UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Error analysis of non inf-sup stable discretizations of the time-dependent Navier-Stokes equations with local projection stabilization

Author
De Frutos, Javier; García-Archilla, Bosco; John, Volker; Novo Martín, Juliauntranslated
Entity
UAM. Departamento de Matemáticas
Publisher
Oxford University Press
Date
2018-07-18
Citation
10.1093/imanum/dry044
IMA Journal of Numerical Analysis 39.4 (2019): 1747-1786
 
 
 
ISSN
1464-3642 (online); 0272-4979 (print)
DOI
10.1093/imanum/dry044
Funded by
Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, Spain. Research supported by Spanish MINECO under grants MTM2013-42538-P (MINECO, ES) and MTM2016-78995-P (AEI/FEDER, UE) and VA024P17 (Junta de Castilla y Leon, ES) cofinanced by FEDER funds. (frutos@mac.uva.es) Departamento de Matemática Aplicada II, Universidad de Sevilla, Sevilla, Spain. Research supported by Spanish MINECO under grant MTM2015-65608-P (bosco@esi.us.es) Weierstrass Institute for Applied Analysis and Stochastics, Leibniz Institute in Forschungsverbund Berlin e. V. (WIAS), Mohrenstr. 39, 10117 Berlin, Germany. Freie Universit at Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany. Departamento de Matemáticas, Universidad Autónoma de Madrid, Spain. Research supported by Spanish MINECO under grants MTM2013-42538-P (MINECO, ES) and MTM2016-78995-P (AEI/FEDER, UE) and VA024P17 (Junta de Castilla y Leon, ES) cofinanced by FEDER funds (julia.novo@uam.es)
Project
Gobierno de España. MTM2013-42538-P; Gobierno de España. MTM2016-78995-P; Gobierno de España. MTM2015-65608-P
Subjects
Navier-Stokes equations; Non inf-sup stable mixed finite elements; Local projection stabilization; Matemáticas
URI
http://hdl.handle.net/10486/689936
Note
This is a pre-copyedited, author-produced PDF of an article accepted for publication in IMA Journal of Numerical Analysis following peer review. The version of record Frutos, J. de, García-Archilla, B., John, V., & Novo, J. (2019). Error analysis of non inf-sup stable discretizations of the time-dependent Navier–Stokes equations with local projection stabilization. IMA Journal of Numerical Analysis, 39(4), 1747-1786 is available online at https://academic.oup.com/imajna/article-abstract/39/4/1747/5055331
Rights
© 2018 The Author(s). Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

Abstract

This paper studies non inf-sup stable finite element approximations to the evolutionary Navier-Stokes equations. Several local projection stabilization (LPS) methods corresponding to different stabilization terms are analyzed, thereby separately studying the effects of the different stabilization terms. Error estimates are derived in which the constants are independent of inverse powers of the viscosity. For one of the methods, using velocity and pressure finite elements of degree $l$, it will be proved that the velocity error in $L^\infty (0,T;L^2(\varOmega)) $ decays with rate $l+1/2$ in the case that $\nu \le h$, with $\nu$ being the dimensionless viscosity and $h$ being the mesh width. In the analysis of another method it was observed that the convective term can be bounded in an optimal way with the LPS stabilization of the pressure gradient. Numerical studies confirm the analytical results
Show full item record

Files in this item

Thumbnail
Name
error_imajona_novo_2019_ps.pdf
Size
1.028Mb
Format
PDF

Refworks Export

Google™ Scholar:De Frutos, Javier - García-Archilla, Bosco - John, Volker - Novo Martín, Julia

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [16828]

Related items

Showing items related by title, author, creator and subject.

  • Fully Discrete Approximations to the Time-Dependent Navier–Stokes Equations with a Projection Method in Time and Grad-Div Stabilization 

    de Frutos, Javier; García-Archilla, Bosco; Novo Martín, JuliaAutoridad UAM
    2019-05-28
  • Error analysis of projection methods for non inf-sup stable mixed nite elements: The Navier-Stokes equations. 

    Frutos, Javier de; García-Archilla, Bosco; Novo Martín, JuliaAutoridad UAM
    2017-05-08
  • Grad-div stabilization for the time-dependent Boussinesq equations with inf-sup stable finite elements 

    Frutos, Javier de; García-Archilla, Bosco; Novo Martín, JuliaAutoridad UAM
    2019-05-15
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad