Show simple item record

dc.contributor.authorEsteve Paredes, Juan José 
dc.contributor.authorPakdel, Sahar
dc.contributor.authorPalacios Burgos, Juan José 
dc.contributor.otherUAM. Departamento de Física de la Materia Condensadaes_ES
dc.date.accessioned2019-12-12T09:39:53Z
dc.date.available2019-12-12T09:39:53Z
dc.date.issued2019-08-14
dc.identifier.citationPhysical Review Letters Volume 123.7 (2019): 077402es_ES
dc.identifier.issn1079-7114 (online)en_US
dc.identifier.issn0031-9007 (print)en_US
dc.identifier.urihttp://hdl.handle.net/10486/689548
dc.description.abstractWe predict that long-lived excitons with very large binding energies can also exist in a single or few layers of monochalcogenides such as GaSe. Our theoretical study shows that excitons confined by a radial local strain field are unable to recombine despite electrons and holes coexisting in space. The localized single-particle states are calculated in the envelope function approximation based on a three-band k·p Hamiltonian obtained from density-functional-theory calculations. The binding energy and the decay rate of the exciton ground state are computed after including correlations in the basis of electron-hole pairs. The interplay between the localized strain and the caldera-type valence band characteristic of few-layered monochalcogenides creates localized electron and hole states with very different quantum numbers which hinders the recombination even for singlet excitonsen_US
dc.description.sponsorshipResearch supported by the Spanish MINECO through Grant No. FIS2016-80434-P and the María de Maeztu Programme for Units of Excellence in Research and Development (MDM-2014-0377), the Fundación Ramón Areces, and the European Union Seventh Framework Programme under Grant Agreement No. 604391 Graphene Flagship. S. P. was also supported by the VILLUM FONDEN via the Centre of Excellence for Dirac Materials (Grant No. 11744)en_US
dc.format.extent6 pag.en_US
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherAmerican Physical Societyen_US
dc.relation.ispartofPhysical Review Lettersen_US
dc.rights© 2019 American Physical Societyen_US
dc.subject.otherDensity functional theoryen_US
dc.subject.otherQuantum theoryen_US
dc.subject.otherLayered semiconductorsen_US
dc.subject.otherHamiltoniansen_US
dc.subject.otherGround stateen_US
dc.subject.otherGallium compoundsen_US
dc.subject.otherExcitonsen_US
dc.subject.otherBinding energyen_US
dc.titleQuenching of Exciton Recombination in Strained Two-Dimensional Monochalcogenidesen_US
dc.typearticleen
dc.subject.ecienciaFísicaes_ES
dc.relation.publisherversionhttps://doi.org/10.1103/PhysRevLett.123.077402es_ES
dc.identifier.doi10.1103/PhysRevLett.123.077402es_ES
dc.identifier.publicationfirstpage077402-1es_ES
dc.identifier.publicationissue7es_ES
dc.identifier.publicationlastpage077402-6es_ES
dc.identifier.publicationvolume123es_ES
dc.relation.projectIDGobierno de España. FIS2016-80434-Pes_ES
dc.relation.projectIDGobierno de España. MDM-2014-0377es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/604391en_US
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.rights.accessRightsopenAccessen
dc.authorUAMPalacios Burgos, Juan José (262184)
dc.facultadUAMFacultad de Ciencias


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record