find the
conditions for an anomalous speed to arise. We emphasis that a non-luminal speed can
appear in cosmological models aiming at DE such as Galileons, but also in environments
with a spatial profile induced by screening or scalar hair. After the multi-messenger event
GW170817, we determine the consequences of the tight constraint on the speed of GWs
for different classes of gravity theories and DE models, setting the dead ends and the road
ahead. Standard sirens like GW170817 constrain as well the GW luminosity distance.
We derive this observable in general theories of gravity and discuss its detectability with
the future space-based detector LISA. Particularly distinguishable oscillatory patters are
produced by GW oscillations, a phenomenon that we study in detail. Other probes of
GW oscillations are modified wave-forms, induced anomalous speeds and polarization
dependent signals.
Primordial BHs (PBHs) could be a unique relic to unveil the physics of the early
universe. We study the production of PBHs in single field model of inflation with a
quasi-inflection point, showing the growth of perturbations beyond slow-roll (SR) at
sub- and super-horizon scales. We propose a particle physics motivated model, critical
Higgs inflation, achieving a copious PBH production with several GW signatures.
However, when curvature fluctuations are enhanced, quantum diffusion dominates the
classical inflationary dynamics. We develop a formalism based on stochastic inflation
beyond SR to account for this effect. We encounter that the classical prediction is importantly
modified, with relevant non-Gaussian contributions. To quantify better the
quantum correction, we devise a method to compute directly the tail of the curvature
perturbation distributions. As a first step, we apply it to SR inflation. We conclude
that the abundance of PBHs is many orders of magnitude larger than the Gaussian prediction,
discussing its implications for inflationary model building as well as for the GW
observables.
Altogether, GW astronomy stands as a powerful channel to advance forward in the
quest for understanding the dark universe. We discuss the future prospects of this line
of research, highlighting the theoretical challenges and observational opportunities that
next generation GW detectors will provide.
Files in this item
Google Scholar:Ezquiaga Bravo, José María
This item appears in the following Collection(s)
Related items
Showing items related by title, author, creator and subject.
-
Dark matter distribution in the Universe with gravitational lensing: the distribution of Einstein radii as cosmological probes
Vega Ferrero, Jesús
2015-07-24 -
Weak-lensing magnification as a probe for the dark Universe
Garcia Fernández, Manuel
2017-10-30