Error analysis of non inf-sup stable discretizations of the time-dependent Navier-Stokes equations with local projection stabilization
Entity
UAM. Departamento de MatemáticasPublisher
Oxford University PressDate
2018-07-18Citation
10.1093/imanum/dry044
IMA Journal of Numerical Analysis 39.4 (2019): 1747-1786
ISSN
1464-3642 (online); 0272-4979 (print)DOI
10.1093/imanum/dry044Funded by
Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, Spain. Research supported by Spanish MINECO under grants MTM2013-42538-P (MINECO, ES) and MTM2016-78995-P (AEI/FEDER, UE) and VA024P17 (Junta de Castilla y Leon, ES) cofinanced by FEDER funds. (frutos@mac.uva.es) Departamento de Matemática Aplicada II, Universidad de Sevilla, Sevilla, Spain. Research supported by Spanish MINECO under grant MTM2015-65608-P (bosco@esi.us.es) Weierstrass Institute for Applied Analysis and Stochastics, Leibniz Institute in Forschungsverbund Berlin e. V. (WIAS), Mohrenstr. 39, 10117 Berlin, Germany. Freie Universit at Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany. Departamento de Matemáticas, Universidad Autónoma de Madrid, Spain. Research supported by Spanish MINECO under grants MTM2013-42538-P (MINECO, ES) and MTM2016-78995-P (AEI/FEDER, UE) and VA024P17 (Junta de Castilla y Leon, ES) cofinanced by FEDER funds (julia.novo@uam.es)Project
Gobierno de España. MTM2013-42538-P; Gobierno de España. MTM2016-78995-P; Gobierno de España. MTM2015-65608-PSubjects
Navier-Stokes equations; Non inf-sup stable mixed finite elements; Local projection stabilization; MatemáticasNote
This is a pre-copyedited, author-produced PDF of an article accepted for publication in IMA Journal of Numerical Analysis following peer review. The version of record Frutos, J. de, García-Archilla, B., John, V., & Novo, J. (2019). Error analysis of non inf-sup stable discretizations of the time-dependent Navier–Stokes equations with local projection stabilization. IMA Journal of Numerical Analysis, 39(4), 1747-1786 is available online at https://academic.oup.com/imajna/article-abstract/39/4/1747/5055331Rights
© 2018 The Author(s). Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.Abstract
This paper studies non inf-sup stable finite element approximations to the evolutionary Navier-Stokes equations. Several local projection stabilization (LPS) methods corresponding to different stabilization terms are analyzed, thereby separately studying the effects of the different stabilization terms. Error estimates are derived in which the constants are independent of inverse powers of the viscosity. For one of the methods, using velocity and pressure finite elements of degree $l$, it will be proved that the velocity error in $L^\infty (0,T;L^2(\varOmega)) $ decays with rate $l+1/2$ in the case that $\nu \le h$, with $\nu$ being the dimensionless viscosity and $h$ being the mesh width. In the analysis of another method it was observed that the convective term can be bounded in an optimal way with the LPS stabilization of the pressure gradient. Numerical studies confirm the analytical results
Files in this item
Google Scholar:De Frutos, Javier
-
García-Archilla, Bosco
-
John, Volker
-
Novo Martín, Julia
This item appears in the following Collection(s)
Related items
Showing items related by title, author, creator and subject.