Show simple item record

dc.contributor.authorMartínez-Casado, Ruth
dc.contributor.authorTodorović, Milica
dc.contributor.authorMallia, Giuseppe
dc.contributor.authorHarrison, Nicholas M.
dc.contributor.authorPérez Pérez, Rubén 
dc.contributor.otherUAM. Departamento de Física de la Materia Condensadaes_ES
dc.contributor.otherUAM. Departamento de Física de Materialeses_ES
dc.date.accessioned2020-04-03T09:39:07Z
dc.date.available2020-04-03T09:39:07Z
dc.date.issued2019-01-01
dc.identifier.citationFrontiers in Chemistry 7.4 (2019): 220en_US
dc.identifier.issn2296-2646es_ES
dc.identifier.urihttp://hdl.handle.net/10486/690731
dc.description.abstractAnatase TiO 2 provides photoactivity with high chemical stability at a reasonable cost. Different methods have been used to enhance its photocatalytic activity by creating band gap states through the introduction of oxygen vacancies, hydrogen impurities, or the adorption of phthalocyanines, which are usually employed as organic dyes in dye-sensitized solar cells. Predicting how these interactions affect the electronic structure of anatase requires an efficient and robust theory. In order to document the efficiency and accuracy of commonly used approaches we have considered two widely used implementations of density functional theory (DFT), namely the all-electron linear combination of atomic orbitals (AE-LCAO) and the pseudo-potential plane waves (PP-PW) approaches, to calculate the properties of the stoichiometric and defective anatase TiO 2 (101) surface. Hybrid functionals, and in particular HSE, lead to a computed band gap in agreement with that measured by using UV adsorption spectroscopy. When using PBE+U, the gap is underestimated by 20 % but the computed position of defect induced gap states relative to the conduction band minimum (CBM) are found to be in good agreement with those calculated using hybrid functionals. These results allow us to conclude that hybrid functionals based on the use of AE-LCAO provide an efficient and robust approach for predicting trends in the band gap and the position of gap states in large model systems. We extend this analysis to surface adsorption and use the AE-LCAO approach with the hybrid functional HSED3 to study the adsorption of the phthalocyanine H 2 Pc on anatase (101). Our results suggest that H 2 Pc prefers to be adsorbed on the surface Ti 5c rows of anatase (101), in agreement with that seen in recent STM experiments on rutile (110)en_US
dc.description.sponsorshipWe acknowledge financial support from the Spanish MINECO through projects MDM-2014-0377, MAT2014-54484-P, and MAT2017-83273-R and a Juan de la Cierva contract (RM-C). Computer time was provided by the Spanish Supercomputing Network (RES, Spain) at the Magerit Supercomputer (Madrid, Spain) and via the membership of the UK’s HEC Materials Chemistry Consortium (GM and NH), which is funded by EPSRC (EP/L000202). This work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk)en_US
dc.format.extent12 pag.en_US
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherFrontiers Research Foundationen_US
dc.relation.ispartofFrontiers in Chemistryen_US
dc.rights© 2019 Martínez-Casado, Todorović, Mallia, Harrison and Pérezen_US
dc.subject.otherAnataseen_US
dc.subject.otherDefectsen_US
dc.subject.otherDensity functional theoryen_US
dc.subject.otherHybrid functionalsen_US
dc.subject.otherOxidesen_US
dc.subject.otherPhthalocyanineen_US
dc.titleFirst principles calculations on the stoichiometric and defective (101) anatase surface and upon hydrogen and H2Pc adsorption: The influence of electronic exchange and correlation and of basis set approximationsen_US
dc.typearticleen
dc.subject.ecienciaFísicaes_ES
dc.relation.publisherversionhttps://doi.org/10.3389/fchem.2019.00220es_ES
dc.identifier.doi10.3389/fchem.2019.00220es_ES
dc.identifier.publicationfirstpage220-1es_ES
dc.identifier.publicationissue4es_ES
dc.identifier.publicationlastpage220-12es_ES
dc.identifier.publicationvolume7es_ES
dc.relation.projectIDGobierno de España. MDM-2014-0377es_ES
dc.relation.projectIDGobierno de España. MAT2014-54484-Pes_ES
dc.relation.projectIDGobierno de España. MAT2017-83273-Res_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.rights.ccReconocimientoes_ES
dc.rights.accessRightsopenAccessen
dc.authorUAMMartínez Casado, María Ruth (264990)
dc.authorUAMPérez Pérez, Rubén (258655)
dc.facultadUAMFacultad de Ciencias
dc.institutoUAMCentro de Investigación en Física de la Materia Condensada (IFIMAC)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record