Morphisms and period matrices
Author
Chamizo Lorente, Fernando
Entity
UAM. Departamento de MatemáticasPublisher
ElsevierDate
2019-12-01Citation
10.1016/j.laa.2019.07.038
Linear Algebra and Its Applications 582 (2019): 103-113
ISSN
1873-1856 (online); 0024-3795 (print)DOI
10.1016/j.laa.2019.07.038Funded by
The author is partially supported by the MTM2017-83496-P project of the MCINN (Spain) and the \Severo Ochoa Programme for Centres of Excellence in R&D" (SEV-2015- 0554)Project
Gobierno de España. MTM2017-83496-P; Gobierno de España. SEV-2015- 0554)Editor's Version
https://doi.org/10.1016/j.laa.2019.07.038Subjects
Matrix norm; Morphism; Period matrix; Riemann surface; MatemáticasNote
This Accepted Manuscript will be available for reuse under a CC BY-NC-ND licence after 24 months of embargo periodRights
© 2019 Elsevier Inc.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.
Abstract
Bounding the number of morphisms between compact Riemann surfaces is a long standing problem coming from complex and algebraic geometry. We show that linear algebra techniques allow to improve the known results when we assume a kind of condition number bound for the period matrix.
Files in this item
Google Scholar:Chamizo Lorente, Fernando
This item appears in the following Collection(s)
Related items
Showing items related by title, author, creator and subject.