UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

First principles calculations on the stoichiometric and defective (101) anatase surface and upon hydrogen and H2Pc adsorption: The influence of electronic exchange and correlation and of basis set approximations

Author
Martínez-Casado, Ruth; Todorović, Milica; Mallia, Giuseppe; Harrison, Nicholas M.; Pérez Pérez, Rubénuntranslated
Entity
UAM. Departamento de Física de la Materia Condensada; UAM. Departamento de Física de Materiales
Publisher
Frontiers Research Foundation
Date
2019-01-01
Citation
10.3389/fchem.2019.00220
Frontiers in Chemistry 7.4 (2019): 220
 
 
 
ISSN
2296-2646
DOI
10.3389/fchem.2019.00220
Funded by
We acknowledge financial support from the Spanish MINECO through projects MDM-2014-0377, MAT2014-54484-P, and MAT2017-83273-R and a Juan de la Cierva contract (RM-C). Computer time was provided by the Spanish Supercomputing Network (RES, Spain) at the Magerit Supercomputer (Madrid, Spain) and via the membership of the UK’s HEC Materials Chemistry Consortium (GM and NH), which is funded by EPSRC (EP/L000202). This work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk)
Project
Gobierno de España. MDM-2014-0377; Gobierno de España. MAT2014-54484-P; Gobierno de España. MAT2017-83273-R
Editor's Version
https://doi.org/10.3389/fchem.2019.00220
Subjects
Anatase; Defects; Density functional theory; Hybrid functionals; Oxides; Phthalocyanine; Física
URI
http://hdl.handle.net/10486/690731
Rights
© 2019 Martínez-Casado, Todorović, Mallia, Harrison and Pérez

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.

Abstract

Anatase TiO 2 provides photoactivity with high chemical stability at a reasonable cost. Different methods have been used to enhance its photocatalytic activity by creating band gap states through the introduction of oxygen vacancies, hydrogen impurities, or the adorption of phthalocyanines, which are usually employed as organic dyes in dye-sensitized solar cells. Predicting how these interactions affect the electronic structure of anatase requires an efficient and robust theory. In order to document the efficiency and accuracy of commonly used approaches we have considered two widely used implementations of density functional theory (DFT), namely the all-electron linear combination of atomic orbitals (AE-LCAO) and the pseudo-potential plane waves (PP-PW) approaches, to calculate the properties of the stoichiometric and defective anatase TiO 2 (101) surface. Hybrid functionals, and in particular HSE, lead to a computed band gap in agreement with that measured by using UV adsorption spectroscopy. When using PBE+U, the gap is underestimated by 20 % but the computed position of defect induced gap states relative to the conduction band minimum (CBM) are found to be in good agreement with those calculated using hybrid functionals. These results allow us to conclude that hybrid functionals based on the use of AE-LCAO provide an efficient and robust approach for predicting trends in the band gap and the position of gap states in large model systems. We extend this analysis to surface adsorption and use the AE-LCAO approach with the hybrid functional HSED3 to study the adsorption of the phthalocyanine H 2 Pc on anatase (101). Our results suggest that H 2 Pc prefers to be adsorbed on the surface Ti 5c rows of anatase (101), in agreement with that seen in recent STM experiments on rutile (110)
Show full item record

Files in this item

Thumbnail
Name
first_martinez_fc_2019.pdf
Size
7.955Mb
Format
PDF

Refworks Export

Google™ Scholar:Martínez-Casado, Ruth - Todorović, Milica - Mallia, Giuseppe - Harrison, Nicholas M. - Pérez Pérez, Rubén

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [16618]

Related items

Showing items related by title, author, creator and subject.

  • Surface morphology of CuFeS2: The stability of the polar (112)/(112¯) surface pair 

    Chen, Vincent H Y; Mallia, Giuseppe; Martínez-Casado, Ruth; Harrison, Nicholas M.
    2015-10-21
  • Atom-specific forces and defect identification on surface-oxidized Cu(100) with combined 3D-AFM and STM measurements 

    Baykara, Mehmet Z.; Todorović, Milica; Mönig, Harry; Schwendemann, Todd C.; Ünverdi, Özhan; Rodrigo, Lucía; Altman, Eric I.; Pérez Pérez, RubénAutoridad UAM; Schwarz, Udo Dietmar
    2013-04-12
  • Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy 

    Stetsovych, Oleksandr; Todorović, Milica; Shimizu, Tomoko K.; Moreno, César H.; Ryan, James William; Pérez León, Carmen; Sagisaka, Keisuke; Palomares, Emilio J.; Matolín, Vladimír; Fujita, Daisuke; Pérez Pérez, RubénAutoridad UAM; Custance, Óscar
    2015-06-29
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram
 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram